organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Methyl­benz­yl)-3-nitro­aniline

aDepartment of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia, bDepartment of Organic Chemistry and Biochemistry, Ruder Bošković Institute, PO Box 180, HR-10000 Zagreb, Croatia, and c5th High School, Klaićeva 1, HR-10000 Zagreb, Croatia
*Correspondence e-mail: mdjakovic@chem.pmf.hr

(Received 7 May 2012; accepted 28 May 2012; online 31 May 2012)

In the title compound, C14H14N2O2, the angle between the mean plane of the N-methyl-3-nitro­aniline system (r.m.s. deviation = 0.0185 Å) and the p-tolyl unit is 89.79 (4)°. In the crystal, hydrogen-bonded chains running along [10-1] are generated by the linking of neighbouring mol­ecules via N—H⋯O and C—H⋯O hydrogen bonds involving the 3-nitro­aniline systems and forming R22(8) motifs.

Related literature

For related structures, see: Betz et al. (2011[Betz, R., McCleland, C. & Marchand, H. (2011). Acta Cryst. E67, o1195.]); Stilinović & Portada (2011[Stilinović, V. & Portada, T. (2011). Acta Cryst. E67, o3013.]); Xing et al. (2006[Xing, J.-D., Bai, G.-Y., Zeng, T. & Li, J.-S. (2006). Acta Cryst. E62, o79-o80.]). For the synthesis, see: Magyarfalvi (2008[Magyarfalvi, G. (2008). Preparatory problems for the 40th International Chemistry Olympiad, edited by G. Magyarfalvi, p. 48. Chemistry Olympiad, Budapest.]). For graph-set theory, see: Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14N2O2

  • Mr = 242.27

  • Monoclinic, P 21

  • a = 5.1851 (4) Å

  • b = 21.408 (2) Å

  • c = 5.6833 (4) Å

  • β = 98.010 (7)°

  • V = 624.71 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.57 × 0.50 × 0.19 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire-3 CCD area detector

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.953, Tmax = 0.958

  • 11868 measured reflections

  • 1856 independent reflections

  • 1373 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.117

  • S = 1.03

  • 1856 reflections

  • 167 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.78 (3) 2.52 (3) 3.277 (3) 168 (3)
C6—H6⋯O1i 0.93 2.44 3.364 (3) 171
C7—H7A⋯O2ii 0.97 2.64 3.352 (3) 130
C13—H13⋯O2iii 0.93 2.69 3.282 (4) 122
Symmetry codes: (i) x+1, y, z-1; (ii) x+1, y, z; (iii) x, y, z-1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound, N-(4-methylbenzyl)-3-nitroaniline, is prepared as a part of the laboratory work with high school students, and the synthesis followed the Preparatory problems for the 40th International Chemistry Olympiad (Magyarfalvi, 2008) involving slight modifications.

Recently, N-benzyl-3-nitroaniline was reported (Stilinović & Portada, 2011). The difference between the title compound and the previously reported one is only in methyl substituent on the N-benzyl moiety, since it was of interest to study the influence of the benzyl moiety substituents on the molecular conformation, and consequently the hydrogen bonding formation.

The addition of methyl substituent on the benzyl moiety in the title compound did not cause any significant conformational difference. The molecule retained a bent conformation with the torsion angle about the central C—N bond of 73.9 (2)° being very similar to analogous one in the recently reported compound (Stilinović & Portada, 2011). Furthermore, the N-methyl-3-nitroaniline system in the title compound is nearly ideally planar (r.m.s. deviation of the atoms C1–C7/N1/N2/O1/O2 from their mean plane is 0.0185 Å, with oxygen atom O2 being the one that deviates most from that plane, 0.031 (2) Å). The p-tolyl substituent is tilted at an angle of 89.79 (4)° to the rest of the molecule.

Two neighbouring molecules are connected through the set of N—H···O and C—H···O hydrogen bonds in the head to tail manner forming R22(8) motifs (Etter, 1990; Bernstein et al., 1995) that generate one-dimensional chains running in the [101] direction. The same hydrogen bonding pattern is also found in N-benzyl-3-nitroaniline (Stilinović & Portada, 2011) what leads to the conclusion that the methyl substituent in p-position to the central C—N bond do not influence neither hydrogen bonding geometry nor general hydrogen bonding framework formation.

Related literature top

For related structures, see: Betz et al. (2011); Stilinović & Portada (2011); Xing et al. (2006). For the synthesis, see: Magyarfalvi (2008). For graph-set theory, see: Etter (1990); Bernstein et al. (1995).

Experimental top

The title compound was prepared using a slightly modified procedure (Magyarfalvi, 2008) and isolated in a form of yellow crystalline product. Used: 3-nitroaniline (1.10 g; 7.96 mmol), p-tolualdehyde (1.74 ml; 1.77 g; 14.7 mmol), sodium tetrahydridoborate (0.50 g; 13.2 mmol). Yield: 1.12 g (58%). Upon re-crystallization in ethanol, yellow block-like crystalls suitable for the X-ray experiment were obtained in 3–4 days.

Refinement top

In the final cycles of refinement, in the absence of significant anomalous scattering effect, 1856 Friedel pairs were merged and Δf'' set to zero. The amine H atom was located in the difference Fourier map and freely refined, giving N—H distance of 0.78 (3) Å. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent C atom at distances of 0.93, 0.96 and 0.97 Å for aromatic, methyl and CH2 H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) (for aromatic and CH2 H atoms), and Uiso(H) = 1.5Ueq(C) (for methyl group).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom labelling scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. Hydrogen atoms are shown as a spheres of arbitrary radius.
[Figure 2] Fig. 2. Infinite one-dimensional chains running in the [101] direction constructed via N—H···O and C—H···O hydrogen bonds between neighbouring molecules forming R22(8) motifs.
N-(4-Methylbenzyl)-3-nitroaniline top
Crystal data top
C14H14N2O2F(000) = 256
Mr = 242.27Dx = 1.288 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 ybCell parameters from 4334 reflections
a = 5.1851 (4) Åθ = 4.4–32.7°
b = 21.408 (2) ŵ = 0.09 mm1
c = 5.6833 (4) ÅT = 296 K
β = 98.010 (7)°Plate, yellow
V = 624.71 (8) Å30.57 × 0.50 × 0.19 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire-3 CCD area detector
1856 independent reflections
Radiation source: Enhance (Mo) X-ray Source1373 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 16.3426 pixels mm-1θmax = 30.0°, θmin = 4.4°
CCD scansh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 3030
Tmin = 0.953, Tmax = 0.958l = 77
11868 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0688P)2]
where P = (Fo2 + 2Fc2)/3
1856 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.11 e Å3
Crystal data top
C14H14N2O2V = 624.71 (8) Å3
Mr = 242.27Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.1851 (4) ŵ = 0.09 mm1
b = 21.408 (2) ÅT = 296 K
c = 5.6833 (4) Å0.57 × 0.50 × 0.19 mm
β = 98.010 (7)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire-3 CCD area detector
1856 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1373 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.958Rint = 0.042
11868 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.16 e Å3
1856 reflectionsΔρmin = 0.11 e Å3
167 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0400 (4)0.59135 (11)0.2460 (4)0.0814 (8)
O20.1836 (4)0.49767 (11)0.2911 (3)0.0688 (7)
N10.8389 (4)0.47827 (11)0.2730 (5)0.0645 (8)
N20.1802 (4)0.54885 (10)0.1976 (3)0.0525 (7)
C10.6686 (4)0.52300 (11)0.2149 (4)0.0455 (6)
C20.5065 (4)0.51224 (10)0.0402 (4)0.0417 (6)
C30.3489 (4)0.56021 (10)0.0150 (4)0.0434 (6)
C40.3374 (5)0.61797 (11)0.0925 (5)0.0564 (8)
C50.4936 (5)0.62762 (13)0.2656 (5)0.0627 (9)
C60.6563 (5)0.58119 (12)0.3245 (4)0.0558 (8)
C70.8676 (5)0.41780 (13)0.1683 (5)0.0619 (8)
C80.6482 (4)0.37253 (11)0.2473 (4)0.0511 (7)
C90.5891 (6)0.32463 (15)0.1024 (5)0.0703 (10)
C100.3929 (7)0.28214 (14)0.1763 (6)0.0747 (11)
C110.2506 (6)0.28531 (12)0.3980 (5)0.0628 (9)
C120.3078 (6)0.33344 (14)0.5412 (5)0.0669 (9)
C130.5021 (6)0.37587 (13)0.4681 (5)0.0608 (8)
C140.0335 (7)0.23991 (16)0.4795 (9)0.0912 (13)
H1N0.913 (6)0.4885 (14)0.376 (5)0.061 (8)*
H20.505800.473800.035800.0500*
H40.228300.649200.049800.0680*
H50.489300.665900.343500.0750*
H60.761300.588900.441200.0670*
H7A0.883200.422400.002900.0740*
H7B1.029000.399700.204700.0740*
H90.683200.320700.048600.0840*
H100.356900.250700.072800.0890*
H120.212900.337500.691800.0800*
H130.535400.407700.571000.0730*
H14A0.043000.250200.638400.1370*
H14B0.096900.242400.375300.1370*
H14C0.102300.198200.476500.1370*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0779 (13)0.0904 (15)0.0858 (13)0.0136 (12)0.0468 (11)0.0109 (11)
O20.0736 (12)0.0795 (13)0.0590 (10)0.0050 (10)0.0297 (9)0.0073 (10)
N10.0566 (13)0.0626 (13)0.0834 (15)0.0065 (10)0.0420 (12)0.0110 (11)
N20.0432 (10)0.0693 (14)0.0474 (10)0.0029 (9)0.0144 (8)0.0086 (10)
C10.0394 (10)0.0524 (12)0.0462 (11)0.0081 (9)0.0108 (8)0.0108 (9)
C20.0376 (9)0.0446 (11)0.0443 (10)0.0026 (8)0.0111 (8)0.0001 (8)
C30.0394 (10)0.0537 (12)0.0387 (9)0.0031 (9)0.0116 (8)0.0042 (8)
C40.0525 (13)0.0498 (13)0.0695 (14)0.0056 (11)0.0173 (11)0.0005 (12)
C50.0689 (16)0.0546 (14)0.0668 (15)0.0009 (12)0.0177 (13)0.0136 (12)
C60.0534 (13)0.0654 (15)0.0530 (13)0.0136 (11)0.0226 (10)0.0013 (11)
C70.0446 (12)0.0669 (15)0.0753 (16)0.0093 (12)0.0120 (11)0.0171 (13)
C80.0521 (12)0.0502 (12)0.0528 (12)0.0131 (10)0.0142 (10)0.0040 (10)
C90.0801 (19)0.0749 (17)0.0551 (14)0.0082 (16)0.0069 (13)0.0144 (14)
C100.085 (2)0.0564 (15)0.088 (2)0.0077 (14)0.0303 (17)0.0262 (15)
C110.0629 (16)0.0478 (13)0.0820 (19)0.0067 (11)0.0252 (15)0.0065 (13)
C120.0719 (17)0.0706 (17)0.0572 (14)0.0026 (14)0.0057 (12)0.0049 (13)
C130.0720 (15)0.0569 (13)0.0547 (13)0.0022 (13)0.0135 (11)0.0080 (12)
C140.078 (2)0.0619 (18)0.137 (3)0.0059 (15)0.027 (2)0.021 (2)
Geometric parameters (Å, º) top
O1—N21.220 (3)C11—C141.510 (5)
O2—N21.217 (3)C11—C121.371 (4)
N1—C11.374 (3)C12—C131.377 (4)
N1—C71.424 (4)C2—H20.9300
N2—C31.468 (3)C4—H40.9300
N1—H1N0.78 (3)C5—H50.9300
C1—C61.390 (3)C6—H60.9300
C1—C21.406 (3)C7—H7A0.9700
C2—C31.376 (3)C7—H7B0.9700
C3—C41.377 (3)C9—H90.9300
C4—C51.374 (4)C10—H100.9300
C5—C61.375 (4)C12—H120.9300
C7—C81.514 (4)C13—H130.9300
C8—C131.374 (4)C14—H14A0.9600
C8—C91.376 (4)C14—H14B0.9600
C9—C101.386 (5)C14—H14C0.9600
C10—C111.370 (4)
O1···C1i3.362 (3)C13···H7Bi3.0900
O1···C6ii3.364 (3)H1N···O2vi2.52 (3)
O2···C7i3.352 (3)H1N···H62.3000
O2···C13iii3.282 (4)H2···O22.4200
O1···H14Civ2.7900H2···C72.6300
O1···H42.4000H2···C82.8600
O1···H6ii2.4400H2···H7A2.2800
O2···H1Nii2.52 (3)H4···O12.4000
O2···H22.4200H5···H14Cviii2.5700
O2···H7Ai2.6400H6···O1vi2.4400
O2···H13iii2.6900H6···H1N2.3000
N1···C3v3.398 (3)H6···H14Cviii2.5100
N2···C1i3.333 (3)H7A···O2v2.6400
N1···H132.6200H7A···C22.7300
C1···O1v3.362 (3)H7A···H22.2800
C1···N2v3.333 (3)H7A···H92.4400
C1···C133.520 (4)H7B···C11v2.9800
C2···C83.333 (3)H7B···C12v2.9200
C3···N1i3.398 (3)H7B···C13v3.0900
C6···O1vi3.364 (3)H9···H7A2.4400
C7···O2v3.352 (3)H9···H14Aix2.6000
C8···C23.333 (3)H12···H14A2.3400
C13···C13.520 (4)H13···O2vii2.6900
C13···O2vii3.282 (4)H13···N12.6200
C2···H7A2.7300H14A···H9x2.6000
C6···H14Cviii3.0800H14A···H122.3400
C7···H22.6300H14B···C9i2.9800
C8···H22.8600H14C···O1xi2.7900
C9···H14Bv2.9800H14C···C6xii3.0800
C11···H7Bi2.9800H14C···H5xii2.5700
C12···H7Bi2.9200H14C···H6xii2.5100
C1—N1—C7124.5 (2)C1—C2—H2121.00
O1—N2—O2123.1 (2)C3—C2—H2121.00
O1—N2—C3117.9 (2)C3—C4—H4121.00
O2—N2—C3119.0 (2)C5—C4—H4121.00
C7—N1—H1N123 (2)C4—C5—H5120.00
C1—N1—H1N113 (2)C6—C5—H5120.00
N1—C1—C6120.5 (2)C1—C6—H6119.00
C2—C1—C6117.9 (2)C5—C6—H6119.00
N1—C1—C2121.5 (2)N1—C7—H7A108.00
C1—C2—C3118.1 (2)N1—C7—H7B108.00
N2—C3—C4118.0 (2)C8—C7—H7A108.00
N2—C3—C2117.97 (19)C8—C7—H7B108.00
C2—C3—C4124.0 (2)H7A—C7—H7B107.00
C3—C4—C5117.3 (2)C8—C9—H9119.00
C4—C5—C6120.6 (2)C10—C9—H9119.00
C1—C6—C5122.0 (2)C9—C10—H10119.00
N1—C7—C8115.3 (2)C11—C10—H10119.00
C9—C8—C13116.4 (2)C11—C12—H12119.00
C7—C8—C9121.4 (2)C13—C12—H12119.00
C7—C8—C13122.2 (2)C8—C13—H13119.00
C8—C9—C10121.5 (3)C12—C13—H13119.00
C9—C10—C11121.7 (3)C11—C14—H14A109.00
C10—C11—C14122.2 (3)C11—C14—H14B110.00
C10—C11—C12116.7 (3)C11—C14—H14C109.00
C12—C11—C14121.0 (3)H14A—C14—H14B109.00
C11—C12—C13121.8 (3)H14A—C14—H14C109.00
C8—C13—C12121.9 (3)H14B—C14—H14C109.00
C7—N1—C1—C20.7 (4)C3—C4—C5—C60.9 (4)
C7—N1—C1—C6179.2 (2)C4—C5—C6—C10.6 (4)
C1—N1—C7—C873.9 (3)N1—C7—C8—C9152.7 (3)
O1—N2—C3—C2179.8 (2)N1—C7—C8—C1329.0 (4)
O1—N2—C3—C40.6 (3)C7—C8—C13—C12178.1 (3)
O2—N2—C3—C20.8 (3)C7—C8—C9—C10178.3 (3)
O2—N2—C3—C4178.5 (2)C13—C8—C9—C100.1 (4)
N1—C1—C2—C3177.4 (2)C9—C8—C13—C120.3 (4)
C6—C1—C2—C31.1 (3)C8—C9—C10—C110.8 (5)
N1—C1—C6—C5178.1 (2)C9—C10—C11—C121.5 (5)
C2—C1—C6—C50.5 (4)C9—C10—C11—C14179.0 (3)
C1—C2—C3—N2179.93 (19)C10—C11—C12—C131.3 (5)
C1—C2—C3—C40.9 (3)C14—C11—C12—C13178.9 (3)
N2—C3—C4—C5179.1 (2)C11—C12—C13—C80.4 (5)
C2—C3—C4—C50.1 (4)
Symmetry codes: (i) x1, y, z; (ii) x1, y, z+1; (iii) x, y, z+1; (iv) x, y+1/2, z; (v) x+1, y, z; (vi) x+1, y, z1; (vii) x, y, z1; (viii) x+1, y+1/2, z1; (ix) x+1, y, z+1; (x) x1, y, z1; (xi) x, y1/2, z; (xii) x+1, y1/2, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2vi0.78 (3)2.52 (3)3.277 (3)168 (3)
C6—H6···O1vi0.932.443.364 (3)171
C7—H7A···O2v0.972.643.352 (3)130
C13—H13···O2vii0.932.693.282 (4)122
Symmetry codes: (v) x+1, y, z; (vi) x+1, y, z1; (vii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC14H14N2O2
Mr242.27
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)5.1851 (4), 21.408 (2), 5.6833 (4)
β (°) 98.010 (7)
V3)624.71 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.57 × 0.50 × 0.19
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire-3 CCD area detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.953, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
11868, 1856, 1373
Rint0.042
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.117, 1.03
No. of reflections1856
No. of parameters167
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.11

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.78 (3)2.52 (3)3.277 (3)168 (3)
C6—H6···O1i0.932.443.364 (3)171
C7—H7A···O2ii0.972.643.352 (3)130
C13—H13···O2iii0.932.693.282 (4)122
Symmetry codes: (i) x+1, y, z1; (ii) x+1, y, z; (iii) x, y, z1.
 

Acknowledgements

This research was supported by the Ministry of Science, Education and Sports of the Republic of Croatia, Zagreb (grant Nos. 119–1193079–1332 and 098–0982904–2912) and the 5th High School, Zagreb, Croatia.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBetz, R., McCleland, C. & Marchand, H. (2011). Acta Cryst. E67, o1195.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMagyarfalvi, G. (2008). Preparatory problems for the 40th International Chemistry Olympiad, edited by G. Magyarfalvi, p. 48. Chemistry Olympiad, Budapest.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStilinović, V. & Portada, T. (2011). Acta Cryst. E67, o3013.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXing, J.-D., Bai, G.-Y., Zeng, T. & Li, J.-S. (2006). Acta Cryst. E62, o79–o80.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds