metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(tri­ethyl­ammonium) tetra­chlorido­cobaltate(II)

aDepartment of Chemistry, Payame Noor University, Tehran, Iran, bDepartment of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran, and cDipartimento di Chimica Inorganica, Vill. S. Agata, Salita Sperone 31, Universita di Messina 98166 Messina, Italy
*Correspondence e-mail: r_azadbakht@yahoo.com

(Received 12 May 2012; accepted 17 May 2012; online 31 May 2012)

The crystal structure of the title compound, (C6H16N)2[CoCl4], is comprised of a tetrahedral [CoCl4]2− anion and two independent triethyl­ammonium cations. The latter are featureless while the [CoCl4]2− anion exhibits typical Co—Cl bond lengths [2.2428 (15)–2.2847 (16) Å] and a Cl—Co—Cl angular range of 107.58 (6)–112.73 (7)°. In the crystal, N—H⋯Cl hydrogen bonds between the two crystallographically independent cations and the [CoCl4]2− anion generate discrete ion triplets. The two Co—Cl bonds involved in these inter­actions are slightly longer than the remaining two.

Related literature

For the crystal structure of a related complex, see: Clegg & Martin (2007[Clegg, W. & Martin, N. C. (2007). Acta Cryst. E63, m1151.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H16N)2[CoCl4]

  • Mr = 405.13

  • Orthorhombic, P b c a

  • a = 11.981 (5) Å

  • b = 13.226 (5) Å

  • c = 25.946 (10) Å

  • V = 4112 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.35 mm−1

  • T = 296 K

  • 0.18 × 0.14 × 0.13 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.661, Tmax = 0.745

  • 42005 measured reflections

  • 4090 independent reflections

  • 2078 reflections with I > 2σ(I)

  • Rint = 0.117

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.119

  • S = 1.00

  • 4090 reflections

  • 180 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl4 0.84 (4) 2.39 (5) 3.216 (6) 170 (4)
N2—H2⋯Cl1 0.90 (4) 2.34 (4) 3.214 (5) 163 (4)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The crystal structure of the title compound, Bis (triethylammonium) tetrachloridocobalt (II), is comprised of a [CoCl4]2- anion and two independent triethylammonium cations. The crystal structure of triethylammonium is similar to that of its analogue salts, Clegg and Martin (2007). The [CoCl4]2- anion possesses typical Co—Cl bonds (range: 2.2428 (15) to 2.2847 (16) Å), while the Cl—Co—Cl angles range from 107.58 (6) to 112.73 (7)°. An ORTEP diagram of the asymmetric unit is presented in Fig. 1. In the crystal structure intermolecular N—H—Cl hydrogen bonds are observed between each of the two crystallographically independent cations and the tetrahedral [CoCl4]2- anion that generate discrete ion triplets (Table 1). The Co—Cl bonds involving the hydrogen-bonded Cl atoms are slightly longer than the remaining two. The hydrogen bonds between the organic cations and the [CoCl4]2- anions contribute to the stability of crystal packing (Fig. 2).

Related literature top

For the crystal structure of a related complex, see: Clegg & Martin (2007).

Experimental top

The compound was obtained unexpectedly in an unsuccessful attempt to prepare a cobalt(II) macrocyclic Schiff-base complex. To 2,6-diformyl-4-chlorophenol (1 mmol) and CoCl2.6H2O (2 mmol) in 25ml of MeOH, a methanolic solution (25 ml) of 1,2-bis (2'-aminophenoxy)benzene (1 mmol) and NEt3 (1 mmol) was added dropwise. The resulting solution was stirred under reflux for 3 h. The precipitate obtained by partial evaporation of the solution was allowed it to stand overnight in refrigerator and was collected by filtration. Suitable crystals for the X-ray crystal structure determination were grown by recrystallization by diffusion of diethylether in the solution of the complex in acetonitrile

Refinement top

N-bound H atoms were located in a difference map and refined isotropically. Other H atoms were positioned geometrically and refined with a riding model (including free rotation about C—C bonds), with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C). Atoms C5 and C6 from one of the ethyl branches of the N1 cationic groups show large displacement factors, much larger than neighbouring atoms and (due to libration effects) giving rise to a short, non realistic C-C sp3···sp3 distance of 1.250 (9)Å.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit with atom labels and 50% probability ellipsoids for non-H atoms. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The packing, viewed along the c axis. Hydrogen bonds are shown as dashed lines, and H atoms not involved in hydrogen bonding have been omitted.
Bis(triethylammonium) tetrachloridocobaltate(II) top
Crystal data top
(C6H16N)2[CoCl4]F(000) = 1704
Mr = 405.13Dx = 1.309 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3697 reflections
a = 11.981 (5) Åθ = 2.3–19.2°
b = 13.226 (5) ŵ = 1.35 mm1
c = 25.946 (10) ÅT = 296 K
V = 4112 (3) Å3Irregular, green
Z = 80.18 × 0.14 × 0.13 mm
Data collection top
Bruker APEXII CCD
diffractometer
4090 independent reflections
Radiation source: fine-focus sealed tube2078 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.117
ϕ and ω scansθmax = 26.1°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1412
Tmin = 0.661, Tmax = 0.745k = 1616
42005 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0298P)2 + 6.2054P]
where P = (Fo2 + 2Fc2)/3
4090 reflections(Δ/σ)max < 0.001
180 parametersΔρmax = 0.45 e Å3
1 restraintΔρmin = 0.51 e Å3
Crystal data top
(C6H16N)2[CoCl4]V = 4112 (3) Å3
Mr = 405.13Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.981 (5) ŵ = 1.35 mm1
b = 13.226 (5) ÅT = 296 K
c = 25.946 (10) Å0.18 × 0.14 × 0.13 mm
Data collection top
Bruker APEXII CCD
diffractometer
4090 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2078 reflections with I > 2σ(I)
Tmin = 0.661, Tmax = 0.745Rint = 0.117
42005 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0521 restraint
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.45 e Å3
4090 reflectionsΔρmin = 0.51 e Å3
180 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.05270 (5)0.21711 (5)0.12639 (2)0.0501 (2)
Cl10.02174 (14)0.34750 (11)0.08048 (6)0.0963 (6)
Cl20.06848 (12)0.08799 (10)0.12358 (5)0.0758 (4)
Cl40.08198 (12)0.25981 (12)0.21063 (5)0.0840 (5)
Cl30.21929 (11)0.17851 (12)0.09060 (5)0.0786 (4)
N10.2550 (4)0.4391 (4)0.23571 (17)0.0634 (12)
N20.1187 (4)0.3092 (3)0.02326 (17)0.0593 (12)
C20.3882 (5)0.3716 (5)0.1714 (2)0.106 (2)
H2A0.43690.39150.14380.159*
H2B0.33320.32520.15850.159*
H2C0.43100.33930.19800.159*
C10.3327 (6)0.4609 (5)0.1925 (2)0.098 (2)
H1A0.29130.49380.16510.118*
H1B0.38910.50800.20440.118*
C30.3132 (5)0.4070 (6)0.2830 (2)0.106 (2)
H3A0.37250.36090.27340.127*
H3B0.34780.46600.29850.127*
C40.2438 (5)0.3579 (5)0.3221 (2)0.099 (2)
H4A0.28920.33960.35110.149*
H4B0.21040.29820.30780.149*
H4C0.18620.40360.33310.149*
C60.1254 (8)0.5774 (8)0.2169 (4)0.207 (6)
H6A0.08860.63140.23490.311*
H6B0.07050.53420.20130.311*
H6C0.17270.60510.19060.311*
C50.1830 (8)0.5274 (7)0.2479 (4)0.188 (5)
H5A0.13140.50410.27420.225*
H5B0.23150.57600.26470.225*
C100.2315 (6)0.4566 (4)0.0047 (3)0.121 (3)
H10A0.30660.48160.00660.182*
H10B0.20030.45320.03870.182*
H10C0.18740.50130.01610.182*
C90.2319 (5)0.3537 (5)0.0188 (2)0.0868 (18)
H9A0.26510.35750.05280.104*
H9B0.27800.30930.00200.104*
C70.1263 (5)0.2003 (4)0.0402 (2)0.0769 (17)
H7A0.14680.19800.07640.092*
H7B0.18470.16690.02070.092*
C80.0190 (5)0.1446 (4)0.0327 (2)0.095 (2)
H8A0.02790.07580.04370.143*
H8B0.03860.17630.05270.143*
H8C0.00110.14600.00310.143*
C120.0734 (7)0.3786 (5)0.1106 (2)0.137 (3)
H12A0.01940.41820.12910.206*
H12B0.07760.31220.12540.206*
H12C0.14510.41070.11280.206*
C110.0390 (5)0.3705 (4)0.0550 (2)0.0858 (18)
H11A0.03360.43790.04050.103*
H11B0.03440.33980.05320.103*
H20.089 (3)0.310 (3)0.0084 (17)0.052 (14)*
H10.212 (4)0.394 (4)0.2253 (18)0.055 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.0547 (4)0.0482 (4)0.0476 (3)0.0002 (3)0.0041 (3)0.0008 (3)
Cl10.1149 (13)0.0708 (10)0.1032 (12)0.0411 (9)0.0525 (10)0.0382 (9)
Cl20.0832 (10)0.0699 (9)0.0741 (9)0.0231 (8)0.0188 (8)0.0107 (7)
Cl40.0758 (9)0.1138 (12)0.0623 (8)0.0229 (9)0.0088 (7)0.0328 (8)
Cl30.0671 (9)0.0994 (11)0.0693 (9)0.0168 (8)0.0126 (7)0.0066 (8)
N10.064 (3)0.067 (3)0.059 (3)0.001 (3)0.015 (3)0.003 (2)
N20.067 (3)0.057 (3)0.053 (3)0.008 (2)0.020 (2)0.005 (2)
C20.116 (5)0.098 (5)0.104 (5)0.016 (4)0.050 (4)0.020 (4)
C10.116 (5)0.089 (5)0.091 (4)0.009 (4)0.053 (4)0.002 (4)
C30.079 (4)0.166 (7)0.072 (4)0.027 (5)0.013 (4)0.005 (4)
C40.088 (4)0.143 (6)0.066 (4)0.001 (4)0.009 (4)0.022 (4)
C60.188 (10)0.214 (11)0.220 (11)0.125 (9)0.093 (8)0.125 (9)
C50.222 (11)0.164 (8)0.178 (9)0.113 (8)0.118 (8)0.064 (7)
C100.103 (5)0.063 (4)0.199 (8)0.020 (4)0.031 (5)0.003 (5)
C90.067 (4)0.084 (5)0.109 (5)0.001 (3)0.027 (4)0.026 (4)
C70.099 (5)0.067 (4)0.065 (3)0.029 (3)0.012 (3)0.001 (3)
C80.118 (5)0.077 (4)0.091 (4)0.010 (4)0.013 (4)0.013 (4)
C120.220 (9)0.112 (6)0.080 (5)0.032 (6)0.019 (5)0.036 (4)
C110.088 (4)0.062 (4)0.107 (5)0.023 (3)0.003 (4)0.017 (3)
Geometric parameters (Å, º) top
Co—Cl22.2428 (15)C6—C51.250 (9)
Co—Cl32.2597 (16)C6—H6A0.9600
Co—Cl12.2778 (16)C6—H6B0.9600
Co—Cl42.2847 (16)C6—H6C0.9600
N1—C31.474 (7)C5—H5A0.9700
N1—C11.486 (6)C5—H5B0.9700
N1—C51.486 (8)C10—C91.492 (8)
N1—H10.84 (4)C10—H10A0.9600
N2—C91.483 (7)C10—H10B0.9600
N2—C111.498 (6)C10—H10C0.9600
N2—C71.508 (6)C9—H9A0.9700
N2—H20.90 (4)C9—H9B0.9700
C2—C11.462 (7)C7—C81.494 (7)
C2—H2A0.9600C7—H7A0.9700
C2—H2B0.9600C7—H7B0.9700
C2—H2C0.9600C8—H8A0.9600
C1—H1A0.9700C8—H8B0.9600
C1—H1B0.9700C8—H8C0.9600
C3—C41.464 (7)C12—C111.503 (8)
C3—H3A0.9700C12—H12A0.9600
C3—H3B0.9700C12—H12B0.9600
C4—H4A0.9600C12—H12C0.9600
C4—H4B0.9600C11—H11A0.9700
C4—H4C0.9600C11—H11B0.9700
Cl2—Co—Cl3112.73 (7)C5—C6—H6C109.5
Cl2—Co—Cl1107.82 (7)H6A—C6—H6C109.5
Cl3—Co—Cl1107.58 (6)H6B—C6—H6C109.5
Cl2—Co—Cl4108.58 (6)C6—C5—N1126.8 (9)
Cl3—Co—Cl4108.26 (6)C6—C5—H5A105.6
Cl1—Co—Cl4111.92 (7)N1—C5—H5A105.6
C3—N1—C1112.8 (5)C6—C5—H5B105.6
C3—N1—C5108.9 (6)N1—C5—H5B105.6
C1—N1—C5111.8 (5)H5A—C5—H5B106.1
C3—N1—H1111 (3)C9—C10—H10A109.5
C1—N1—H1106 (3)C9—C10—H10B109.5
C5—N1—H1106 (3)H10A—C10—H10B109.5
C9—N2—C11114.3 (4)C9—C10—H10C109.5
C9—N2—C7110.2 (4)H10A—C10—H10C109.5
C11—N2—C7113.2 (4)H10B—C10—H10C109.5
C9—N2—H2107 (3)N2—C9—C10113.0 (5)
C11—N2—H2104 (3)N2—C9—H9A109.0
C7—N2—H2107 (3)C10—C9—H9A109.0
C1—C2—H2A109.5N2—C9—H9B109.0
C1—C2—H2B109.5C10—C9—H9B109.0
H2A—C2—H2B109.5H9A—C9—H9B107.8
C1—C2—H2C109.5C8—C7—N2112.4 (4)
H2A—C2—H2C109.5C8—C7—H7A109.1
H2B—C2—H2C109.5N2—C7—H7A109.1
C2—C1—N1114.3 (5)C8—C7—H7B109.1
C2—C1—H1A108.7N2—C7—H7B109.1
N1—C1—H1A108.7H7A—C7—H7B107.9
C2—C1—H1B108.7C7—C8—H8A109.5
N1—C1—H1B108.7C7—C8—H8B109.5
H1A—C1—H1B107.6H8A—C8—H8B109.5
C4—C3—N1115.8 (5)C7—C8—H8C109.5
C4—C3—H3A108.3H8A—C8—H8C109.5
N1—C3—H3A108.3H8B—C8—H8C109.5
C4—C3—H3B108.3C11—C12—H12A109.5
N1—C3—H3B108.3C11—C12—H12B109.5
H3A—C3—H3B107.4H12A—C12—H12B109.5
C3—C4—H4A109.5C11—C12—H12C109.5
C3—C4—H4B109.5H12A—C12—H12C109.5
H4A—C4—H4B109.5H12B—C12—H12C109.5
C3—C4—H4C109.5N2—C11—C12113.1 (5)
H4A—C4—H4C109.5N2—C11—H11A109.0
H4B—C4—H4C109.5C12—C11—H11A109.0
C5—C6—H6A109.5N2—C11—H11B109.0
C5—C6—H6B109.5C12—C11—H11B109.0
H6A—C6—H6B109.5H11A—C11—H11B107.8
C3—N1—C1—C269.4 (8)C11—N2—C9—C1059.1 (7)
C5—N1—C1—C2167.5 (7)C7—N2—C9—C10172.1 (5)
C1—N1—C3—C4163.6 (6)C9—N2—C7—C8165.6 (5)
C5—N1—C3—C471.6 (8)C11—N2—C7—C865.0 (6)
C3—N1—C5—C6176.5 (11)C9—N2—C11—C1264.2 (7)
C1—N1—C5—C651.2 (14)C7—N2—C11—C1263.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl40.84 (4)2.39 (5)3.216 (6)170 (4)
N2—H2···Cl10.90 (4)2.34 (4)3.214 (5)163 (4)

Experimental details

Crystal data
Chemical formula(C6H16N)2[CoCl4]
Mr405.13
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)11.981 (5), 13.226 (5), 25.946 (10)
V3)4112 (3)
Z8
Radiation typeMo Kα
µ (mm1)1.35
Crystal size (mm)0.18 × 0.14 × 0.13
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.661, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
42005, 4090, 2078
Rint0.117
(sin θ/λ)max1)0.620
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.119, 1.00
No. of reflections4090
No. of parameters180
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.51

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl40.84 (4)2.39 (5)3.216 (6)170 (4)
N2—H2···Cl10.90 (4)2.34 (4)3.214 (5)163 (4)
 

Acknowledgements

We are grateful to Payame Noor University (PNU) for financial support.

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClegg, W. & Martin, N. C. (2007). Acta Cryst. E63, m1151.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds