organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(E)-(4-Fluoro­benzyl­­idene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione

aDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka, India, and cDepartment of Chemistry, St. Philomena's College, Mysore 570 015, Karnataka, India
*Correspondence e-mail: devarajegowda@yahoo.com

(Received 26 March 2012; accepted 28 April 2012; online 5 May 2012)

In the asymmetric unit of the title compound, C10H9FN4S, there are two independent mol­ecules in which the dihedral angles between the 1,2,4-triazole and benzene rings are 36.85 (10) and 7.81 (10)°. In the crystal, N—H⋯S inter­actions link pairs of independent mol­ecules into dimers. There are also ππ inter­actions between the triazole and benzene rings of inversion-related pairs of the more planar mol­ecule [centroid–centroid distance = 3.6430 (13) Å].

Related literature

For background information on the properties and uses of chalcone derivatives, see: Temple (1981[Temple, C. (1981). The Chemistry of Heterocyclic Compounds, Vol. 37, edited by J. A. Montgomery, pp. 62-95. New York: Wiley Interscience.]); Holla et al. (1998[Holla, B. S., Shivananda, M. K., Shenoy, S. & Antony, G. (1998). Boll. Chim. Farm. 136, 680-685.]); Heidelberger et al. (1957[Heidelberger, C., Chaudhuri, N. K., Danneberg, P., Mooren, D., Greisbach, L., Duschinsky, R., Scnnitzer, R. J., Pleaven, E. & Scheiner, J. (1957). Nature (London), 179, 663-666.]); Andersson & MacGowan (2003[Andersson, M. I. & MacGowan, A. P. (2003). J. Antimicrob. Chemother. 51, 1-11.]). For a related structure, see: Devarajegowda et al. (2010[Devarajegowda, H. C., Jeyaseelan, S., Sumangala, V., Bojapoojary & Nayak, S. P. (2010). Acta Cryst. E66, o2512-o2513.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9FN4S

  • Mr = 236.27

  • Triclinic, [P \overline 1]

  • a = 9.0048 (19) Å

  • b = 10.811 (2) Å

  • c = 12.729 (3) Å

  • α = 101.205 (3)°

  • β = 103.899 (3)°

  • γ = 112.376 (3)°

  • V = 1054.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 293 K

  • 0.52 × 0.24 × 0.13 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.77, Tmax = 1.00

  • 9923 measured reflections

  • 3698 independent reflections

  • 3383 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.085

  • S = 1.05

  • 3698 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3A—H3A⋯S1B 0.86 2.45 3.2840 (18) 164
N3B—H3B⋯S1A 0.86 2.51 3.3691 (18) 172

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

4-Amino-5-mercapto-1,2,4-triazoles are the starting materials for the synthesis of a wide variety of heterocyclic derivatives which are of great importance in medicinal chemistry (Temple, 1981). Many Schiff & Mannich bases derived from 1,2,4-triazoles possess protozoacidal and bactericidal activities (Holla et al., 1998). Furthermore, fluorinated heterocycles have been shown to exhibit a wide variety of biocidal activities. Compounds such as fluorouracil and fluoroquinolone etc. have been used as anticancer agents and antibiotics respectively (Heidelberger et al., 1957; Andersson & MacGowan, 2003).

The asymmetric unit of crystals of 4-{[(1E)-(4-fluorophenyl)methylene] amino}-5-methyl-2,4-dihydro-3H-1,2,4-triazole-3-thione, C10H9F N4S, contain two crystallographically independent molecules (Fig. 1). The 1,2,4 triazole rings (N3A,N4A,N5A,C8A,C9A and (N3B,N4B,N5B,C8B,C9B) are not coplanar with their respective benzene ring (C11A—C16A) and (C11B—C16B) systems; the dihedral angle between the two planes being 36.85 (10)° and 7.81 (10)° in the two molecules. In the crystal, N3A—H3A···S1B and N3B—H3B···S1A interactions link pairs of inequivalent molecules into dimers (Table 1.). Finally, π-π interactions between inversion-related pairs of the more planar molecule occur between the triazole (N3B,N4B,N5B,C8B,C9B) and benzene (C11B—C16B) rings [centroid-centroid distance = 3.6430 (13) Å], which stabilize the crystal packing (Fig. 2).

Related literature top

For background information on the properties and uses of chalcone derivatives, see: Temple (1981); Holla et al. (1998); Heidelberger et al. (1957); Andersson & MacGowan (2003). For a related structure, see: Devarajegowda et al. (2010).

Experimental top

An equimolar mixture of the triazole (1; 0.02 mol) and 4-fluorobenzaldehyde (0.02 mol) in absolute ethanol (30 ml) was refluxed with concentrated H2SO4 (0.5 ml) for 1–2 hrs. On cooling the reaction mixture, the solid product was separated and re-crystallized using ethanol as solvent.

Refinement top

All H atoms were placed at calculated positions and refined as riding, N—H = 0.86, Csp2—H = 0.93 Å and C(methyl)—H = 0.96 Å. Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and 1.2 for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing of the molecules showing the formation of hydrogen bonds that link inequivalent molecules into dimers via N3A—H3A···S1B and N3A—H3A···S1B.
4-[(E)-(4-Fluorobenzylidene)amino]-3-methyl-1H-1,2,4-triazole- 5(4H)-thione top
Crystal data top
C10H9FN4SZ = 4
Mr = 236.27F(000) = 488
Triclinic, P1Dx = 1.488 Mg m3
Hall symbol: -P 1Melting point: 441 K
a = 9.0048 (19) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.811 (2) ÅCell parameters from 3698 reflections
c = 12.729 (3) Åθ = 1.7–25.0°
α = 101.205 (3)°µ = 0.30 mm1
β = 103.899 (3)°T = 293 K
γ = 112.376 (3)°Plate, colourless
V = 1054.4 (4) Å30.52 × 0.24 × 0.13 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3698 independent reflections
Radiation source: fine-focus sealed tube3383 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω and ϕ scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 1010
Tmin = 0.77, Tmax = 1.00k = 1212
9923 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0428P)2 + 0.5511P]
where P = (Fo2 + 2Fc2)/3
3698 reflections(Δ/σ)max = 0.001
291 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C10H9FN4Sγ = 112.376 (3)°
Mr = 236.27V = 1054.4 (4) Å3
Triclinic, P1Z = 4
a = 9.0048 (19) ÅMo Kα radiation
b = 10.811 (2) ŵ = 0.30 mm1
c = 12.729 (3) ÅT = 293 K
α = 101.205 (3)°0.52 × 0.24 × 0.13 mm
β = 103.899 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3698 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
3383 reflections with I > 2σ(I)
Tmin = 0.77, Tmax = 1.00Rint = 0.017
9923 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.05Δρmax = 0.30 e Å3
3698 reflectionsΔρmin = 0.28 e Å3
291 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.23713 (5)0.62340 (4)0.35429 (3)0.01697 (12)
F2A1.06962 (13)0.90655 (11)0.94413 (8)0.0227 (2)
N4A0.40671 (18)0.90351 (15)0.20331 (12)0.0173 (3)
N3A0.29189 (18)0.78138 (15)0.21256 (12)0.0156 (3)
H3A0.19390.72640.16030.019*
N5A0.50787 (17)0.86716 (14)0.36491 (11)0.0143 (3)
N6A0.62298 (17)0.90901 (15)0.47624 (11)0.0158 (3)
C7A0.6964 (2)1.08701 (19)0.33309 (15)0.0229 (4)
H7A10.68941.13250.27560.034*
H7A20.79201.06580.34200.034*
H7A30.71121.14860.40420.034*
C8A0.5365 (2)0.95448 (18)0.29812 (14)0.0168 (4)
C9A0.3462 (2)0.75585 (17)0.31005 (14)0.0137 (3)
C10A0.6362 (2)0.80838 (17)0.51028 (14)0.0147 (3)
H10A0.57240.71580.46170.018*
C11A0.7512 (2)0.83788 (17)0.62529 (14)0.0141 (3)
C12A0.7622 (2)0.72535 (18)0.65853 (14)0.0156 (4)
H12A0.69680.63410.60780.019*
C13A0.8693 (2)0.74710 (18)0.76628 (14)0.0164 (4)
H13A0.87640.67200.78860.020*
C14A0.9647 (2)0.88390 (18)0.83872 (14)0.0168 (4)
C15A0.9588 (2)0.99895 (18)0.80954 (14)0.0188 (4)
H15A1.02571.08990.86070.023*
C16A0.8504 (2)0.97526 (18)0.70181 (14)0.0166 (4)
H16A0.84371.05100.68040.020*
S1B0.10121 (5)0.62370 (4)0.02884 (3)0.01602 (12)
F2B0.99250 (12)0.36565 (11)0.53412 (8)0.0211 (2)
N3B0.14587 (17)0.43278 (14)0.14306 (12)0.0154 (3)
H3B0.04360.48010.19190.018*
N4B0.26081 (18)0.30629 (15)0.14576 (12)0.0167 (3)
N5B0.37235 (17)0.36840 (14)0.00279 (11)0.0134 (3)
N6B0.50533 (17)0.34307 (15)0.09421 (11)0.0154 (3)
C7B0.5645 (2)0.14351 (18)0.02702 (15)0.0201 (4)
H7B10.55610.09040.07860.030*
H7B20.59400.08540.04940.030*
H7B30.65130.17340.03070.030*
C8B0.3976 (2)0.26907 (18)0.05969 (14)0.0154 (4)
C9B0.2066 (2)0.47588 (17)0.05816 (13)0.0137 (3)
C10B0.4876 (2)0.43797 (18)0.14289 (14)0.0157 (4)
H10B0.38740.52240.11320.019*
C11B0.6245 (2)0.41410 (18)0.24528 (14)0.0152 (4)
C12B0.6015 (2)0.52269 (18)0.29298 (14)0.0163 (4)
H12B0.50090.60670.25890.020*
C13B0.7250 (2)0.50845 (18)0.39004 (14)0.0165 (4)
H13B0.70920.58120.42160.020*
C14B0.8721 (2)0.38242 (18)0.43791 (13)0.0159 (4)
C15B0.9013 (2)0.27145 (18)0.39334 (14)0.0175 (4)
H15B1.00240.18800.42790.021*
C16B0.7764 (2)0.28784 (18)0.29615 (14)0.0162 (4)
H16B0.79350.21500.26470.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0138 (2)0.0175 (2)0.0161 (2)0.00357 (18)0.00235 (17)0.00864 (17)
F2A0.0208 (5)0.0240 (6)0.0141 (5)0.0056 (5)0.0019 (4)0.0066 (4)
N4A0.0152 (7)0.0167 (7)0.0181 (7)0.0047 (6)0.0043 (6)0.0086 (6)
N3A0.0116 (7)0.0161 (7)0.0145 (7)0.0036 (6)0.0005 (6)0.0059 (6)
N5A0.0136 (7)0.0137 (7)0.0130 (7)0.0050 (6)0.0014 (6)0.0055 (6)
N6A0.0132 (7)0.0180 (7)0.0117 (7)0.0048 (6)0.0003 (6)0.0052 (6)
C7A0.0201 (9)0.0191 (9)0.0216 (9)0.0021 (8)0.0022 (8)0.0105 (8)
C8A0.0169 (9)0.0182 (9)0.0166 (8)0.0080 (7)0.0051 (7)0.0089 (7)
C9A0.0131 (8)0.0153 (8)0.0126 (8)0.0074 (7)0.0030 (7)0.0041 (6)
C10A0.0126 (8)0.0150 (8)0.0151 (8)0.0045 (7)0.0050 (7)0.0045 (7)
C11A0.0110 (8)0.0176 (8)0.0131 (8)0.0051 (7)0.0047 (7)0.0055 (7)
C12A0.0134 (8)0.0152 (8)0.0152 (8)0.0047 (7)0.0037 (7)0.0035 (7)
C13A0.0175 (9)0.0167 (9)0.0170 (8)0.0083 (7)0.0058 (7)0.0086 (7)
C14A0.0137 (8)0.0233 (9)0.0107 (8)0.0060 (7)0.0024 (7)0.0069 (7)
C15A0.0193 (9)0.0157 (9)0.0149 (8)0.0034 (7)0.0043 (7)0.0023 (7)
C16A0.0196 (9)0.0161 (9)0.0170 (8)0.0088 (7)0.0073 (7)0.0084 (7)
S1B0.0125 (2)0.0161 (2)0.0166 (2)0.00421 (17)0.00188 (17)0.00781 (17)
F2B0.0166 (5)0.0258 (6)0.0163 (5)0.0081 (4)0.0012 (4)0.0089 (4)
N3B0.0105 (7)0.0172 (7)0.0151 (7)0.0040 (6)0.0015 (6)0.0066 (6)
N4B0.0151 (7)0.0184 (7)0.0168 (7)0.0067 (6)0.0050 (6)0.0081 (6)
N5B0.0114 (7)0.0147 (7)0.0118 (7)0.0051 (6)0.0013 (6)0.0047 (6)
N6B0.0135 (7)0.0191 (7)0.0119 (7)0.0080 (6)0.0009 (6)0.0044 (6)
C7B0.0181 (9)0.0181 (9)0.0191 (9)0.0040 (7)0.0028 (7)0.0089 (7)
C8B0.0184 (9)0.0173 (9)0.0136 (8)0.0092 (7)0.0070 (7)0.0074 (7)
C9B0.0132 (8)0.0165 (8)0.0127 (8)0.0081 (7)0.0043 (7)0.0048 (7)
C10B0.0131 (8)0.0175 (9)0.0150 (8)0.0063 (7)0.0032 (7)0.0052 (7)
C11B0.0142 (8)0.0192 (9)0.0135 (8)0.0089 (7)0.0047 (7)0.0051 (7)
C12B0.0129 (8)0.0173 (9)0.0154 (8)0.0042 (7)0.0044 (7)0.0045 (7)
C13B0.0186 (9)0.0187 (9)0.0161 (8)0.0099 (7)0.0069 (7)0.0092 (7)
C14B0.0126 (8)0.0244 (9)0.0106 (8)0.0097 (7)0.0018 (7)0.0054 (7)
C15B0.0135 (8)0.0170 (9)0.0176 (9)0.0039 (7)0.0037 (7)0.0046 (7)
C16B0.0164 (9)0.0186 (9)0.0158 (8)0.0085 (7)0.0060 (7)0.0079 (7)
Geometric parameters (Å, º) top
S1A—C9A1.6854 (17)S1B—C9B1.6855 (17)
F2A—C14A1.3564 (19)F2B—C14B1.3545 (18)
N4A—C8A1.304 (2)N3B—C9B1.338 (2)
N4A—N3A1.3805 (19)N3B—N4B1.3785 (19)
N3A—C9A1.341 (2)N3B—H3B0.8600
N3A—H3A0.8600N4B—C8B1.297 (2)
N5A—C9A1.381 (2)N5B—C8B1.387 (2)
N5A—C8A1.383 (2)N5B—C9B1.390 (2)
N5A—N6A1.4055 (18)N5B—N6B1.3935 (18)
N6A—C10A1.282 (2)N6B—C10B1.277 (2)
C7A—C8A1.482 (2)C7B—C8B1.484 (2)
C7A—H7A10.9600C7B—H7B10.9600
C7A—H7A20.9600C7B—H7B20.9600
C7A—H7A30.9600C7B—H7B30.9600
C10A—C11A1.468 (2)C10B—C11B1.463 (2)
C10A—H10A0.9300C10B—H10B0.9300
C11A—C12A1.393 (2)C11B—C12B1.394 (2)
C11A—C16A1.401 (2)C11B—C16B1.401 (2)
C12A—C13A1.390 (2)C12B—C13B1.387 (2)
C12A—H12A0.9300C12B—H12B0.9300
C13A—C14A1.378 (2)C13B—C14B1.377 (2)
C13A—H13A0.9300C13B—H13B0.9300
C14A—C15A1.381 (2)C14B—C15B1.388 (2)
C15A—C16A1.389 (2)C15B—C16B1.386 (2)
C15A—H15A0.9300C15B—H15B0.9300
C16A—H16A0.9300C16B—H16B0.9300
C8A—N4A—N3A103.69 (13)C9B—N3B—N4B114.48 (13)
C9A—N3A—N4A114.26 (13)C9B—N3B—H3B122.8
C9A—N3A—H3A122.9N4B—N3B—H3B122.8
N4A—N3A—H3A122.9C8B—N4B—N3B104.14 (13)
C9A—N5A—C8A108.36 (13)C8B—N5B—C9B108.24 (13)
C9A—N5A—N6A130.31 (14)C8B—N5B—N6B118.40 (13)
C8A—N5A—N6A120.57 (13)C9B—N5B—N6B133.34 (14)
C10A—N6A—N5A115.20 (14)C10B—N6B—N5B118.87 (14)
C8A—C7A—H7A1109.5C8B—C7B—H7B1109.5
C8A—C7A—H7A2109.5C8B—C7B—H7B2109.5
H7A1—C7A—H7A2109.5H7B1—C7B—H7B2109.5
C8A—C7A—H7A3109.5C8B—C7B—H7B3109.5
H7A1—C7A—H7A3109.5H7B1—C7B—H7B3109.5
H7A2—C7A—H7A3109.5H7B2—C7B—H7B3109.5
N4A—C8A—N5A110.95 (15)N4B—C8B—N5B110.75 (15)
N4A—C8A—C7A126.29 (15)N4B—C8B—C7B126.55 (15)
N5A—C8A—C7A122.75 (15)N5B—C8B—C7B122.61 (14)
N3A—C9A—N5A102.69 (14)N3B—C9B—N5B102.39 (14)
N3A—C9A—S1A127.58 (13)N3B—C9B—S1B127.11 (13)
N5A—C9A—S1A129.68 (12)N5B—C9B—S1B130.49 (12)
N6A—C10A—C11A120.60 (15)N6B—C10B—C11B120.14 (15)
N6A—C10A—H10A119.7N6B—C10B—H10B119.9
C11A—C10A—H10A119.7C11B—C10B—H10B119.9
C12A—C11A—C16A119.27 (15)C12B—C11B—C16B119.26 (15)
C12A—C11A—C10A118.67 (15)C12B—C11B—C10B117.97 (15)
C16A—C11A—C10A122.06 (15)C16B—C11B—C10B122.77 (15)
C13A—C12A—C11A121.16 (15)C13B—C12B—C11B121.55 (16)
C13A—C12A—H12A119.4C13B—C12B—H12B119.2
C11A—C12A—H12A119.4C11B—C12B—H12B119.2
C14A—C13A—C12A117.62 (15)C14B—C13B—C12B117.43 (16)
C14A—C13A—H13A121.2C14B—C13B—H13B121.3
C12A—C13A—H13A121.2C12B—C13B—H13B121.3
F2A—C14A—C13A118.21 (15)F2B—C14B—C13B118.19 (15)
F2A—C14A—C15A118.41 (15)F2B—C14B—C15B118.62 (15)
C13A—C14A—C15A123.38 (15)C13B—C14B—C15B123.18 (15)
C14A—C15A—C16A118.25 (16)C16B—C15B—C14B118.52 (16)
C14A—C15A—H15A120.9C16B—C15B—H15B120.7
C16A—C15A—H15A120.9C14B—C15B—H15B120.7
C15A—C16A—C11A120.32 (16)C15B—C16B—C11B120.06 (16)
C15A—C16A—H16A119.8C15B—C16B—H16B120.0
C11A—C16A—H16A119.8C11B—C16B—H16B120.0
C8A—N4A—N3A—C9A0.33 (18)C9B—N3B—N4B—C8B0.09 (18)
C9A—N5A—N6A—C10A42.7 (2)C8B—N5B—N6B—C10B175.50 (14)
C8A—N5A—N6A—C10A148.60 (15)C9B—N5B—N6B—C10B6.8 (3)
N3A—N4A—C8A—N5A1.13 (18)N3B—N4B—C8B—N5B0.02 (18)
N3A—N4A—C8A—C7A179.27 (17)N3B—N4B—C8B—C7B176.50 (16)
C9A—N5A—C8A—N4A2.17 (19)C9B—N5B—C8B—N4B0.05 (19)
N6A—N5A—C8A—N4A173.13 (14)N6B—N5B—C8B—N4B178.23 (13)
C9A—N5A—C8A—C7A178.21 (16)C9B—N5B—C8B—C7B176.60 (15)
N6A—N5A—C8A—C7A7.2 (2)N6B—N5B—C8B—C7B5.1 (2)
N4A—N3A—C9A—N5A1.58 (18)N4B—N3B—C9B—N5B0.11 (17)
N4A—N3A—C9A—S1A176.05 (12)N4B—N3B—C9B—S1B179.39 (12)
C8A—N5A—C9A—N3A2.17 (17)C8B—N5B—C9B—N3B0.09 (17)
N6A—N5A—C9A—N3A171.95 (15)N6B—N5B—C9B—N3B177.83 (15)
C8A—N5A—C9A—S1A175.39 (13)C8B—N5B—C9B—S1B179.34 (13)
N6A—N5A—C9A—S1A5.6 (3)N6B—N5B—C9B—S1B1.4 (3)
N5A—N6A—C10A—C11A179.52 (13)N5B—N6B—C10B—C11B179.62 (14)
N6A—C10A—C11A—C12A179.68 (15)N6B—C10B—C11B—C12B177.84 (15)
N6A—C10A—C11A—C16A0.1 (2)N6B—C10B—C11B—C16B1.8 (3)
C16A—C11A—C12A—C13A0.2 (2)C16B—C11B—C12B—C13B0.4 (2)
C10A—C11A—C12A—C13A179.80 (15)C10B—C11B—C12B—C13B179.94 (15)
C11A—C12A—C13A—C14A0.3 (2)C11B—C12B—C13B—C14B0.0 (2)
C12A—C13A—C14A—F2A179.92 (14)C12B—C13B—C14B—F2B178.64 (14)
C12A—C13A—C14A—C15A0.0 (3)C12B—C13B—C14B—C15B0.3 (3)
F2A—C14A—C15A—C16A179.57 (14)F2B—C14B—C15B—C16B178.77 (14)
C13A—C14A—C15A—C16A0.4 (3)C13B—C14B—C15B—C16B0.2 (3)
C14A—C15A—C16A—C11A0.4 (2)C14B—C15B—C16B—C11B0.2 (2)
C12A—C11A—C16A—C15A0.1 (2)C12B—C11B—C16B—C15B0.5 (2)
C10A—C11A—C16A—C15A179.41 (15)C10B—C11B—C16B—C15B179.81 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3A—H3A···S1B0.862.453.2840 (18)164
N3B—H3B···S1A0.862.513.3691 (18)172

Experimental details

Crystal data
Chemical formulaC10H9FN4S
Mr236.27
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.0048 (19), 10.811 (2), 12.729 (3)
α, β, γ (°)101.205 (3), 103.899 (3), 112.376 (3)
V3)1054.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.52 × 0.24 × 0.13
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.77, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
9923, 3698, 3383
Rint0.017
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.085, 1.05
No. of reflections3698
No. of parameters291
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.28

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3A—H3A···S1B0.862.45003.2840 (18)164.00
N3B—H3B···S1A0.862.51003.3691 (18)172.00
 

Acknowledgements

The authors thank Professor T. N. Guru Row, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for the data collection.

References

First citationAndersson, M. I. & MacGowan, A. P. (2003). J. Antimicrob. Chemother. 51, 1–11.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDevarajegowda, H. C., Jeyaseelan, S., Sumangala, V., Bojapoojary & Nayak, S. P. (2010). Acta Cryst. E66, o2512–o2513.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHeidelberger, C., Chaudhuri, N. K., Danneberg, P., Mooren, D., Greisbach, L., Duschinsky, R., Scnnitzer, R. J., Pleaven, E. & Scheiner, J. (1957). Nature (London), 179, 663–666.  CrossRef PubMed CAS Web of Science Google Scholar
First citationHolla, B. S., Shivananda, M. K., Shenoy, S. & Antony, G. (1998). Boll. Chim. Farm. 136, 680–685.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTemple, C. (1981). The Chemistry of Heterocyclic Compounds, Vol. 37, edited by J. A. Montgomery, pp. 62–95. New York: Wiley Interscience.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds