supplementary materials

rn2097 scheme

Acta Cryst. (2012). E68, o39    [ doi:10.1107/S1600536811051920 ]


M.-H. Wu, Q.-M. Qiu, S. Gao, Q.-H. Jin and C.-L. Zhang

Abstract top

In the crystal structure of the title compound, C5H8N4, adjacent molecules are connected through N-H...N hydrogen bonds, resulting in a zigzag chain along [100]. The amino groups and heterocyclic N atoms are involved in further N-H...N hydrogen bonds, forming R22(8) motifs.

Comment top

The heterocyclic nitrogen compounds containing 1,2,4-triazine moieties have drawn much attention in recent years, owing to their interesting biological and medicinal properties (Anderson et al., 2003; Gavai et al., 2009; Hunt et al.,2004). They usually act as efficient ligands in supramolecular compounds (Drew et al., 2001; Li et al., 2009; Machura et al., 2008). The title compound (I) has been used as a multidentate ligand to form poly-nuclear complexes (Self et al., 1991). In (I), hydrogen bonds are formed between the NH groups of amino group and the N atoms.

We are interested in synthesizing new transition metal complexes containing (I) (Jiang et al., 2011; Wu et al., 2011). The title compound was unexpectedly obtained in the course of synthesizing Cu(I) complexes.

In the title compound, adjacent molecules are connected by intermolecular N—H···N hydrogen bonds to form a zigzag structure (Fig. 2). In the crystal structure, the amino groups and heterocyclic N atoms are involved in hydrogen bonds,forming R22(8) type hydrogen bonds (Etter, 1990; Glidewell et al., 2003).

Related literature top

For the biological and medical applications of triazine, see: Anderson et al.(2003); Gavai et al. (2009); Hunt et al. (2004). For the structures of complexes containing triazine, see: Drew et al. (2001); Li et al. (2009); Machura et al. (2008). For the structures of complexes containing the title compound, see: Jiang et al.(2011); Self et al. (1991); Wu et al. (2011). For the structures of compounds containing R22(8)-type hydrogen bonds, see: Etter (1990); Glidewell et al. (2003).

Experimental top

A mixture of CuCN and ADMT (ADMT=3-amino-5,6-dimethyl- 1,2,4-triazine) in molar ratio of 1:1 in the mixed solution of CH3CN (7 ml)/ CH3OH (3 ml) was stirred for 3 h,then filtered. Pale yellow crystals were obtained from the filtrate after standing at room temperature for several days.

Refinement top

The final refinements were performed with isotropic thermal parameters. All hydrogen atoms were located in the calculated sites and included in the final refinement in the riding model approximation with displacement parameters derived from the parent atoms to which they were bonded. The ratios of H atom Uiso to C atom Ueq are 1.5. The ratios of H atom Uiso to N atom Ueq are 1.2.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing for (I) with hydrogen bonds shown as dashed lines.
5,6-Dimethyl-1,2,4-triazin-3-amine top
Crystal data top
C5H8N4Dx = 1.278 Mg m3
Mr = 124.14Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 1029 reflections
a = 7.4877 (8) Åθ = 2.7–28.0°
b = 6.7530 (7) ŵ = 0.08 mm1
c = 12.6615 (13) ÅT = 293 K
V = 640.22 (12) Å3Block, yellow
Z = 40.50 × 0.39 × 0.38 mm
F(000) = 264
Data collection top
Bruker SMART CCD area-detector
614 independent reflections
Radiation source: fine-focus sealed tube421 reflections with I > 2σ(I)
graphiteRint = 0.034
phi and ω scansθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 78
Tmin = 0.960, Tmax = 0.969k = 87
2997 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0627P)2 + 0.3625P]
where P = (Fo2 + 2Fc2)/3
614 reflections(Δ/σ)max < 0.001
58 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C5H8N4V = 640.22 (12) Å3
Mr = 124.14Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 7.4877 (8) ŵ = 0.08 mm1
b = 6.7530 (7) ÅT = 293 K
c = 12.6615 (13) Å0.50 × 0.39 × 0.38 mm
Data collection top
Bruker SMART CCD area-detector
614 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
421 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.969Rint = 0.034
2997 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.157Δρmax = 0.26 e Å3
S = 1.11Δρmin = 0.16 e Å3
614 reflectionsAbsolute structure: ?
58 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N11.0561 (4)0.25000.5062 (2)0.0514 (9)
N21.0506 (4)0.25000.6123 (2)0.0499 (8)
N30.7314 (4)0.25000.60746 (19)0.0466 (8)
N40.8858 (4)0.25000.7657 (2)0.0609 (10)
C10.8903 (4)0.25000.6589 (2)0.0447 (9)
C20.7407 (5)0.25000.5030 (2)0.0469 (9)
C30.9072 (5)0.25000.4511 (2)0.0477 (9)
C40.5682 (5)0.25000.4422 (3)0.0678 (12)
C50.9233 (5)0.25000.3332 (2)0.0624 (11)
Atomic displacement parameters (Å2) top
N10.0485 (19)0.063 (2)0.0425 (16)0.0000.0087 (13)0.000
N20.0412 (17)0.069 (2)0.0395 (16)0.0000.0016 (12)0.000
N30.0431 (16)0.062 (2)0.0346 (15)0.0000.0012 (11)0.000
N40.0382 (16)0.105 (3)0.0391 (16)0.0000.0064 (12)0.000
C10.0417 (19)0.057 (2)0.0350 (17)0.0000.0008 (13)0.000
C20.054 (2)0.050 (2)0.0374 (19)0.0000.0014 (14)0.000
C30.055 (2)0.049 (2)0.0397 (19)0.0000.0031 (16)0.000
C40.060 (2)0.097 (3)0.047 (2)0.0000.0118 (17)0.000
C50.075 (3)0.074 (3)0.0376 (19)0.0000.0075 (18)0.000
Geometric parameters (Å, °) top
N1—C31.315 (4)C2—C41.503 (5)
N1—N21.344 (4)C3—C51.498 (4)
N2—C11.338 (4)C4—H4C0.9600
N3—C21.325 (4)C4—H4D0.9600
N3—C11.356 (4)C4—H4E0.9600
N4—C11.353 (4)C5—H5A0.9600
C2—C31.409 (5)
C3—N1—N2120.2 (3)C2—C3—C5122.4 (3)
C1—N2—N1117.9 (3)C2—C4—H4C109.5
C2—N3—C1115.7 (3)C2—C4—H4D109.5
N2—C1—N4117.6 (3)H4D—C4—H4E109.5
N2—C1—N3125.2 (3)C3—C5—H5A109.5
N4—C1—N3117.3 (3)C3—C5—H5B109.5
N3—C2—C3120.8 (3)H5A—C5—H5B109.5
N3—C2—C4117.7 (3)C3—C5—H5C109.5
C3—C2—C4121.5 (3)H5A—C5—H5C109.5
N1—C3—C2120.2 (3)H5B—C5—H5C109.5
N1—C3—C5117.4 (3)
N1—N2—C1—N30.000 (1)N3—C2—C3—N10.0
C2—N3—C1—N20.000 (1)C4—C2—C3—N1180.0
Hydrogen-bond geometry (Å, °) top
N4—H4A···N3i0.862.193.045 (4)179.
N4—H4B···N2ii0.862.092.947 (4)176.
Symmetry codes: (i) x+1/2, y, −z+3/2; (ii) x−1/2, y, −z+3/2.
Table 1
Hydrogen-bond geometry (Å, °)
N4—H4A···N3i0.862.193.045 (4)179.
N4—H4B···N2ii0.862.092.947 (4)176.
Symmetry codes: (i) x+1/2, y, −z+3/2; (ii) x−1/2, y, −z+3/2.
Acknowledgements top

This work was supported by the National Natural Science Foundation of China (No. 21171119), the CAIQ Basic Research Program (No. 2010 J K022), the National Keystone Basic Research Program (973 Program) under grant Nos. 2007CB310408 and 2006CB302901, the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality and the State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences.

References top

Anderson, R. F., Shinde, S. S., Hay, M. P., Gamage, S. A. & Denny, W. A. (2003). J. Am. Chem. Soc. 125, 748–756.

Bruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Wisconsin, USA.

Drew, M. G. B., Guillaneux, D., Hudson, M. J., Iveson, P. B., Russell, M. L. & Madic, C. (2001). Inorg. Chem. Commun. 4, 12–15.

Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126.

Gavai, A. V., Fink, B. E., Fairfax, D. J., Martin, G. S. & Rossiter, L. M. (2009). J. Med. Chem. 52, 6527–6530.

Glidewell, C., Low, J. N., Melguizo, M. & Quesada, A. (2003). Acta Cryst. C59, o9–o13.

Hunt, J. T., Mitt, T., Borzilleri, R., Brown, J. G. & Fargnoli, J. (2004). J. Med. Chem. 47, 4054–4059.

Jiang, Y.-H., Cui, L.-N., Huang, X., Jin, Q.-H. & Zhang, C.-L. (2011). Acta Cryst. E67, m1526–m1527.

Li, L. X., Turnbull, M. M., Ackers, J., Chen, J. P., Lin, H. Y., Pan, B. F., Wang, H. & Foxman, B. M. (2009). Inorg. Chim. Acta, 362, 3845–3852.

Machura, B., Switlicka, A., Kruszynski, R., Mrozinski, J., Klak, J. & Kusz, J. (2008). Polyhedron, 27, 2959–2967.

Self, M. F., Pennington, W. T. & Robinson, G. H. (1991). J. Coord. Chem. 24, 69–76.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wu, M. H., Wang, R., Li, Z. F., Xiao, Y. L., Jin, Q. H. & Zhang, C. L. (2011). Z. Kristallogr. New Cryst. Struct. 226, 555–556.