supplementary materials


bt6836 scheme

Acta Cryst. (2012). E68, m1372    [ doi:10.1107/S1600536812040081 ]

Bis(3-tert-butylpyridine-[kappa]N)bis(4-tert-butylpyridine-[kappa]N)bis(thiocyanato-[kappa]N)cadmium

T. Reinert, I. Jess and C. Näther

Abstract top

The asymmetric unit of the title compound, [Cd(NCS)2(C9H13N)4], consists of one CdII cation located on a centre of inversion, one thiocyanate anion, one 3-tert-butylpyridine ligand and one 4-tert-butylpyridine ligand in general positions. The tert-butyl group of the 4-tert-butylpyridine ligand is disordered over two sets of sites in a 0.25:0.75 ratio and was refined using a split model. The CdII cation is coordinated by six N atoms of four tert-butylpyridine ligands and two N-bonded thiocyanate anions within a slightly distorted octahedral coordination environment.

Comment top

The structure determination of the title compound was performed as a part of a project on the synthesis and properties of new coordination polymers based on transition metal thiocyanates and and N-donor ligands (Boeckmann & Näther, 2010, 2011). Within this project we have reacted cadmium(II)thiocyanate with 4-tert-butylpyridine in water, which results in the formation of crystals of the title compound by accident. Apparently, the 4-tert-butylpyridine was contaminated with 3-tert-butylpyridine to a degree that allowed the formation of a few single crystals.

In the crystal structure the Cd atoms are coordinated by six N atoms of four tert-butylpyridine ligands and two N-bonded thiocyanato anions in mutual trans orientation in a slightly distorted octahedral geometry (Fig. 1 and Table 1). The Cd···N distances range from 2.3005 (36) Å to 2.4025 (28) Å. It is also worth mentioning that so far no other compound containing 3-tert-butylpyridine has been reported in the CSD.

Related literature top

For the synthesis and properties of coordination polymers based on transition metal thiocyanates and and N-donor ligands, see: Boeckmann & Näther (2010, 2011). For related structures, see: Nassimbeni et al. (1990) (4-tert-butylpyridine only).

Experimental top

The title compound was obtained accidently during the reaction of 34.3 mg Cd(NCS)2 (0.15 mmol) with 88.8 µl 4-tert-butylpyridine (0.60 mmol) in 1.50 ml water at RT in a closed 3 ml snap cap vial. After two weeks colourless needles of the title compound were obtained.

Refinement top

The H atoms were positioned with idealized geometry and were refined using a riding model with Uiso(H) = 1.2Ueq(C) (1.5 for methyl H atoms) of the parent atom using a riding model with C—H = 0.95 and 0.98 Å. The tert-butyl group of the 4-tert-butylpyridine ligand is disordered and was refined using a split model with fixed site occupation factors of 0.75 and 0.25. The distances between the methyl groups in the two disordered moieties were restrained to be equal.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compund with labelling and displacement ellipsoids drawn at the 50% probability level. Symmetry codes: i = -x + 1, -y + 1, -z + 2. Disordering is shown as full and open bonds.
Bis(3-tert-butylpyridine-κN)bis(4-tert-butylpyridine- κN)bis(thiocyanato-κN)cadmium top
Crystal data top
[Cd(NCS)2(C9H13N)4]Z = 1
Mr = 769.38F(000) = 402
Triclinic, P1Dx = 1.257 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5136 (7) ÅCell parameters from 8000 reflections
b = 10.7582 (7) Åθ = 1.9–28.2°
c = 11.6674 (10) ŵ = 0.67 mm1
α = 67.142 (8)°T = 200 K
β = 68.242 (9)°Needle, colourless
γ = 76.472 (8)°0.16 × 0.11 × 0.07 mm
V = 1016.32 (13) Å3
Data collection top
Stoe IPDS-1
diffractometer
4109 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.077
Graphite monochromatorθmax = 28.0°, θmin = 2.3°
φ scansh = 1212
11989 measured reflectionsk = 1313
4709 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0811P)2]
where P = (Fo2 + 2Fc2)/3
4709 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 1.69 e Å3
3 restraintsΔρmin = 1.58 e Å3
Crystal data top
[Cd(NCS)2(C9H13N)4]γ = 76.472 (8)°
Mr = 769.38V = 1016.32 (13) Å3
Triclinic, P1Z = 1
a = 9.5136 (7) ÅMo Kα radiation
b = 10.7582 (7) ŵ = 0.67 mm1
c = 11.6674 (10) ÅT = 200 K
α = 67.142 (8)°0.16 × 0.11 × 0.07 mm
β = 68.242 (9)°
Data collection top
Stoe IPDS-1
diffractometer
4109 reflections with I > 2σ(I)
11989 measured reflectionsRint = 0.077
4709 independent reflectionsθmax = 28.0°
Refinement top
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.127Δρmax = 1.69 e Å3
S = 1.02Δρmin = 1.58 e Å3
4709 reflectionsAbsolute structure: ?
226 parametersFlack parameter: ?
3 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.50000.50001.00000.02671 (12)
N10.6536 (4)0.6715 (3)0.9156 (3)0.0392 (7)
C10.6855 (4)0.7786 (4)0.8456 (4)0.0362 (7)
S10.73133 (15)0.92652 (13)0.74250 (19)0.0869 (6)
N110.2957 (3)0.6619 (3)0.9404 (3)0.0302 (6)
C110.1577 (4)0.6192 (4)0.9843 (4)0.0371 (7)
H110.14610.52651.03530.044*
C120.0319 (4)0.7042 (4)0.9587 (4)0.0419 (8)
H120.06390.67020.99030.050*
C130.0472 (4)0.8402 (4)0.8861 (4)0.0384 (8)
H130.03830.89990.86690.046*
C140.1875 (4)0.8890 (3)0.8415 (3)0.0316 (7)
C150.3087 (4)0.7938 (3)0.8709 (3)0.0322 (7)
H150.40630.82460.83960.039*
C160.2138 (4)1.0380 (4)0.7633 (4)0.0449 (9)
C170.3189 (7)1.0495 (6)0.6244 (5)0.0775 (18)
H17A0.33631.14460.57400.116*
H17B0.27131.01610.58190.116*
H17C0.41630.99510.62840.116*
C180.0626 (6)1.1273 (5)0.7600 (6)0.0638 (13)
H18A0.08271.22200.71000.096*
H18B0.00221.11990.84960.096*
H18C0.01101.09710.71820.096*
C190.2904 (5)1.0892 (5)0.8294 (6)0.0611 (13)
H19A0.30701.18470.77990.092*
H19B0.38841.03510.83150.092*
H19C0.22471.08050.91910.092*
N210.6000 (3)0.4588 (3)0.7974 (3)0.0328 (6)
C210.5908 (5)0.3401 (4)0.7924 (4)0.0477 (10)
H210.53930.27450.87080.057*
C220.6522 (5)0.3064 (4)0.6792 (4)0.0490 (10)
H220.64320.21900.68200.059*
C230.7265 (4)0.3989 (4)0.5619 (3)0.0322 (7)
C240.7375 (6)0.5215 (4)0.5688 (4)0.0505 (11)
H240.78880.58890.49210.061*
C250.6746 (5)0.5472 (4)0.6861 (4)0.0479 (10)
H250.68530.63240.68710.058*
C260.7921 (4)0.3663 (4)0.4347 (3)0.0400 (8)
C270.6690 (9)0.3075 (11)0.4201 (8)0.090 (3)0.75
H27A0.63440.22890.49800.134*0.75
H27B0.71170.27930.34240.134*0.75
H27C0.58270.37690.41050.134*0.75
C280.8482 (16)0.4831 (8)0.3182 (6)0.116 (5)0.75
H28A0.88870.45520.24040.174*0.75
H28B0.92890.51670.32810.174*0.75
H28C0.76430.55520.30860.174*0.75
C290.9220 (9)0.2496 (9)0.4499 (7)0.079 (2)0.75
H29A0.88310.17260.52800.119*0.75
H29B1.00480.28110.45880.119*0.75
H29C0.96010.22130.37240.119*0.75
C27'0.7280 (17)0.4863 (16)0.3290 (16)0.040 (3)*0.25
H27D0.74550.57330.32750.060*0.25
H27E0.61860.48300.35180.060*0.25
H27F0.78030.47690.24250.060*0.25
C28'0.9670 (16)0.3788 (17)0.3825 (16)0.043 (3)*0.25
H28D0.98430.46650.37930.065*0.25
H28E1.00940.37220.29440.065*0.25
H28F1.01680.30540.44110.065*0.25
C29'0.768 (2)0.238 (2)0.438 (2)0.063 (5)*0.25
H29D0.81600.23030.35110.094*0.25
H29E0.65900.23160.46660.094*0.25
H29F0.81400.16510.50040.094*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03329 (19)0.02083 (18)0.02336 (16)0.00619 (11)0.00577 (12)0.00565 (12)
N10.0426 (16)0.0288 (16)0.0430 (16)0.0125 (12)0.0074 (13)0.0095 (13)
C10.0312 (16)0.0308 (19)0.0447 (19)0.0041 (13)0.0115 (14)0.0107 (15)
S10.0540 (7)0.0380 (7)0.1310 (14)0.0182 (5)0.0373 (8)0.0262 (7)
N110.0350 (14)0.0263 (14)0.0261 (12)0.0048 (11)0.0076 (10)0.0063 (11)
C110.0397 (18)0.0288 (18)0.0397 (18)0.0084 (13)0.0076 (14)0.0101 (14)
C120.0362 (18)0.037 (2)0.050 (2)0.0093 (14)0.0095 (15)0.0123 (17)
C130.0319 (17)0.038 (2)0.0422 (18)0.0007 (14)0.0098 (14)0.0136 (15)
C140.0352 (17)0.0252 (17)0.0291 (15)0.0020 (12)0.0071 (12)0.0072 (12)
C150.0339 (16)0.0314 (18)0.0279 (15)0.0043 (13)0.0069 (12)0.0086 (13)
C160.042 (2)0.029 (2)0.047 (2)0.0015 (14)0.0076 (16)0.0028 (15)
C170.099 (4)0.049 (3)0.044 (2)0.014 (3)0.007 (3)0.001 (2)
C180.062 (3)0.033 (2)0.082 (3)0.0014 (19)0.032 (3)0.001 (2)
C190.049 (2)0.034 (2)0.099 (4)0.0025 (17)0.020 (2)0.024 (2)
N210.0418 (16)0.0299 (15)0.0253 (12)0.0062 (11)0.0089 (11)0.0079 (11)
C210.069 (3)0.033 (2)0.0310 (17)0.0172 (17)0.0013 (17)0.0092 (15)
C220.075 (3)0.030 (2)0.0347 (18)0.0162 (18)0.0013 (18)0.0146 (15)
C230.0373 (17)0.0295 (17)0.0272 (14)0.0020 (13)0.0093 (13)0.0086 (13)
C240.080 (3)0.039 (2)0.0277 (17)0.028 (2)0.0004 (17)0.0092 (15)
C250.076 (3)0.034 (2)0.0332 (17)0.0239 (18)0.0063 (18)0.0113 (15)
C260.050 (2)0.039 (2)0.0310 (16)0.0035 (15)0.0087 (15)0.0165 (15)
C270.078 (5)0.153 (9)0.075 (5)0.032 (5)0.017 (4)0.073 (6)
C280.243 (14)0.057 (5)0.027 (3)0.056 (6)0.006 (5)0.015 (3)
C290.073 (5)0.098 (6)0.062 (4)0.023 (4)0.013 (4)0.048 (4)
Geometric parameters (Å, º) top
Cd1—N1i2.301 (3)C21—C221.385 (5)
Cd1—N12.301 (3)C21—H210.9500
Cd1—N212.375 (3)C22—C231.385 (5)
Cd1—N21i2.375 (3)C22—H220.9500
Cd1—N11i2.403 (3)C23—C241.382 (5)
Cd1—N112.403 (3)C23—C261.527 (4)
N1—C11.155 (5)C24—C251.385 (5)
C1—S11.618 (4)C24—H240.9500
N11—C111.341 (5)C25—H250.9500
N11—C151.342 (4)C26—C29'1.43 (2)
C11—C121.378 (6)C26—C281.469 (8)
C11—H110.9500C26—C271.542 (8)
C12—C131.388 (6)C26—C291.548 (8)
C12—H120.9500C26—C28'1.564 (15)
C13—C141.389 (5)C26—C27'1.585 (16)
C13—H130.9500C27—H27A0.9800
C14—C151.402 (5)C27—H27B0.9800
C14—C161.532 (5)C27—H27C0.9800
C15—H150.9500C28—H28A0.9800
C16—C171.529 (6)C28—H28B0.9800
C16—C181.536 (6)C28—H28C0.9800
C16—C191.539 (7)C29—H29A0.9800
C17—H17A0.9800C29—H29B0.9800
C17—H17B0.9800C29—H29C0.9800
C17—H17C0.9800C27'—H27D0.9800
C18—H18A0.9800C27'—H27E0.9800
C18—H18B0.9800C27'—H27F0.9800
C18—H18C0.9800C28'—H28D0.9800
C19—H19A0.9800C28'—H28E0.9800
C19—H19B0.9800C28'—H28F0.9800
C19—H19C0.9800C29'—H29D0.9800
N21—C211.325 (5)C29'—H29E0.9800
N21—C251.330 (5)C29'—H29F0.9800
N1i—Cd1—N1180.000 (1)N21—C21—H21118.2
N1i—Cd1—N2190.07 (11)C22—C21—H21118.2
N1—Cd1—N2189.93 (11)C23—C22—C21120.5 (4)
N1i—Cd1—N21i89.93 (11)C23—C22—H22119.7
N1—Cd1—N21i90.07 (11)C21—C22—H22119.7
N21—Cd1—N21i180.000 (1)C24—C23—C22115.3 (3)
N1i—Cd1—N11i90.19 (11)C24—C23—C26122.8 (3)
N1—Cd1—N11i89.81 (11)C22—C23—C26121.9 (3)
N21—Cd1—N11i85.88 (10)C23—C24—C25120.8 (3)
N21i—Cd1—N11i94.12 (10)C23—C24—H24119.6
N1i—Cd1—N1189.81 (11)C25—C24—H24119.6
N1—Cd1—N1190.19 (11)N21—C25—C24123.3 (3)
N21—Cd1—N1194.12 (10)N21—C25—H25118.3
N21i—Cd1—N1185.88 (10)C24—C25—H25118.3
N11i—Cd1—N11180.00 (13)C29'—C26—C23117.8 (9)
C1—N1—Cd1150.8 (3)C28—C26—C23113.7 (4)
N1—C1—S1177.6 (4)C28—C26—C27110.8 (7)
C11—N11—C15117.6 (3)C23—C26—C27108.3 (4)
C11—N11—Cd1117.9 (2)C28—C26—C29110.3 (7)
C15—N11—Cd1124.3 (2)C23—C26—C29107.9 (4)
N11—C11—C12122.7 (3)C27—C26—C29105.5 (6)
N11—C11—H11118.6C29'—C26—C28'108.9 (10)
C12—C11—H11118.6C23—C26—C28'107.7 (6)
C11—C12—C13119.0 (3)C29'—C26—C27'110.5 (11)
C11—C12—H12120.5C23—C26—C27'107.0 (6)
C13—C12—H12120.5C28'—C26—C27'104.0 (8)
C12—C13—C14119.9 (3)C26—C27—H27A109.5
C12—C13—H13120.0C26—C27—H27B109.5
C14—C13—H13120.0H27A—C27—H27B109.5
C13—C14—C15116.5 (3)C26—C27—H27C109.5
C13—C14—C16123.4 (3)H27A—C27—H27C109.5
C15—C14—C16120.0 (3)H27B—C27—H27C109.5
N11—C15—C14124.1 (3)C26—C28—H28A109.5
N11—C15—H15118.0C26—C28—H28B109.5
C14—C15—H15118.0H28A—C28—H28B109.5
C17—C16—C14109.1 (3)C26—C28—H28C109.5
C17—C16—C18110.7 (4)H28A—C28—H28C109.5
C14—C16—C18111.2 (3)H28B—C28—H28C109.5
C17—C16—C19109.0 (4)C26—C29—H29A109.5
C14—C16—C19109.3 (4)C26—C29—H29B109.5
C18—C16—C19107.5 (4)H29A—C29—H29B109.5
C16—C17—H17A109.5C26—C29—H29C109.5
C16—C17—H17B109.5H29A—C29—H29C109.5
H17A—C17—H17B109.5H29B—C29—H29C109.5
C16—C17—H17C109.5C26—C27'—H27D109.5
H17A—C17—H17C109.5C26—C27'—H27E109.5
H17B—C17—H17C109.5H27D—C27'—H27E109.5
C16—C18—H18A109.5C26—C27'—H27F109.5
C16—C18—H18B109.5H27D—C27'—H27F109.5
H18A—C18—H18B109.5H27E—C27'—H27F109.5
C16—C18—H18C109.5C26—C28'—H28D109.5
H18A—C18—H18C109.5C26—C28'—H28E109.5
H18B—C18—H18C109.5H28D—C28'—H28E109.5
C16—C19—H19A109.5C26—C28'—H28F109.5
C16—C19—H19B109.5H28D—C28'—H28F109.5
H19A—C19—H19B109.5H28E—C28'—H28F109.5
C16—C19—H19C109.5C26—C29'—H29D109.5
H19A—C19—H19C109.5C26—C29'—H29E109.5
H19B—C19—H19C109.5H29D—C29'—H29E109.5
C21—N21—C25116.4 (3)C26—C29'—H29F109.5
C21—N21—Cd1120.2 (2)H29D—C29'—H29F109.5
C25—N21—Cd1123.3 (2)H29E—C29'—H29F109.5
N21—C21—C22123.6 (3)
Symmetry code: (i) x+1, y+1, z+2.
Selected geometric parameters (Å, º) top
Cd1—N1i2.301 (3)N1—C11.155 (5)
Cd1—N21i2.375 (3)C1—S11.618 (4)
Cd1—N11i2.403 (3)
N1i—Cd1—N1180.000 (1)N1—Cd1—N11i89.81 (11)
N1i—Cd1—N2190.07 (11)N21—Cd1—N11i85.88 (10)
N1i—Cd1—N21i89.93 (11)N21i—Cd1—N11i94.12 (10)
N21—Cd1—N21i180.000 (1)N11i—Cd1—N11180.00 (13)
N1i—Cd1—N11i90.19 (11)C1—N1—Cd1150.8 (3)
Symmetry code: (i) x+1, y+1, z+2.
Acknowledgements top

Thea authors gratefully acknowledge financial support from the DFG (project No. NA 720/3-1) and the State of Schleswig–Holstein. We thank Professor Dr Wolfgang Bensch for the opportunity to use his experimental facilities.

references
References top

Boeckmann, J. & Näther, C. (2010). Dalton Trans. 39, 11019–11026.

Boeckmann, J. & Näther, C. (2011). Chem. Commun. 47, 7104–7106.

Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany

Nassimbeni, L. R., Niven, M. L. & Taylor, M. W. (1990). Acta Cryst. B46, 354–361.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.