organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl (R)-2-(2-chloro­phen­yl)-2-(3-nitro­phenyl­sulfon­yl­oxy)acetate

aDepartment of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, Henan 450007, People's Republic of China
*Correspondence e-mail: hongwuxu2006@126.com

(Received 28 April 2012; accepted 4 May 2012; online 12 May 2012)

The reaction between methyl (R)-2-(2-chloro­phen­yl)-2-hy­droxy­acetate and 3-nitro­benzene­sulfonyl chloride gave the title compound, C15H12ClNO7S, which is a promising inter­mediate for the synthesis of Clopidrogel, an anti­platelet drug used in the prevention of strokes and heart attacks. In the crystal, mol­ecules are linked through C—H⋯O interactions, and there is also a short Cl⋯O contact present [Cl⋯O = 3.018 (2) Å].

Related literature

For the synthesis of (R)-2-(2-chloro­phen­yl)-2-hy­droxy­acetic acid, see: Bousquet & Musolino (2003[Bousquet, A. & Musolino, A. (2003). US Patent No. 6573381 B1.]). For related structures, see: Sun et al. (2007[Sun, Y., Wang, X.-Y., Zhu, J. & Su, W. (2007). Acta Cryst. E63, o2378-o2379.]); Andersen et al. (2007[Andersen, D., et al. (2007). J. Org. Chem. 72, 9648-9655.]). For the synthesis of Clopidrogel from sulfonyl­oxyacetic esters of (R)-2-(2-chloro­phen­yl)-2-hy­droxy­acetic acid, see: Bousquet & Musolino (1999[Bousquet, A. & Musolino, A. (1999). WO Patent No. 9918110 A1.]); Castaldi et al. (2003[Castaldi, G., Barreca, G. & Bologna, A. (2003). WO Patent No. 03093276.]); Ema et al. (2007[Ema, T., Okita, N., Ide, S. & Sakai, T. (2007). Org. Biomol. Chem. 5, 1175-1176.]); Zhu et al. (2010[Zhu, S. F., Cai, Y., Mao, H. X., Xie, J. H. & Zhou, Q. L. (2010). Nat. Chem. 2, 546-551.]). For halogen bonds, see: Bianchi et al. (2004[Bianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559-568.]); Fourmigue (2009[Fourmigue, M. (2009). Curr. Opin. Solid State Mater. Sci. 13, 36-45.]); Metrangolo et al. (2005[Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386-395.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12ClNO7S

  • Mr = 385.77

  • Orthorhombic, P 21 21 21

  • a = 7.5791 (3) Å

  • b = 11.0242 (5) Å

  • c = 19.6736 (7) Å

  • V = 1643.80 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.22 mm

Data collection
  • Agilent Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (Crysalis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.890, Tmax = 0.918

  • 5654 measured reflections

  • 3153 independent reflections

  • 2680 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.086

  • S = 1.02

  • 3153 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1209 Friedel pairs

  • Flack parameter: 0.07 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H5⋯O4 0.93 2.55 2.920 (4) 104
C14—H5⋯O1i 0.93 2.60 3.323 (4) 135
C15—H8C⋯O5ii 0.96 2.53 3.419 (4) 155
Symmetry codes: (i) x+1, y, z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: Crysalis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: Crysalis PRO; data reduction: Crysalis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sulfonyloxyacetic esters of (R)-methyl-2-(2-chlorophenyl)-2-hydroxyacetate are commonly used in the synthesis of Clopidrogel, an antiplatelet drug used in the prevention of strokes and heart attacks (sold in the United States under the brand name of Plavix) (Bousquet & Musolino, 1999; Castaldi et al., 2003; Ema et al., 2007; Zhu et al., 2010). The title compound, a promising intermediate for the synthesis of Clopidrogel, was obtained in two steps from (R)-2-(2-chlorophenyl)-2-hydroxyacetic acid (Bousquet & Musolino, 2003). We report here its crystal structure. In the molecule of the title compound (Fig. 1), the main bond lengths and angles are close to those found in some other derivatives of (R)-methyl-2-(2-chlorophenyl)-2-hydroxyacetate (for example, (R)-methyl-2-(2-chlorophenyl)-2-(benzenesulfonyloxy) acetate and 4aR,11R,11aS)-11-methyl-9- (trifluoromethyl)-1,2,2,3,4,4a,5,6,11,11adecahydro-pyrido[4,3-b] carbazole (R)-2-chloromandelate (Sun et al., 2007; Andersen et al., 2007). The crystal structure of this compound is stabilized by an intermolecular halogen bond (Bianchi et al., 2004; Fourmigue, 2009; Metrangolo et al., 2005) between the Cl atom and one of the O atoms of the SO2 group of an adjacent molecule, with a C4–Cl1···O4i separation of 3.018 (2) Å (Fig. 2 and Table 1). Symmetry code (i): x - 1, y, z. The crystal structure is also stabilized by intermolecular C–H···O hydrogen bonding interactions (Table 1).

Related literature top

For the synthesis of (R)-2-(2-chlorophenyl)-2-hydroxyacetic acid, see: Bousquet & Musolino (2003); for related structures, see: Sun et al. (2007); Andersen et al. (2007); for the sythesis of Clopidrogel from sulfonyloxyacetic esters of (R)-2-(2-chlorophenyl)-2-hydroxyacetic acid, see: Bousquet & Musolino (1999); Castaldi et al. (2003); Ema et al. (2007); Zhu et al. (2010). For halogen bonds, see: Bianchi et al. (2004); Fourmigue (2009); Metrangolo et al. (2005).

Experimental top

(R)-2-(2-Chlorophenyl)-2-hydroxyacetic acid and (R)-methyl-2- (2-chlorophenyl)-2-hydroxyacetate were prepared using the established literature procedures (Bousquet et al., 2003, and Sun et al., 2007). A three-necked round-bottomed flask, which was equipped with a magnetic stir bar, was charged with dichloromethane (50 ml), (R)-methyl-2- (2-chlorophenyl)-2-hydroxyacetate (4.5 g), triethylamine (4.3 g), and 4,4-dimethylaminopyridine (275 mg). 3-Nitrobenzenesulfonyl chloride (5.5 g) and dichloromethane (50 ml) were added via syringe. The mixture was stirred at room temperature for 3 h. The reaction mixture was quenched with water, and washed with 1 N HCl (30 ml) twice. The organic layer was dried over anhydrous sodium sulfate and filtered. After concentration under reduced pressure, the residue was purified by silica gel column chromatography with a mixture of petroleum ether and ethyl acetate (4:1 v/v) as eluent to give the title compound (yield, 54%). 1H NMR (400 MHz, CDCl3): 8.648 (s, 1H), 8.432 (d, J = 8.0 Hz, 1H), 8.208 (d, J = 8.0 Hz, 1H), 7.704 (t, J = 8.0 Hz, 1H), 7.376 (d, J = 8.0 Hz, 1H), 7.319 - 7.206 (m, 3H), 6.394 (s, 1H), 3.765 (s, 3H) p.p.m.. Well shaped colorless crystals were obtained by slow evaporation of a solution in petroleum ether and ethyl acetate at room temperature for a few days.

Refinement top

All hydrogen atoms were fixed geometrically (C—H bond fixed at 0.93 and 0.96 Å for aromatic and methyl H atoms, respectively) with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the C—Cl···O interaction (dashed lines) in the crystal structure of the title compound. Symmetry code (i): x - 1, y, z.
[Figure 3] Fig. 3. The packing of the compound, viewed down the a axis.
Methyl (R)-2-(2-chlorophenyl)-2-(3-nitrophenylsulfonyloxy)acetate top
Crystal data top
C15H12ClNO7SF(000) = 792
Mr = 385.77Dx = 1.559 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1814 reflections
a = 7.5791 (3) Åθ = 3.3–26.3°
b = 11.0242 (5) ŵ = 0.40 mm1
c = 19.6736 (7) ÅT = 293 K
V = 1643.80 (11) Å3Prism, colourless
Z = 40.30 × 0.25 × 0.22 mm
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
3153 independent reflections
Radiation source: fine-focus sealed tube2680 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 13.6612 pixels mm-1θmax = 26.4°, θmin = 3.3°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1312
Tmin = 0.890, Tmax = 0.918l = 2415
5654 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0393P)2 + 0.1718P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3153 reflectionsΔρmax = 0.21 e Å3
227 parametersΔρmin = 0.21 e Å3
0 restraintsAbsolute structure: Flack (1983), 1209 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (7)
Crystal data top
C15H12ClNO7SV = 1643.80 (11) Å3
Mr = 385.77Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.5791 (3) ŵ = 0.40 mm1
b = 11.0242 (5) ÅT = 293 K
c = 19.6736 (7) Å0.30 × 0.25 × 0.22 mm
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
3153 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2680 reflections with I > 2σ(I)
Tmin = 0.890, Tmax = 0.918Rint = 0.023
5654 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.086Δρmax = 0.21 e Å3
S = 1.02Δρmin = 0.21 e Å3
3153 reflectionsAbsolute structure: Flack (1983), 1209 Friedel pairs
227 parametersAbsolute structure parameter: 0.07 (7)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.47477 (9)0.03812 (6)0.23919 (4)0.03772 (18)
Cl10.05655 (10)0.08212 (8)0.36889 (4)0.0513 (2)
N10.2766 (4)0.3236 (3)0.04654 (14)0.0554 (7)
O70.1312 (4)0.2781 (3)0.05356 (13)0.0763 (8)
O60.3113 (4)0.4007 (2)0.00436 (14)0.0820 (8)
O50.4263 (3)0.06820 (17)0.20270 (10)0.0474 (5)
O40.6140 (3)0.0334 (2)0.28718 (11)0.0540 (6)
O20.1443 (3)0.36269 (18)0.33486 (10)0.0449 (5)
O10.0857 (3)0.2602 (2)0.23895 (10)0.0544 (6)
O30.2979 (2)0.07757 (16)0.27557 (9)0.0342 (4)
C100.3826 (4)0.1918 (3)0.13767 (14)0.0400 (7)
H1A0.27280.15410.13830.048*
C110.4194 (4)0.2837 (3)0.09275 (14)0.0417 (7)
C120.5830 (4)0.3385 (3)0.08930 (16)0.0496 (8)
H30.60550.39840.05710.060*
C130.7118 (4)0.3032 (3)0.13422 (17)0.0504 (8)
H40.82220.33990.13270.061*
C140.6791 (4)0.2137 (3)0.18141 (16)0.0442 (7)
H50.76560.19130.21250.053*
C90.5149 (4)0.1576 (2)0.18190 (13)0.0369 (6)
C10.1619 (4)0.2713 (3)0.29162 (14)0.0371 (6)
C150.0212 (4)0.4558 (3)0.31462 (17)0.0591 (9)
H8A0.05400.48680.27080.089*
H8B0.02310.52040.34730.089*
H8C0.09540.42210.31230.089*
C20.3017 (3)0.1846 (2)0.31890 (13)0.0336 (6)
H90.41710.22350.31330.040*
C30.2823 (4)0.1498 (2)0.39238 (14)0.0352 (6)
C80.4258 (4)0.1657 (3)0.43647 (15)0.0473 (7)
H110.53140.19630.41960.057*
C70.4125 (5)0.1367 (3)0.50432 (17)0.0584 (9)
H120.50840.14820.53310.070*
C60.2564 (5)0.0905 (3)0.52935 (15)0.0588 (10)
H130.24720.07170.57530.071*
C50.1147 (5)0.0719 (3)0.48751 (15)0.0495 (8)
H140.01080.03910.50460.059*
C40.1279 (4)0.1026 (3)0.41929 (13)0.0378 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0318 (3)0.0408 (4)0.0406 (4)0.0007 (3)0.0028 (3)0.0023 (3)
Cl10.0389 (4)0.0714 (5)0.0437 (4)0.0063 (4)0.0013 (3)0.0053 (4)
N10.069 (2)0.0531 (17)0.0436 (15)0.0037 (16)0.0046 (15)0.0024 (14)
O70.0629 (16)0.100 (2)0.0655 (16)0.0087 (15)0.0233 (14)0.0133 (16)
O60.104 (2)0.0721 (18)0.0705 (16)0.0062 (17)0.0065 (17)0.0295 (16)
O50.0533 (13)0.0350 (11)0.0539 (12)0.0010 (9)0.0129 (11)0.0059 (9)
O40.0383 (11)0.0687 (14)0.0548 (13)0.0030 (11)0.0034 (10)0.0141 (12)
O20.0473 (12)0.0420 (11)0.0456 (11)0.0095 (9)0.0025 (10)0.0033 (10)
O10.0526 (13)0.0699 (15)0.0407 (11)0.0089 (11)0.0095 (11)0.0048 (11)
O30.0314 (9)0.0376 (10)0.0338 (9)0.0052 (8)0.0008 (8)0.0048 (8)
C100.0378 (15)0.0438 (17)0.0384 (15)0.0057 (13)0.0006 (13)0.0064 (14)
C110.0507 (18)0.0399 (16)0.0345 (14)0.0000 (14)0.0008 (14)0.0044 (13)
C120.064 (2)0.0359 (16)0.0491 (18)0.0059 (15)0.0150 (18)0.0029 (14)
C130.0412 (17)0.0444 (18)0.066 (2)0.0113 (14)0.0076 (17)0.0015 (17)
C140.0352 (16)0.0423 (16)0.0551 (18)0.0029 (13)0.0016 (15)0.0037 (15)
C90.0364 (15)0.0370 (14)0.0373 (14)0.0026 (12)0.0047 (13)0.0016 (12)
C10.0303 (15)0.0449 (16)0.0361 (14)0.0003 (12)0.0022 (13)0.0069 (14)
C150.056 (2)0.056 (2)0.066 (2)0.0220 (17)0.0167 (18)0.0188 (18)
C20.0305 (14)0.0344 (14)0.0360 (14)0.0042 (12)0.0024 (13)0.0030 (12)
C30.0426 (15)0.0288 (14)0.0342 (14)0.0039 (12)0.0077 (13)0.0058 (12)
C80.0567 (19)0.0361 (16)0.0493 (17)0.0013 (14)0.0122 (17)0.0049 (14)
C70.080 (3)0.0479 (19)0.0473 (18)0.0004 (19)0.0303 (19)0.0086 (16)
C60.094 (3)0.0486 (19)0.0340 (16)0.0087 (19)0.0082 (19)0.0031 (16)
C50.066 (2)0.0449 (18)0.0378 (15)0.0056 (16)0.0015 (15)0.0010 (14)
C40.0425 (16)0.0377 (15)0.0332 (14)0.0062 (12)0.0016 (13)0.0024 (13)
Geometric parameters (Å, º) top
S1—O41.417 (2)C13—H40.9300
S1—O41.417 (2)C14—C91.390 (4)
S1—O51.423 (2)C14—H50.9300
S1—O31.5809 (18)C1—C21.524 (4)
S1—C91.760 (3)C15—H8A0.9600
Cl1—C41.728 (3)C15—H8B0.9600
N1—O61.217 (3)C15—H8C0.9600
N1—O71.218 (4)C2—C31.503 (4)
N1—C111.480 (4)C2—H90.9800
O2—C11.326 (3)C3—C41.386 (4)
O2—C151.443 (3)C3—C81.402 (4)
O1—C11.192 (3)C8—C71.376 (4)
O3—C21.456 (3)C8—H110.9300
C10—C111.373 (4)C7—C61.379 (5)
C10—C91.380 (4)C7—H120.9300
C10—H1A0.9300C6—C51.368 (4)
C11—C121.381 (4)C6—H130.9300
C12—C131.374 (4)C5—C41.388 (4)
C12—H30.9300C5—H140.9300
C13—C141.377 (4)
O4—S1—O5119.91 (14)O1—C1—C2125.3 (3)
O4—S1—O5119.91 (14)O2—C1—C2108.7 (2)
O4—S1—O3109.87 (11)O2—C15—H8A109.5
O4—S1—O3109.87 (11)O2—C15—H8B109.5
O5—S1—O3103.66 (11)H8A—C15—H8B109.5
O4—S1—C9108.98 (13)O2—C15—H8C109.5
O4—S1—C9108.98 (13)H8A—C15—H8C109.5
O5—S1—C9109.75 (12)H8B—C15—H8C109.5
O3—S1—C9103.33 (12)O3—C2—C3110.7 (2)
O6—N1—O7124.1 (3)O3—C2—C1106.7 (2)
O6—N1—C11117.9 (3)C3—C2—C1115.5 (2)
O7—N1—C11118.0 (3)O3—C2—H9107.9
C1—O2—C15115.4 (2)C3—C2—H9107.9
C2—O3—S1118.10 (15)C1—C2—H9107.9
C11—C10—C9117.4 (3)C4—C3—C8117.7 (3)
C11—C10—H1A121.3C4—C3—C2123.1 (2)
C9—C10—H1A121.3C8—C3—C2119.2 (3)
C10—C11—C12122.5 (3)C7—C8—C3121.0 (3)
C10—C11—N1117.7 (3)C7—C8—H11119.5
C12—C11—N1119.8 (3)C3—C8—H11119.5
C13—C12—C11118.8 (3)C8—C7—C6119.6 (3)
C13—C12—H3120.6C8—C7—H12120.2
C11—C12—H3120.6C6—C7—H12120.2
C12—C13—C14120.6 (3)C5—C6—C7120.9 (3)
C12—C13—H4119.7C5—C6—H13119.5
C14—C13—H4119.7C7—C6—H13119.5
C13—C14—C9119.0 (3)C6—C5—C4119.3 (3)
C13—C14—H5120.5C6—C5—H14120.4
C9—C14—H5120.5C4—C5—H14120.4
C10—C9—C14121.6 (3)C3—C4—C5121.4 (3)
C10—C9—S1118.9 (2)C3—C4—Cl1120.9 (2)
C14—C9—S1119.5 (2)C5—C4—Cl1117.7 (2)
O1—C1—O2125.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H5···O40.932.552.920 (4)104
C14—H5···O1i0.932.603.323 (4)135
C15—H8C···O5ii0.962.533.419 (4)155
C4—Cl1···O4iii1.73 (1)3.02 (1)4.744 (4)176 (1)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC15H12ClNO7S
Mr385.77
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.5791 (3), 11.0242 (5), 19.6736 (7)
V3)1643.80 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.30 × 0.25 × 0.22
Data collection
DiffractometerAgilent Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.890, 0.918
No. of measured, independent and
observed [I > 2σ(I)] reflections
5654, 3153, 2680
Rint0.023
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.086, 1.02
No. of reflections3153
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.21
Absolute structureFlack (1983), 1209 Friedel pairs
Absolute structure parameter0.07 (7)

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H5···O40.932.552.920 (4)104.1
C14—H5···O1i0.932.603.323 (4)135.4
C15—H8C···O5ii0.962.533.419 (4)154.5
C4—Cl1···O4iii1.728 (3)3.018 (2)4.744 (4)176.27 (12)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2; (iii) x1, y, z.
 

Acknowledgements

This work was supported by the Program for Science and Technology Innovation Talents at the Universities of Henan Province (grant No. 2011HASTIT022).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAndersen, D., et al. (2007). J. Org. Chem. 72, 9648–9655.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559–568.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBousquet, A. & Musolino, A. (1999). WO Patent No. 9918110 A1.  Google Scholar
First citationBousquet, A. & Musolino, A. (2003). US Patent No. 6573381 B1.  Google Scholar
First citationCastaldi, G., Barreca, G. & Bologna, A. (2003). WO Patent No. 03093276.  Google Scholar
First citationEma, T., Okita, N., Ide, S. & Sakai, T. (2007). Org. Biomol. Chem. 5, 1175–1176.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFourmigue, M. (2009). Curr. Opin. Solid State Mater. Sci. 13, 36–45.  CAS Google Scholar
First citationMetrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y., Wang, X.-Y., Zhu, J. & Su, W. (2007). Acta Cryst. E63, o2378–o2379.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, S. F., Cai, Y., Mao, H. X., Xie, J. H. & Zhou, Q. L. (2010). Nat. Chem. 2, 546–551.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds