supplementary materials


hb6538 scheme

Acta Cryst. (2012). E68, m26-m27    [ doi:10.1107/S160053681105094X ]

Di-[mu]-oxido-bis[(2-ethoxy-6-{[2-(2-hydroxyethylamino)ethylimino]methyl}phenolato-[kappa]3N,N',O1)oxidovanadium(V)]

F.-M. Wang

Abstract top

In the title centrosymmetric dinuclear dioxidovanadium(V) complex, [V2(C13H19N2O3)2O4], the VV ion is coordinated by an N,N',O-tridendate 2-ethoxy-6-{[2-(2-hydroxyethylamino)ethylimino]methyl}phenolate ligand and three oxide O atoms, forming a distorted cis-VN2O4 octahedral geometry. The bridging O atoms show one short and one long bond to their two attached VV atoms. The dihedral angle between the benzene ring of the ligand and the V2O2 plane is 75.2 (3)°. The deviation of the VV ion from the plane defined by the three donor atoms of the tridentate ligand and one bridging oxide O atom is 0.337 (2) Å towards the terminal oxide O atom. Two N-H...O hydrogen bonds help to establish the conformation of the dimer. In the crystal, the complex molecules are linked by O-H...O hydrogen bonds, forming [100] chains.

Comment top

Schiff base compounds and their oxovanadium complexes have received much attention due to their structures and biological properties (Kwiatkowski et al., 2006; Mondal et al., 2007; Rayati et al., 2008; Rayati et al., 2007; Mikuriya & Matsunami, 2005). In this paper, the crystal structure of the title compound, (I), is reported.

The title complex is a centrosymmetric dinuclear dioxovanadium(V) compound, Fig. 1. The inversion center lies in the midpoint of the two V atoms. The VV ion is coordinated by the phenolic O, imine N, and amine N atoms of a tridendate Schiff base ligand, and three oxo O atoms, forming a distorted octahedral geometry. The dihedral angle between the benzene ring and the V2O2 plane is 75.2 (3)°. The deviation of the VV ion from the plane defined by the three donor atoms of the tridentate ligand and one bridging oxo O atom towards the terminal oxo O atom is 0.337 (2) Å. The coordinate bond lengths (Table 1) are comparable with those observed in similar oxovanadium(V) complexes cited above.

In the crystal, the complex molecules are linked through intermolecular O—H···O hydrogen bonds (Table 2), to form chains along the a axis (Fig. 2).

Related literature top

For background to vanadium complexes with Schiff base ligands, see: Kwiatkowski et al. (2006); Mondal et al. (2007); Rayati et al. (2007, 2008); Mikuriya & Matsunami (2005).

Experimental top

2-Hydroxy-3-ethoxybenzaldehyde (1 mmol, 0.17 g), 2-(2-aminoethylamino)ethanol (1 mmol, 0.10 g), and VO(acac)2 (1 mmol, 0.26 g) were mixed in methanol (30 ml). The mixture was boiled under reflux for 2 h, then cooled to room temperature. Brown blocks were formed after slow evaporation of the solution in air for a few days.

Refinement top

H2 atom was located from a difference Fourier map and refined isotropically. The N2—H2 distance is restrained to 0.90 (1) Å. The remaining hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93–0.97 Å, O—H distances of 0.82 Å, and with Uiso(H) set at 1.2Ueq(C) and 1.5Ueq(Cmethyl and O).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with displacement ellipsoids are drawn at the 30% probability level. Unlabeled atoms are at the symmetry position (1-x, 2-y, -z).
[Figure 2] Fig. 2. Molecular packing of the title complex, viewed along the b axis. Hydrogen bonds are shown as dashed lines.
Di-µ-oxido-bis[(2-ethoxy-6-{[2-(2- hydroxyethylamino)ethylimino]methyl}phenolato- κ3N,N',O1)oxidovanadium(V)] top
Crystal data top
[V2(C13H19N2O3)2O4]F(000) = 696
Mr = 668.48Dx = 1.486 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2450 reflections
a = 9.907 (3) Åθ = 2.2–24.3°
b = 6.793 (2) ŵ = 0.69 mm1
c = 22.279 (3) ÅT = 298 K
β = 94.886 (2)°Block, brown
V = 1493.9 (7) Å30.20 × 0.18 × 0.17 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
3246 independent reflections
Radiation source: fine-focus sealed tube2485 reflections with I > 2σ(I)
graphiteRint = 0.042
ω scanθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.875, Tmax = 0.892k = 88
11652 measured reflectionsl = 2826
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0952P)2 + 1.1945P]
where P = (Fo2 + 2Fc2)/3
3246 reflections(Δ/σ)max < 0.001
195 parametersΔρmax = 1.85 e Å3
1 restraintΔρmin = 0.54 e Å3
Crystal data top
[V2(C13H19N2O3)2O4]V = 1493.9 (7) Å3
Mr = 668.48Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.907 (3) ŵ = 0.69 mm1
b = 6.793 (2) ÅT = 298 K
c = 22.279 (3) Å0.20 × 0.18 × 0.17 mm
β = 94.886 (2)°
Data collection top
Bruker SMART CCD
diffractometer
3246 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2485 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.892Rint = 0.042
11652 measured reflectionsθmax = 27.0°
Refinement top
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.172Δρmax = 1.85 e Å3
S = 1.05Δρmin = 0.54 e Å3
3246 reflectionsAbsolute structure: ?
195 parametersFlack parameter: ?
1 restraintRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.62902 (5)0.97199 (8)0.04516 (3)0.0309 (2)
N10.6461 (3)1.2263 (4)0.10267 (13)0.0347 (6)
N20.7184 (3)1.1915 (4)0.01144 (13)0.0342 (6)
O10.5187 (2)0.8713 (3)0.10484 (10)0.0351 (5)
O20.4234 (3)0.5847 (4)0.16733 (11)0.0424 (6)
O30.9657 (4)1.1068 (7)0.12850 (17)0.0885 (12)
H31.03851.08810.10900.133*
O40.4359 (2)1.1593 (3)0.01421 (10)0.0351 (5)
O50.7765 (2)0.8771 (4)0.06738 (12)0.0432 (6)
C10.5369 (3)0.8873 (5)0.16463 (14)0.0329 (7)
C20.5987 (3)1.0530 (5)0.19418 (16)0.0368 (8)
C30.6073 (4)1.0645 (6)0.25808 (17)0.0456 (9)
H3A0.64721.17350.27770.055*
C40.5572 (4)0.9157 (7)0.29065 (17)0.0504 (10)
H40.56220.92570.33240.060*
C50.4984 (4)0.7486 (6)0.26289 (16)0.0436 (9)
H50.46810.64630.28610.052*
C60.4852 (3)0.7358 (5)0.19995 (16)0.0364 (8)
C70.3486 (4)0.4418 (6)0.19921 (19)0.0488 (10)
H7A0.27640.50540.21870.059*
H7B0.40810.37570.22970.059*
C80.2907 (4)0.2954 (6)0.1524 (2)0.0548 (11)
H8A0.21390.35270.12970.082*
H8B0.26300.17840.17220.082*
H8C0.35860.26250.12580.082*
C90.6390 (3)1.2243 (5)0.16017 (16)0.0372 (8)
H90.66101.33940.18140.045*
C100.6735 (4)1.4124 (5)0.07187 (18)0.0425 (9)
H10A0.71421.50730.10050.051*
H10B0.58991.46760.05320.051*
C110.7699 (4)1.3655 (6)0.02438 (17)0.0459 (9)
H11A0.77691.47800.00200.055*
H11B0.85941.33750.04360.055*
C120.8244 (4)1.0959 (6)0.04668 (18)0.0435 (9)
H12A0.89881.05400.01840.052*
H12B0.78520.97850.06590.052*
C130.8814 (4)1.2206 (7)0.0943 (2)0.0576 (11)
H13A0.80791.27570.12060.069*
H13B0.93301.32860.07540.069*
H20.646 (3)1.215 (8)0.0374 (18)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0304 (3)0.0253 (3)0.0364 (4)0.0012 (2)0.0004 (2)0.0007 (2)
N10.0345 (14)0.0279 (14)0.0410 (16)0.0009 (11)0.0006 (12)0.0005 (12)
N20.0301 (14)0.0284 (15)0.0437 (17)0.0034 (11)0.0016 (12)0.0007 (12)
O10.0376 (12)0.0345 (13)0.0326 (12)0.0052 (10)0.0006 (10)0.0003 (10)
O20.0471 (14)0.0381 (14)0.0427 (14)0.0078 (11)0.0080 (11)0.0048 (11)
O30.064 (2)0.126 (4)0.077 (2)0.002 (2)0.0099 (18)0.019 (3)
O40.0361 (12)0.0300 (12)0.0390 (13)0.0020 (10)0.0019 (10)0.0017 (10)
O50.0346 (13)0.0363 (14)0.0572 (16)0.0015 (10)0.0039 (11)0.0035 (12)
C10.0283 (16)0.0367 (18)0.0330 (17)0.0040 (13)0.0011 (13)0.0007 (14)
C20.0327 (17)0.0387 (19)0.0380 (19)0.0019 (14)0.0029 (14)0.0006 (15)
C30.044 (2)0.053 (2)0.039 (2)0.0049 (18)0.0068 (16)0.0089 (17)
C40.048 (2)0.070 (3)0.033 (2)0.004 (2)0.0021 (16)0.0011 (19)
C50.0390 (19)0.050 (2)0.042 (2)0.0036 (17)0.0042 (15)0.0068 (17)
C60.0311 (17)0.0367 (18)0.0417 (19)0.0040 (14)0.0050 (14)0.0032 (15)
C70.049 (2)0.041 (2)0.059 (3)0.0024 (17)0.0194 (19)0.0069 (18)
C80.052 (2)0.042 (2)0.072 (3)0.0074 (18)0.018 (2)0.002 (2)
C90.0330 (17)0.0333 (18)0.044 (2)0.0001 (14)0.0042 (14)0.0083 (15)
C100.045 (2)0.0276 (18)0.054 (2)0.0045 (15)0.0008 (17)0.0031 (16)
C110.048 (2)0.035 (2)0.055 (2)0.0168 (16)0.0055 (17)0.0032 (17)
C120.0335 (17)0.042 (2)0.056 (2)0.0006 (15)0.0055 (16)0.0030 (18)
C130.044 (2)0.070 (3)0.061 (3)0.005 (2)0.0186 (19)0.010 (2)
Geometric parameters (Å, °) top
V1—O51.634 (2)C3—H3A0.9300
V1—O4i1.678 (2)C4—C51.396 (6)
V1—O11.918 (2)C4—H40.9300
V1—N12.149 (3)C5—C61.400 (5)
V1—N22.188 (3)C5—H50.9300
V1—O42.351 (2)C7—C81.518 (6)
N1—C91.289 (4)C7—H7A0.9700
N1—C101.475 (4)C7—H7B0.9700
N2—C111.492 (4)C8—H8A0.9600
N2—C121.510 (4)C8—H8B0.9600
N2—H20.895 (10)C8—H8C0.9600
O1—C11.333 (4)C9—H90.9300
O2—C61.371 (4)C10—C111.518 (5)
O2—C71.444 (4)C10—H10A0.9700
O3—C131.408 (5)C10—H10B0.9700
O3—H30.8200C11—H11A0.9700
O4—V1i1.678 (2)C11—H11B0.9700
C1—C21.417 (5)C12—C131.505 (5)
C1—C61.417 (5)C12—H12A0.9700
C2—C31.421 (5)C12—H12B0.9700
C2—C91.463 (5)C13—H13A0.9700
C3—C41.363 (6)C13—H13B0.9700
O5—V1—O4i107.58 (12)O2—C6—C5125.2 (3)
O5—V1—O1101.35 (12)O2—C6—C1114.5 (3)
O4i—V1—O198.86 (10)C5—C6—C1120.3 (3)
O5—V1—N196.52 (12)O2—C7—C8106.4 (3)
O4i—V1—N1154.55 (11)O2—C7—H7A110.4
O1—V1—N183.89 (11)C8—C7—H7A110.4
O5—V1—N292.77 (12)O2—C7—H7B110.4
O4i—V1—N293.15 (11)C8—C7—H7B110.4
O1—V1—N2157.67 (11)H7A—C7—H7B108.6
N1—V1—N277.33 (11)C7—C8—H8A109.5
O5—V1—O4170.41 (10)C7—C8—H8B109.5
O4i—V1—O478.97 (11)H8A—C8—H8B109.5
O1—V1—O484.19 (9)C7—C8—H8C109.5
N1—V1—O476.14 (9)H8A—C8—H8C109.5
N2—V1—O479.70 (9)H8B—C8—H8C109.5
C9—N1—C10119.9 (3)N1—C9—C2124.3 (3)
C9—N1—V1125.2 (2)N1—C9—H9117.9
C10—N1—V1114.8 (2)C2—C9—H9117.9
C11—N2—C12113.4 (3)N1—C10—C11107.2 (3)
C11—N2—V1111.6 (2)N1—C10—H10A110.3
C12—N2—V1109.9 (2)C11—C10—H10A110.3
C11—N2—H2115 (3)N1—C10—H10B110.3
C12—N2—H2107 (3)C11—C10—H10B110.3
V1—N2—H299 (3)H10A—C10—H10B108.5
C1—O1—V1128.8 (2)N2—C11—C10109.4 (3)
C6—O2—C7117.9 (3)N2—C11—H11A109.8
C13—O3—H3109.5C10—C11—H11A109.8
V1i—O4—V1101.03 (11)N2—C11—H11B109.8
O1—C1—C2123.0 (3)C10—C11—H11B109.8
O1—C1—C6118.1 (3)H11A—C11—H11B108.2
C2—C1—C6118.8 (3)C13—C12—N2116.3 (3)
C1—C2—C3119.7 (3)C13—C12—H12A108.2
C1—C2—C9121.2 (3)N2—C12—H12A108.2
C3—C2—C9118.6 (3)C13—C12—H12B108.2
C4—C3—C2119.9 (4)N2—C12—H12B108.2
C4—C3—H3A120.0H12A—C12—H12B107.4
C2—C3—H3A120.0O3—C13—C12110.3 (4)
C3—C4—C5121.7 (4)O3—C13—H13A109.6
C3—C4—H4119.2C12—C13—H13A109.6
C5—C4—H4119.2O3—C13—H13B109.6
C4—C5—C6119.6 (4)C12—C13—H13B109.6
C4—C5—H5120.2H13A—C13—H13B108.1
C6—C5—H5120.2
Symmetry codes: (i) −x+1, −y+2, −z.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.90 (1)2.20 (3)3.033 (4)154 (5)
O3—H3···O5ii0.822.002.793 (4)164
Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x+2, −y+2, −z.
Table 1
Selected geometric parameters (Å)
top
V1—O51.634 (2)V1—N12.149 (3)
V1—O4i1.678 (2)V1—N22.188 (3)
V1—O11.918 (2)V1—O42.351 (2)
Symmetry codes: (i) −x+1, −y+2, −z.
Table 2
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.90 (1)2.20 (3)3.033 (4)154 (5)
O3—H3···O5ii0.822.002.793 (4)164
Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x+2, −y+2, −z.
Acknowledgements top

This work was supported financially by Dezhou University, People's Republic of China.

references
References top

Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Kwiatkowski, E., Romanowski, G., Nowicki, W. & Kwiatkowski, M. (2006). Polyhedron, 25, 2809–2814.

Mikuriya, M. & Matsunami, K. (2005). Mater. Sci. 23, 773–792.

Mondal, S., Mukherjee, M., Dhara, K., Ghosh, S., Ratha, J., Banerjee, P. & Mukherjee, A. K. (2007). Cryst. Growth Des. 7, 1716–1721.

Rayati, S., Sadeghzadeh, N. & Khavasi, H. R. (2007). Inorg. Chem. Commun. 10, 1545–1548.

Rayati, S., Wojtczak, A. & Kozakiewicz, A. (2008). Inorg. Chim. Acta, 361, 1530–1533.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.