supplementary materials


wn2474 scheme

Acta Cryst. (2012). E68, o1657    [ doi:10.1107/S1600536812019757 ]

(5,7-Dimethyl-2-oxo-2H-chromen-4-yl)methyl diethyldithiocarbamate

K. M. Kumar, H. C. Devarajegowda, S. Jeyaseelan, N. M. Mahabaleshwaraiah and O. Kotresh

Abstract top

In the title compound, C17H21NO2S2, the coumarin ring system is nearly planar, with a maximum deviation of 0.080 (2) Å from the mean plane. An intramolecular C-H...S hydrogen bond occurs. The crystal structure features C-H...S hydrogen bonds and weak [pi]-[pi] interactions with a centroid-centroid distance of 3.679 (1) Å.

Comment top

Coumarins constitute a class of compounds which are found widely in nature and possess diverse biological activities. Over recent decades, medicinal chemists have paid great attention to the isolation, screening and structural modifications of new coumarins. They have been found to exhibit a wide range of applications in cancer, the HIV drug development arena (Smith et al., 1998), anti-tumor, anti-bacterial and cytotoxic activity (Nawrot-Modraka et al., 2006). In 4-substituted coumarins, the groups attached at the C-4 methylene carbon been shown to influence their solid state conformations, as observed in 4-aryloxymethyl (Basanagouda et al., 2009) and 4-arylaminomethyl coumarins (Kalkhambkar et al., 2007).

Dithiocarbamates have shown wide applications as pesticides,fungicides in agriculture (El-Shorbagi, 2000), potent anticancer agents (Ronconi et al., 2006), organic intermediates, rubber additives, additives of polluted water and vulcanizing agents (Cvek & Dvorak, 2007).

In view of the above observations,we proposed that 4-substituted coumarins bearing the dithiocarbamate (DTC)group should display some interesting biological activity and the title compound was screened for fungicidal, bacterial and DNA cleavage properties.The crystal structure of a coumarin derivative linked to the DTC group has been reported (Kumar et al., 2012).

The title compound is one of a series of dithiocarbamate coumarins with potential as possible anti-microbial agents. For these reasons, in continuation of our interest in the crystal structures of coumarin derivatives, we report here its crystal structure.

The asymmetric unit of 5,7-dimethyl-2-oxo-2H-chromen-4-yl)methyl diethyldithiocarbamate is shown in Fig. 1.The coumarin ring system (O3/C6–C14) is nearly planar, with a maximum deviation from the mean plane of 0.080 (2) Å for atom C12.

In the crystal structure (Fig. 2), the molecules are connected via weak intramolecular C8—H8···S2 and intermolecular C16—H16C···S1 hydrogen bonds (Table 1). Furthermore, the crystal structure features π-π stacking interactions between the pyran ring (O3/C10–C14; centroid Cg1) and the benzene ring (C6–C11; centroid Cg2), with a Cg1···Cg2 distance of 3.679 (1) Å.

Related literature top

For biological applications of coumarins and dithiocarbamates, see: Smith et al. (1998); Nawrot-Modraka et al. (2006); Basanagouda et al. (2009); Kalkhambkar et al. (2007); El-Shorbagi (2000); Ronconi et al. (2006); Cvek & Dvorak (2007). For a related structure, see: Kumar et al. (2012). For the synthesis of the title compound, see: Shastri et al. (2004).

Experimental top

All the chemicals were of analytical reagent grade and were used directly without further purification. 4-Bromomethyl coumarin required for the synthesis of the target molecule was synthesized according to an already reported procedure involving Pechmann cyclization of phenols with 4-bromoethyl acetoacetate (Shastri et al., 2004) and sodium diethyldithiocarbamate purchased from Sigma- Aldrich.

A mixture of 2.6 g (0.01 mol) of 5,7-dimethyl-4-bromomethylcoumarin and 1.71 g (0.01 mol) of sodium diethyldithiocarbamate in 30 ml dry alcohol was stirred for 24 h at room temperature (the reaction was monitored by TLC). The solvent was evaporated and the resulting solid was extracted twice with a dichloromethane-H2O mixture. The organic layer was dried over anhydrous CaCl2 and evaporation of the organic solvent gave the title compound. The compound was recrystallized from an ethanol-chloroform mixture. Colour: Colourless. Yield: 91%. M.P.: 409 K.

Refinement top

All H atoms were positioned geometrically [Csp2—H = 0.93 Å, C(methylene)—H = 0.97 Å and C(methyl)—H = 0.96 Å] and refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for other H.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. The dashed line indicates the intramolecular hydrogen bond.
[Figure 2] Fig. 2. The packing of the molecules in the crystal structure.
(5,7-Dimethyl-2-oxo-2H-chromen-4-yl)methyl diethyldithiocarbamate top
Crystal data top
C17H21NO2S2F(000) = 712
Mr = 335.47Dx = 1.295 Mg m3
Monoclinic, P21/nMelting point: 409 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.8570 (2) ÅCell parameters from 3033 reflections
b = 23.7745 (5) Åθ = 1.7–25.0°
c = 9.7684 (2) ŵ = 0.32 mm1
β = 109.483 (1)°T = 293 K
V = 1720.22 (7) Å3Plate, colourless
Z = 40.24 × 0.20 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3033 independent reflections
Radiation source: fine-focus sealed tube2803 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω and φ scansθmax = 25.0°, θmin = 1.7°
Absorption correction: ψ scan
(SADABS; Sheldrick, 2007)
h = 99
Tmin = 0.770, Tmax = 1.000k = 2628
14939 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0643P)2 + 1.5942P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.003
3033 reflectionsΔρmax = 0.90 e Å3
204 parametersΔρmin = 0.73 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0052 (14)
Crystal data top
C17H21NO2S2V = 1720.22 (7) Å3
Mr = 335.47Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.8570 (2) ŵ = 0.32 mm1
b = 23.7745 (5) ÅT = 293 K
c = 9.7684 (2) Å0.24 × 0.20 × 0.12 mm
β = 109.483 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3033 independent reflections
Absorption correction: ψ scan
(SADABS; Sheldrick, 2007)
2803 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 1.000Rint = 0.020
14939 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.135Δρmax = 0.90 e Å3
S = 1.04Δρmin = 0.73 e Å3
3033 reflectionsAbsolute structure: ?
204 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. IR (KBr) 670 c m-1 (C—S), 1204 c m-1 (C=S), 1047 c m-1 (C—O), 823 c m-1 (C—N),1279 c m-1 (C—O—C), 1716 c m-1 (C=O).GCMS data m/e = 335. 1H NMR (400 MHz, CDCl3, δ, p.p.m.): 1.58 (d Ethylene-6H, CH3), 2.46 (s,3H, CH3), 2.71 (s,3H, CH3), 3.88 (s,2H, Ethylene-CH2), 4.21 (s,2H, Ethylene-CH2), 4.50 (s 2H, Methylene-CH2), 6.53 (s,1H, Ar—H), 6.92 (s,1H, Ar—H), 7.03 (s,1H, Ar—H).

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.15831 (9)0.15127 (3)0.66095 (6)0.0434 (2)
S20.25909 (15)0.14818 (4)0.38884 (10)0.0773 (3)
O30.77521 (19)0.04484 (8)0.88072 (17)0.0414 (4)
O40.8065 (3)0.01657 (10)0.6765 (2)0.0610 (6)
N50.1516 (4)0.23806 (10)0.4975 (3)0.0583 (6)
C60.7641 (3)0.06546 (11)1.1089 (2)0.0395 (5)
H60.88870.06061.14370.047*
C70.6727 (3)0.07803 (10)1.2025 (2)0.0401 (5)
C80.4863 (3)0.08315 (10)1.1453 (2)0.0378 (5)
H80.42360.09021.20910.045*
C90.3886 (3)0.07847 (9)0.9997 (2)0.0329 (5)
C100.4826 (3)0.06808 (9)0.9000 (2)0.0294 (5)
C110.6692 (3)0.06000 (9)0.9621 (2)0.0327 (5)
C120.4095 (3)0.06440 (9)0.7418 (2)0.0312 (5)
C130.5170 (3)0.04836 (10)0.6673 (2)0.0380 (5)
H130.46750.04590.56680.046*
C140.7056 (3)0.03479 (11)0.7350 (3)0.0405 (5)
C150.7704 (4)0.08551 (15)1.3626 (3)0.0628 (8)
H15A0.79360.04931.40880.094*
H15B0.69710.10741.40420.094*
H15C0.88270.10461.37700.094*
C160.1861 (3)0.08263 (12)0.9590 (3)0.0465 (6)
H16A0.15430.08471.04560.070*
H16B0.13100.05000.90410.070*
H16C0.14420.11580.90160.070*
C170.2169 (3)0.07796 (10)0.6516 (2)0.0369 (5)
H17A0.13630.05480.68440.044*
H17B0.19820.06830.55120.044*
C180.1913 (4)0.18349 (11)0.5078 (3)0.0480 (6)
C190.1622 (6)0.27172 (15)0.3738 (4)0.0795 (11)
H19A0.13630.24780.28870.095*
H19B0.07180.30120.35240.095*
C200.0865 (5)0.26865 (13)0.6014 (4)0.0666 (9)
H20A0.12720.30740.60750.080*
H20B0.13840.25190.69680.080*
C210.1163 (5)0.26762 (16)0.5582 (4)0.0793 (10)
H21A0.16820.28490.46470.119*
H21B0.15290.28790.62860.119*
H21C0.15700.22940.55380.119*
C220.3417 (7)0.29714 (19)0.4049 (7)0.1145 (17)
H22A0.37000.31940.49170.172*
H22B0.34200.32060.32510.172*
H22C0.43030.26800.41840.172*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0513 (4)0.0436 (4)0.0340 (3)0.0154 (3)0.0127 (3)0.0011 (2)
S20.1254 (8)0.0562 (5)0.0777 (6)0.0240 (5)0.0703 (6)0.0081 (4)
O30.0260 (8)0.0627 (11)0.0369 (9)0.0014 (7)0.0124 (6)0.0009 (8)
O40.0491 (11)0.0906 (16)0.0508 (11)0.0181 (10)0.0267 (9)0.0012 (10)
N50.0738 (16)0.0432 (13)0.0683 (16)0.0112 (11)0.0373 (13)0.0056 (11)
C60.0270 (11)0.0512 (14)0.0360 (12)0.0054 (10)0.0046 (9)0.0016 (10)
C70.0441 (13)0.0425 (13)0.0300 (11)0.0084 (10)0.0074 (10)0.0005 (9)
C80.0424 (13)0.0403 (13)0.0351 (12)0.0017 (10)0.0188 (10)0.0017 (9)
C90.0311 (11)0.0325 (11)0.0361 (12)0.0004 (9)0.0126 (9)0.0013 (9)
C100.0270 (10)0.0287 (10)0.0318 (11)0.0028 (8)0.0090 (9)0.0004 (8)
C110.0279 (11)0.0383 (12)0.0331 (11)0.0031 (9)0.0117 (9)0.0024 (9)
C120.0303 (11)0.0283 (10)0.0320 (11)0.0002 (8)0.0065 (9)0.0002 (8)
C130.0389 (12)0.0439 (13)0.0294 (11)0.0050 (10)0.0091 (9)0.0002 (9)
C140.0389 (12)0.0498 (14)0.0366 (12)0.0040 (11)0.0177 (10)0.0036 (10)
C150.0609 (18)0.087 (2)0.0334 (14)0.0135 (16)0.0061 (12)0.0067 (14)
C160.0348 (13)0.0618 (16)0.0475 (14)0.0073 (11)0.0199 (11)0.0059 (12)
C170.0332 (12)0.0381 (12)0.0338 (12)0.0033 (9)0.0035 (9)0.0026 (9)
C180.0528 (15)0.0451 (14)0.0500 (15)0.0078 (11)0.0224 (12)0.0020 (11)
C190.104 (3)0.0531 (18)0.101 (3)0.0124 (18)0.060 (2)0.0154 (18)
C200.097 (2)0.0421 (15)0.069 (2)0.0145 (15)0.0382 (18)0.0025 (14)
C210.094 (3)0.072 (2)0.086 (2)0.0324 (19)0.049 (2)0.0158 (19)
C220.132 (4)0.079 (3)0.165 (5)0.026 (3)0.093 (4)0.017 (3)
Geometric parameters (Å, º) top
S1—C181.775 (3)C13—C141.443 (3)
S1—C171.813 (2)C13—H130.9300
S2—C181.659 (3)C15—H15A0.9600
O3—C141.365 (3)C15—H15B0.9600
O3—C111.377 (3)C15—H15C0.9600
O4—C141.202 (3)C16—H16A0.9600
N5—C181.330 (4)C16—H16B0.9600
N5—C201.472 (4)C16—H16C0.9600
N5—C191.474 (4)C17—H17A0.9700
C6—C71.371 (3)C17—H17B0.9700
C6—C111.384 (3)C19—C221.469 (6)
C6—H60.9300C19—H19A0.9700
C7—C81.388 (3)C19—H19B0.9700
C7—C151.505 (3)C20—C211.506 (5)
C8—C91.377 (3)C20—H20A0.9700
C8—H80.9300C20—H20B0.9700
C9—C101.426 (3)C21—H21A0.9600
C9—C161.510 (3)C21—H21B0.9600
C10—C111.400 (3)C21—H21C0.9600
C10—C121.461 (3)C22—H22A0.9600
C12—C131.341 (3)C22—H22B0.9600
C12—C171.510 (3)C22—H22C0.9600
C18—S1—C17105.17 (12)C9—C16—H16B109.5
C14—O3—C11122.57 (17)H16A—C16—H16B109.5
C18—N5—C20123.8 (2)C9—C16—H16C109.5
C18—N5—C19121.0 (2)H16A—C16—H16C109.5
C20—N5—C19115.1 (2)H16B—C16—H16C109.5
C7—C6—C11119.4 (2)C12—C17—S1113.43 (15)
C7—C6—H6120.3C12—C17—H17A108.9
C11—C6—H6120.3S1—C17—H17A108.9
C6—C7—C8117.8 (2)C12—C17—H17B108.9
C6—C7—C15121.3 (2)S1—C17—H17B108.9
C8—C7—C15120.8 (2)H17A—C17—H17B107.7
C9—C8—C7124.0 (2)N5—C18—S2124.2 (2)
C9—C8—H8118.0N5—C18—S1112.87 (19)
C7—C8—H8118.0S2—C18—S1122.90 (16)
C8—C9—C10118.8 (2)C22—C19—N5111.5 (4)
C8—C9—C16116.2 (2)C22—C19—H19A109.3
C10—C9—C16124.9 (2)N5—C19—H19A109.3
C11—C10—C9115.73 (19)C22—C19—H19B109.3
C11—C10—C12115.79 (19)N5—C19—H19B109.3
C9—C10—C12128.48 (19)H19A—C19—H19B108.0
O3—C11—C6113.68 (19)N5—C20—C21112.2 (3)
O3—C11—C10122.26 (19)N5—C20—H20A109.2
C6—C11—C10124.0 (2)C21—C20—H20A109.2
C13—C12—C10119.62 (19)N5—C20—H20B109.2
C13—C12—C17115.74 (19)C21—C20—H20B109.2
C10—C12—C17124.64 (19)H20A—C20—H20B107.9
C12—C13—C14123.5 (2)C20—C21—H21A109.5
C12—C13—H13118.3C20—C21—H21B109.5
C14—C13—H13118.3H21A—C21—H21B109.5
O4—C14—O3117.4 (2)C20—C21—H21C109.5
O4—C14—C13127.0 (2)H21A—C21—H21C109.5
O3—C14—C13115.58 (19)H21B—C21—H21C109.5
C7—C15—H15A109.5C19—C22—H22A109.5
C7—C15—H15B109.5C19—C22—H22B109.5
H15A—C15—H15B109.5H22A—C22—H22B109.5
C7—C15—H15C109.5C19—C22—H22C109.5
H15A—C15—H15C109.5H22A—C22—H22C109.5
H15B—C15—H15C109.5H22B—C22—H22C109.5
C9—C16—H16A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···S2i0.932.863.751 (2)161
C16—H16C···S10.962.533.282 (3)135
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···S2i0.932.863.751 (2)161
C16—H16C···S10.962.533.282 (3)135
Symmetry code: (i) x, y, z+1.
Acknowledgements top

The authors thank the Universities Sophisticated Instrumental Centre, Karnatak University, Dharwad, for the CCD X-ray facilities, X-ray data collection, GCMS, IR, CHNS and NMR data. KMK is grateful to Karnatak Science College, Dharwad, for providing laboratory facilities.

references
References top

Basanagouda, M., Kulkarni, M. V., Sharma, D., Gupta, V. K., Pranesha, Sandhyarani, P. & Rasal, V. P. (2009). J. Chem. Sci. 121, 485–495.

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Cvek, B. & Dvorak, Z. T. (2007). Curr. Pharm. Des. 13, 3155–3167.

El-Shorbagi, A. N. (2000). Arch. Pharm. 33, 281–284.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565–?.

Kalkhambkar, R. G., Kulkarni, G. M. & Lee, C.-S. (2007). X-ray Struct. Anal. Online, 23, 31–32.

Kumar, K. M., Kour, D., Kapoor, K., Mahabaleshwaraiah, N. M., Kotresh, O., Gupta, V. K. & Kant, R. (2012). Acta Cryst. E68, o878–o879.

Nawrot-Modraka, J., Nawrot, E. & Graczik, J. (2006). Eur. J. Med. Chem. 41, 1301–1309.

Ronconi, L., Marzano, C., Zanello, P., Corsini, M., Miolo, G., Macca, C., Trevisan, A. & Fregona, D. (2006). J. Med. Chem. 49, 1648–1657.

Shastri, L. A., Ghate, M. D. & Kulkarni, M. V. (2004). Indian J. Chem. Sect. B, 43, 2416–2422.

Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Smith, R. H., Jorgen, W. H., Tirado, R. J. & Lamb, M. L. (1998). J. Med. Chem. 41, 5272–5286.