supplementary materials


bv2209 scheme

Acta Cryst. (2012). E68, o3089-o3090    [ doi:10.1107/S1600536812040366 ]

3-epi-Dammarenediol II 1.075 hydrate: a dammarane triterpene from the bark of Aglaia eximia

H.-K. Fun, S. Chantrapromma, A. Supriadin, D. Harneti and U. Supratman

Abstract top

The title dammarane tritepene, 3[alpha],20(S)-dihydroxydammar-24-ene, which crystallized out in a hydrated form, C30H52O2.1.075H2O, was isolated from the Aglaia eximia bark. The three cyclohexane rings adopt chair conformations. The cyclopentane has an envelope conformation with the quaternary C at position 14 as the flap atom with the maximum deviation of 0.288 (2) Å. The methylheptene side chain is disordered over two positions with 0.505 (1):0.495 (1) site occupancies and is axially attached with an (+)-syn-clinal conformation. The hydroxyl group at position 3 of dammarane is in a different conformation to the corresponding hydroxyl in Dammarenediol II. In the crystal, the dammarane and water molecules are linked by ODammarane-H...Owater and Owater-H...ODammarane hydrogen bonds into a three-dimensional network.

Comment top

Aglaia genus plants belonging to the Mahogany family have been known as a good source of organic acids, sesquiterpenes, diterpenes and triterpenes (Chairgulprasert et al., 2006; Qiu et al., 2001; Roux et al., 1998; Yodsaoue et al., 2012). Many of the various terpenenoids from this genus possess interesting biological properties such as anti-inflammatory (Yodsaoue et al., 2012), cytotoxic (Zhang et al., 2010) and insecticidal (Greger et al., 2001) activities. The title compound (I), 3-epi-Dammarenediol II or 3α,20(S)-dihydroxydammar-24-ene, was previously isolated from Trattinnickia burserifolia (Lima et al., 2004). However it is now isolated for the first time from Aglaia eximia, a plant which was used as a traditional medicine for the treatment of malaria in Indonesia (Grosvenor et al., 1995). Herein the crystal structure of (I) is reported.

Compound (I) has a dammarane nucleus and crystallized in a hydrated form, C30H52O2.1.075(H2O) (Fig. 1). Two of the water molecules, O1W and O2W, have half occupancies and lie on two-fold axis, the other H of each water molecule was generated by a symmetry operation, -x, -y, z, whereas the third water molecule, O3W, has 0.075 occupancy. The molecule of dammarane has four fused rings and all rings are in trans-fused conformation. The three cyclohexane rings are in standard chair conformations. The cyclopentane (C13–C17) adopts an envelope conformation with the puckered C14 atom having the maximum deviation of 0.288 (2) Å, Q = 0.457 (3) Å and θ = 220.1 (3)° (Cremer & Pople, 1975). The hydroxyl group at atom C3 is axially attached which is different from the corresponding hydroxyl group in Dammarenediol II (Asakawa et al., 1977). The methylheptene side chain is disordered over two positions; the major component and the minor component A (Fig. 1), with the refined site-occupancy ratio of 0.505 (1)/0.495 (1) and is axially attached at atom C20 with the torsion angle of C17–C20–C22–C23 = 58.83 (3)°, indicating an (+)-syn-clinal conformation with respect to the cyclopentane ring (Fig. 1). The bond distances in (I) are within normal ranges (Allen et al., 1987) and comparable to a related structure (Qiu et al., 2001).

The crystal packing of (I) is consolidated by intermolecular ODammarane—H···Owater and Owater—H···ODammarane hydrogen bonds (Table 1). The molecules of 3-epi-Dammarenediol II and water molecules are linked by O—H···O hydrogen bonds into a three dimensional network (Fig. 2).

Related literature top

For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For background to Aglaia plants, triterpenoids and their biological activity, see: Asakawa et al. (1977); Chairgulprasert et al. (2006); Greger et al. (2001); Grosvenor et al. (1995); Lima et al. (2004); Qiu et al. (2001); Roux et al. (1998); Yodsaoue et al. (2012); Zhang et al. (2010). For related structures, see: Qiu et al. (2001). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986).

Experimental top

The dried and milled bark of A. eximia (3 kg) which was collected from Bogor Botanical Garden, West Java, Indonesia, was extracted successively by n-hexane, ethyl acetate and methanol at room temperature. The ethyl acetate extract (300 g) was subjected to vacuum chromatography on silica gel G 60 by using a step gradient of n-hexane-ethyl acetate methanol. The fraction eluted by n-hexane/ethyl acetate (3:2) was further separated by column chromatography on silica gel (chloroform: methanol; 9.5:0.5 v/v) to give a colorless solid (63 mg) of the title compound. Colorless needle-shaped single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethyl acetate at room temperature after several days.

Refinement top

One of the water molecules, O3W, was refined isotropically. H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(O—H) = 0.83-0.84 Å, d(C—H) = 1.00 Å for cyclic CH, 0.95 for CH, 0.99 for CH2 and 0.98 Å for CH3 atoms. The Uiso values were constrained to be 1.2Ueq of the carrier atom for all H atoms. A rotating group model was used for the methyl groups. A total of 3923 Friedel pairs were merged before final refinement. The methylheptene side chain is disordered over two sites with refined site occupancies of 0.505 (1) and 0.495 (1). The same Uij parameters were used for atom pairs C23/C24, C26/C27 and C26A/C27A. A number of reflections were omitted from the final refinement owing to poor agreement.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 60% probability displacement ellipsoids and the atom-numbering scheme. One H atom each of the O1W and O2W water molecules was generated by a symmetry operation -x, -y, z. Open bonds show the minor component.
[Figure 2] Fig. 2. The crystal packing of the major component viewed along the c axis, only hydroxyl H and H atoms involving in hydrogen bonds are shown for clarity. O—H···O hydrogen bonds were drawn as dashed lines.
3α,20(S)-Dihydroxydammar-24-ene 1.075 hydrate top
Crystal data top
C30H52O2·1.075H2ODx = 1.055 Mg m3
Mr = 463.99Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P42Cell parameters from 4543 reflections
Hall symbol: P 4cθ = 2.0–30.0°
a = 19.9481 (13) ŵ = 0.07 mm1
c = 7.3410 (7) ÅT = 100 K
V = 2921.2 (5) Å3Needle, colourless
Z = 40.39 × 0.11 × 0.10 mm
F(000) = 1035
Data collection top
Bruker APEX Duo CCD area-detector
diffractometer
4543 independent reflections
Radiation source: sealed tube3887 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
φ and ω scansθmax = 30.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2827
Tmin = 0.975, Tmax = 0.994k = 2228
24864 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.1014P)2 + 0.4141P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
4543 reflectionsΔρmax = 0.72 e Å3
332 parametersΔρmin = 0.48 e Å3
1 restraintAbsolute structure: nd
Primary atom site location: structure-invariant direct methods
Crystal data top
C30H52O2·1.075H2OZ = 4
Mr = 463.99Mo Kα radiation
Tetragonal, P42µ = 0.07 mm1
a = 19.9481 (13) ÅT = 100 K
c = 7.3410 (7) Å0.39 × 0.11 × 0.10 mm
V = 2921.2 (5) Å3
Data collection top
Bruker APEX Duo CCD area-detector
diffractometer
4543 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3887 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.994Rint = 0.064
24864 measured reflectionsθmax = 30.0°
Refinement top
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.162Δρmax = 0.72 e Å3
S = 1.07Δρmin = 0.48 e Å3
4543 reflectionsAbsolute structure: nd
332 parametersFlack parameter: ?
1 restraintRogers parameter: ?
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.40685 (8)0.04934 (8)0.2210 (3)0.0194 (4)
H1O10.39880.08830.25870.023*
O20.09002 (8)0.45212 (8)0.2073 (3)0.0202 (4)
H1O20.07310.47210.29690.024*
C10.30479 (11)0.12044 (11)0.0082 (4)0.0158 (4)
H1A0.29010.13730.11220.019*
H1B0.34540.14570.04390.019*
C20.32266 (12)0.04584 (12)0.0089 (3)0.0175 (5)
H2A0.28320.02080.05430.021*
H2B0.35930.04040.09870.021*
C30.34456 (12)0.01670 (11)0.1731 (4)0.0160 (4)
H3A0.35340.03230.15660.019*
C40.29152 (12)0.02521 (11)0.3236 (4)0.0155 (4)
C50.27016 (11)0.10018 (11)0.3325 (3)0.0133 (4)
H5A0.31180.12450.36970.016*
C60.21933 (12)0.11581 (11)0.4842 (4)0.0164 (4)
H6A0.17410.10070.44660.020*
H6B0.23190.09140.59650.020*
C70.21811 (12)0.19144 (11)0.5223 (4)0.0164 (4)
H7A0.26230.20510.57150.020*
H7B0.18400.20070.61700.020*
C80.20235 (11)0.23448 (11)0.3524 (3)0.0135 (4)
C90.24808 (11)0.21167 (10)0.1905 (3)0.0132 (4)
H9A0.29460.22170.23300.016*
C100.24882 (11)0.13407 (11)0.1492 (3)0.0137 (4)
C110.23870 (12)0.25678 (11)0.0224 (4)0.0164 (4)
H11A0.19250.25110.02470.020*
H11B0.27020.24230.07420.020*
C120.25087 (12)0.33151 (11)0.0648 (4)0.0167 (4)
H12A0.29820.33850.10080.020*
H12B0.24180.35890.04500.020*
C130.20444 (11)0.35310 (11)0.2196 (3)0.0142 (4)
H13A0.15760.34290.18000.017*
C140.21829 (11)0.31048 (11)0.3922 (3)0.0136 (4)
C150.17269 (12)0.34658 (12)0.5301 (4)0.0185 (5)
H15A0.18450.33420.65670.022*
H15B0.12490.33570.50830.022*
C160.18674 (13)0.42168 (11)0.4941 (4)0.0183 (5)
H16A0.22450.43760.57030.022*
H16B0.14660.44900.52180.022*
C170.20495 (12)0.42675 (11)0.2870 (4)0.0156 (4)
H17A0.25180.44420.27690.019*
C180.12704 (11)0.22514 (12)0.3090 (4)0.0183 (5)
H18A0.10020.25120.39560.022*
H18B0.11530.17760.31900.022*
H18C0.11790.24080.18490.022*
C190.18212 (12)0.10878 (12)0.0669 (4)0.0185 (5)
H19A0.19090.06990.01130.022*
H19B0.16160.14460.00540.022*
H19C0.15160.09580.16540.022*
C200.15827 (12)0.47476 (11)0.1821 (4)0.0166 (5)
C210.17162 (13)0.47347 (13)0.0233 (4)0.0217 (5)
H21A0.15780.43000.07310.026*
H21B0.21960.48030.04580.026*
H21C0.14600.50930.08240.026*
C220.16225 (13)0.54729 (12)0.2552 (4)0.0219 (5)
H22A0.13080.57520.18380.026*
H22B0.14620.54720.38280.026*
C230.23106 (15)0.58110 (14)0.2509 (7)0.0405 (9)
H23A0.22620.62980.22900.049*0.505 (14)
H23B0.25900.56180.15260.049*0.505 (14)
H23C0.25030.57150.12940.049*0.495 (14)
H23D0.22270.63000.25520.049*0.495 (14)
C240.2660 (5)0.5675 (4)0.4513 (17)0.0405 (9)0.505 (14)
H24A0.23820.57480.55450.049*0.505 (14)
C250.3285 (5)0.5474 (5)0.486 (2)0.053 (3)0.505 (14)
C260.3527 (5)0.5366 (8)0.680 (2)0.083 (4)0.505 (14)
H26A0.31760.55030.76510.100*0.505 (14)
H26B0.39310.56340.70080.100*0.505 (14)
H26C0.36310.48900.69780.100*0.505 (14)
C270.3782 (5)0.5330 (7)0.339 (2)0.083 (4)0.505 (14)
H27A0.36920.48860.28670.100*0.505 (14)
H27B0.42370.53390.38940.100*0.505 (14)
H27C0.37440.56700.24290.100*0.505 (14)
C24A0.2789 (4)0.5695 (4)0.3779 (19)0.041 (3)0.495 (14)
H24B0.26550.57670.50060.050*0.495 (14)
C25A0.3409 (4)0.5498 (5)0.355 (3)0.073 (5)0.495 (14)
C26A0.3867 (5)0.5364 (7)0.512 (3)0.111 (6)0.495 (14)
H26D0.36100.53740.62620.133*0.495 (14)
H26E0.42170.57080.51650.133*0.495 (14)
H26F0.40740.49220.49770.133*0.495 (14)
C27A0.3696 (5)0.5328 (8)0.159 (3)0.111 (6)0.495 (14)
H27D0.41450.55210.14660.133*0.495 (14)
H27E0.34000.55170.06620.133*0.495 (14)
H27F0.37200.48400.14440.133*0.495 (14)
C280.32341 (12)0.00442 (12)0.5058 (4)0.0188 (5)
H28A0.34600.03890.49140.023*
H28B0.28840.00060.59900.023*
H28C0.35610.03840.54330.023*
C290.23313 (13)0.02388 (12)0.2882 (4)0.0212 (5)
H29A0.24970.07010.29560.025*
H29B0.21460.01570.16660.025*
H29C0.19810.01700.38000.025*
C300.29122 (12)0.32099 (12)0.4601 (4)0.0188 (5)
H30A0.30480.36750.43760.023*
H30B0.32130.29060.39450.023*
H30C0.29360.31150.59090.023*
O1W0.00000.50000.4726 (4)0.0189 (5)
H1W10.01590.52970.54190.023*
O2W0.00000.50000.9617 (4)0.0187 (5)
H1W20.02780.48391.03420.022*
O3W0.967 (2)0.016 (2)0.858 (7)0.069 (12)*0.07
H1W30.95180.02230.96450.083*0.07
H2W31.00840.00550.84690.083*0.07
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0211 (8)0.0185 (8)0.0188 (9)0.0018 (6)0.0003 (7)0.0031 (7)
O20.0176 (8)0.0214 (8)0.0215 (10)0.0016 (6)0.0002 (7)0.0016 (8)
C10.0201 (10)0.0153 (9)0.0119 (11)0.0026 (8)0.0011 (9)0.0000 (9)
C20.0245 (11)0.0172 (10)0.0108 (11)0.0040 (8)0.0002 (9)0.0032 (9)
C30.0209 (10)0.0133 (9)0.0139 (11)0.0034 (8)0.0001 (9)0.0017 (8)
C40.0196 (10)0.0134 (9)0.0136 (11)0.0006 (8)0.0001 (9)0.0001 (9)
C50.0160 (10)0.0150 (9)0.0089 (10)0.0004 (7)0.0002 (8)0.0010 (8)
C60.0202 (10)0.0152 (9)0.0139 (12)0.0008 (8)0.0035 (9)0.0002 (9)
C70.0219 (10)0.0170 (10)0.0103 (10)0.0013 (8)0.0028 (9)0.0012 (9)
C80.0143 (9)0.0163 (10)0.0098 (10)0.0021 (7)0.0006 (8)0.0009 (8)
C90.0155 (9)0.0135 (9)0.0106 (11)0.0013 (7)0.0004 (8)0.0006 (8)
C100.0157 (10)0.0145 (9)0.0109 (11)0.0007 (7)0.0000 (8)0.0009 (8)
C110.0220 (10)0.0162 (10)0.0109 (11)0.0038 (8)0.0015 (9)0.0000 (9)
C120.0210 (11)0.0164 (10)0.0127 (11)0.0025 (8)0.0024 (9)0.0022 (9)
C130.0168 (9)0.0146 (9)0.0112 (11)0.0022 (7)0.0013 (9)0.0018 (9)
C140.0166 (10)0.0139 (9)0.0101 (10)0.0032 (8)0.0011 (8)0.0015 (8)
C150.0244 (11)0.0179 (10)0.0133 (11)0.0044 (8)0.0029 (9)0.0017 (9)
C160.0264 (11)0.0153 (10)0.0131 (11)0.0045 (8)0.0025 (10)0.0025 (9)
C170.0181 (10)0.0135 (9)0.0151 (11)0.0013 (7)0.0005 (9)0.0029 (9)
C180.0156 (10)0.0197 (10)0.0197 (12)0.0001 (8)0.0013 (9)0.0025 (10)
C190.0183 (10)0.0205 (10)0.0167 (12)0.0009 (8)0.0063 (9)0.0021 (9)
C200.0185 (10)0.0153 (10)0.0161 (12)0.0019 (8)0.0001 (9)0.0010 (9)
C210.0266 (12)0.0228 (11)0.0157 (12)0.0060 (9)0.0029 (10)0.0043 (10)
C220.0238 (11)0.0149 (10)0.0272 (15)0.0023 (8)0.0022 (10)0.0007 (10)
C230.0309 (14)0.0176 (11)0.073 (3)0.0046 (9)0.0144 (16)0.0107 (14)
C240.0309 (14)0.0176 (11)0.073 (3)0.0046 (9)0.0144 (16)0.0107 (14)
C250.024 (4)0.047 (4)0.090 (9)0.003 (3)0.013 (5)0.006 (5)
C260.040 (4)0.102 (6)0.108 (9)0.019 (4)0.029 (4)0.032 (6)
C270.040 (4)0.102 (6)0.108 (9)0.019 (4)0.029 (4)0.032 (6)
C24A0.021 (3)0.022 (3)0.081 (8)0.006 (2)0.006 (4)0.007 (4)
C25A0.017 (4)0.036 (4)0.166 (17)0.003 (3)0.001 (6)0.007 (7)
C26A0.035 (4)0.091 (6)0.207 (18)0.008 (3)0.016 (6)0.018 (8)
C27A0.035 (4)0.091 (6)0.207 (18)0.008 (3)0.016 (6)0.018 (8)
C280.0238 (11)0.0178 (10)0.0149 (11)0.0024 (8)0.0000 (10)0.0012 (9)
C290.0261 (12)0.0150 (10)0.0224 (13)0.0030 (9)0.0012 (10)0.0004 (10)
C300.0198 (10)0.0167 (10)0.0197 (12)0.0005 (8)0.0056 (10)0.0016 (9)
O1W0.0233 (12)0.0190 (11)0.0145 (12)0.0064 (9)0.0000.000
O2W0.0190 (11)0.0212 (11)0.0158 (12)0.0021 (9)0.0000.000
Geometric parameters (Å, º) top
O1—C31.446 (3)C18—H18C0.9800
O1—H1O10.8400C19—H19A0.9800
O2—C201.446 (3)C19—H19B0.9800
O2—H1O20.8400C19—H19C0.9800
C1—C21.535 (3)C20—C211.531 (4)
C1—C101.547 (3)C20—C221.545 (3)
C1—H1A0.9900C21—H21A0.9800
C1—H1B0.9900C21—H21B0.9800
C2—C31.522 (3)C21—H21C0.9800
C2—H2A0.9900C22—C231.530 (4)
C2—H2B0.9900C22—H22A0.9900
C3—C41.539 (3)C22—H22B0.9900
C3—H3A1.0000C23—C24A1.354 (11)
C4—C281.538 (4)C23—C241.650 (13)
C4—C291.544 (3)C23—H23A0.9900
C4—C51.557 (3)C23—H23B0.9900
C5—C61.538 (3)C23—H23C0.9900
C5—C101.565 (3)C23—H23D0.9899
C5—H5A1.0000C24—C251.335 (13)
C6—C71.535 (3)C24—H24A0.9500
C6—H6A0.9900C25—C271.496 (19)
C6—H6B0.9900C25—C261.516 (19)
C7—C81.546 (3)C26—H26A0.9800
C7—H7A0.9900C26—H26B0.9800
C7—H7B0.9900C26—H26C0.9800
C8—C181.547 (3)C27—H27A0.9800
C8—C91.566 (3)C27—H27B0.9800
C8—C141.577 (3)C27—H27C0.9800
C9—C111.539 (3)C24A—C25A1.309 (12)
C9—C101.577 (3)C24A—H24B0.9500
C9—H9A1.0000C25A—C26A1.50 (3)
C10—C191.546 (3)C25A—C27A1.58 (3)
C11—C121.542 (3)C26A—H26D0.9800
C11—H11A0.9900C26A—H26E0.9800
C11—H11B0.9900C26A—H26F0.9800
C12—C131.528 (3)C27A—H27D0.9800
C12—H12A0.9900C27A—H27E0.9800
C12—H12B0.9900C27A—H27F0.9800
C13—C171.550 (3)C28—H28A0.9800
C13—C141.551 (3)C28—H28B0.9800
C13—H13A1.0000C28—H28C0.9800
C14—C151.540 (3)C29—H29A0.9800
C14—C301.552 (3)C29—H29B0.9800
C15—C161.547 (3)C29—H29C0.9800
C15—H15A0.9900C30—H30A0.9800
C15—H15B0.9900C30—H30B0.9800
C16—C171.566 (4)C30—H30C0.9800
C16—H16A0.9900O1W—H1W10.8422
C16—H16B0.9900O2W—H1W20.8324
C17—C201.542 (3)O3W—O3Wi1.45 (9)
C17—H17A1.0000O3W—H1W30.8496
C18—H18A0.9800O3W—H2W30.8504
C18—H18B0.9800
C3—O1—H1O1109.4C20—C17—C13115.2 (2)
C20—O2—H1O2109.3C20—C17—C16112.63 (19)
C2—C1—C10113.14 (19)C13—C17—C16104.30 (19)
C2—C1—H1A109.0C20—C17—H17A108.2
C10—C1—H1A109.0C13—C17—H17A108.2
C2—C1—H1B109.0C16—C17—H17A108.2
C10—C1—H1B109.0C8—C18—H18A109.5
H1A—C1—H1B107.8C8—C18—H18B109.5
C3—C2—C1111.4 (2)H18A—C18—H18B109.5
C3—C2—H2A109.3C8—C18—H18C109.5
C1—C2—H2A109.3H18A—C18—H18C109.5
C3—C2—H2B109.3H18B—C18—H18C109.5
C1—C2—H2B109.3C10—C19—H19A109.5
H2A—C2—H2B108.0C10—C19—H19B109.5
O1—C3—C2106.76 (19)H19A—C19—H19B109.5
O1—C3—C4111.5 (2)C10—C19—H19C109.5
C2—C3—C4113.01 (19)H19A—C19—H19C109.5
O1—C3—H3A108.5H19B—C19—H19C109.5
C2—C3—H3A108.5O2—C20—C21106.5 (2)
C4—C3—H3A108.5O2—C20—C17108.10 (19)
C28—C4—C3108.07 (19)C21—C20—C17112.1 (2)
C28—C4—C29106.7 (2)O2—C20—C22107.25 (18)
C3—C4—C29109.2 (2)C21—C20—C22110.4 (2)
C28—C4—C5109.61 (19)C17—C20—C22112.2 (2)
C3—C4—C5108.92 (18)C20—C21—H21A109.5
C29—C4—C5114.21 (19)C20—C21—H21B109.5
C6—C5—C4113.93 (19)H21A—C21—H21B109.5
C6—C5—C10110.83 (18)C20—C21—H21C109.5
C4—C5—C10116.96 (19)H21A—C21—H21C109.5
C6—C5—H5A104.5H21B—C21—H21C109.5
C4—C5—H5A104.5C23—C22—C20116.9 (2)
C10—C5—H5A104.5C23—C22—H22A108.1
C7—C6—C5109.98 (19)C20—C22—H22A108.1
C7—C6—H6A109.7C23—C22—H22B108.1
C5—C6—H6A109.7C20—C22—H22B108.1
C7—C6—H6B109.7H22A—C22—H22B107.3
C5—C6—H6B109.7C24A—C23—C22122.9 (5)
H6A—C6—H6B108.2C22—C23—C24106.7 (4)
C6—C7—C8113.7 (2)C24A—C23—H23A110.4
C6—C7—H7A108.8C22—C23—H23A110.4
C8—C7—H7A108.8C24—C23—H23A110.4
C6—C7—H7B108.8C24A—C23—H23B92.3
C8—C7—H7B108.8C22—C23—H23B110.4
H7A—C7—H7B107.7C24—C23—H23B110.4
C7—C8—C18107.26 (19)H23A—C23—H23B108.6
C7—C8—C9109.42 (17)C24A—C23—H23C108.3
C18—C8—C9112.0 (2)C22—C23—H23C106.4
C7—C8—C14110.1 (2)C24—C23—H23C127.4
C18—C8—C14110.48 (18)H23A—C23—H23C94.6
C9—C8—C14107.62 (18)C24A—C23—H23D105.4
C11—C9—C8111.60 (17)C22—C23—H23D106.4
C11—C9—C10114.9 (2)C24—C23—H23D101.8
C8—C9—C10115.88 (18)H23B—C23—H23D120.1
C11—C9—H9A104.3H23C—C23—H23D106.5
C8—C9—H9A104.3C25—C24—C23127.9 (9)
C10—C9—H9A104.3C25—C24—H24A116.1
C19—C10—C1107.6 (2)C23—C24—H24A116.1
C19—C10—C5115.41 (19)C24—C25—C27122.6 (12)
C1—C10—C5107.65 (18)C24—C25—C26121.3 (12)
C19—C10—C9112.78 (18)C27—C25—C26116.1 (8)
C1—C10—C9107.94 (18)C25A—C24A—C23129.1 (13)
C5—C10—C9105.14 (19)C25A—C24A—H24B115.5
C9—C11—C12112.6 (2)C23—C24A—H24B115.5
C9—C11—H11A109.1C24A—C25A—C26A122.3 (17)
C12—C11—H11A109.1C24A—C25A—C27A121.4 (14)
C9—C11—H11B109.1C26A—C25A—C27A116.1 (11)
C12—C11—H11B109.1C25A—C26A—H26D109.5
H11A—C11—H11B107.8C25A—C26A—H26E109.5
C13—C12—C11109.10 (19)H26D—C26A—H26E109.5
C13—C12—H12A109.9C25A—C26A—H26F109.5
C11—C12—H12A109.9H26D—C26A—H26F109.5
C13—C12—H12B109.9H26E—C26A—H26F109.5
C11—C12—H12B109.9C25A—C27A—H27D109.5
H12A—C12—H12B108.3C25A—C27A—H27E109.5
C12—C13—C17120.0 (2)H27D—C27A—H27E109.5
C12—C13—C14110.19 (18)C25A—C27A—H27F109.5
C17—C13—C14104.92 (19)H27D—C27A—H27F109.5
C12—C13—H13A107.0H27E—C27A—H27F109.5
C17—C13—H13A107.0C4—C28—H28A109.5
C14—C13—H13A107.0C4—C28—H28B109.5
C15—C14—C13100.11 (17)H28A—C28—H28B109.5
C15—C14—C30106.2 (2)C4—C28—H28C109.5
C13—C14—C30110.8 (2)H28A—C28—H28C109.5
C15—C14—C8116.91 (19)H28B—C28—H28C109.5
C13—C14—C8109.86 (19)C4—C29—H29A109.5
C30—C14—C8112.24 (17)C4—C29—H29B109.5
C14—C15—C16103.5 (2)H29A—C29—H29B109.5
C14—C15—H15A111.1C4—C29—H29C109.5
C16—C15—H15A111.1H29A—C29—H29C109.5
C14—C15—H15B111.1H29B—C29—H29C109.5
C16—C15—H15B111.1C14—C30—H30A109.5
H15A—C15—H15B109.0C14—C30—H30B109.5
C15—C16—C17105.70 (19)H30A—C30—H30B109.5
C15—C16—H16A110.6C14—C30—H30C109.5
C17—C16—H16A110.6H30A—C30—H30C109.5
C15—C16—H16B110.6H30B—C30—H30C109.5
C17—C16—H16B110.6O3Wi—O3W—H1W3113.1
H16A—C16—H16B108.7H1W3—O3W—H2W3118.4
C10—C1—C2—C357.8 (3)C11—C12—C13—C1459.5 (2)
C1—C2—C3—O166.0 (2)C12—C13—C14—C15173.65 (18)
C1—C2—C3—C456.9 (3)C17—C13—C14—C1543.1 (2)
O1—C3—C4—C2850.8 (2)C12—C13—C14—C3061.8 (2)
C2—C3—C4—C28171.06 (19)C17—C13—C14—C3068.7 (2)
O1—C3—C4—C29166.47 (19)C12—C13—C14—C862.8 (2)
C2—C3—C4—C2973.3 (2)C17—C13—C14—C8166.71 (17)
O1—C3—C4—C568.2 (2)C7—C8—C14—C1568.6 (2)
C2—C3—C4—C552.0 (3)C18—C8—C14—C1549.7 (3)
C28—C4—C5—C659.4 (3)C9—C8—C14—C15172.24 (19)
C3—C4—C5—C6177.4 (2)C7—C8—C14—C13178.30 (18)
C29—C4—C5—C660.3 (3)C18—C8—C14—C1363.4 (2)
C28—C4—C5—C10169.14 (19)C9—C8—C14—C1359.1 (2)
C3—C4—C5—C1051.1 (3)C7—C8—C14—C3054.5 (3)
C29—C4—C5—C1071.2 (3)C18—C8—C14—C30172.8 (2)
C4—C5—C6—C7162.2 (2)C9—C8—C14—C3064.6 (3)
C10—C5—C6—C763.4 (2)C13—C14—C15—C1644.8 (2)
C5—C6—C7—C856.5 (3)C30—C14—C15—C1670.5 (2)
C6—C7—C8—C1872.7 (2)C8—C14—C15—C16163.3 (2)
C6—C7—C8—C949.0 (3)C14—C15—C16—C1730.3 (2)
C6—C7—C8—C14167.05 (18)C12—C13—C17—C2086.8 (3)
C7—C8—C9—C11175.21 (18)C14—C13—C17—C20148.6 (2)
C18—C8—C9—C1166.0 (2)C12—C13—C17—C16149.2 (2)
C14—C8—C9—C1155.6 (2)C14—C13—C17—C1624.7 (2)
C7—C8—C9—C1050.8 (3)C15—C16—C17—C20122.2 (2)
C18—C8—C9—C1068.0 (2)C15—C16—C17—C133.4 (2)
C14—C8—C9—C10170.35 (18)C13—C17—C20—O262.8 (3)
C2—C1—C10—C1972.2 (2)C16—C17—C20—O256.7 (2)
C2—C1—C10—C552.7 (2)C13—C17—C20—C2154.3 (3)
C2—C1—C10—C9165.77 (19)C16—C17—C20—C21173.8 (2)
C6—C5—C10—C1963.9 (3)C13—C17—C20—C22179.2 (2)
C4—C5—C10—C1969.0 (3)C16—C17—C20—C2261.4 (3)
C6—C5—C10—C1175.91 (17)O2—C20—C22—C23177.3 (3)
C4—C5—C10—C151.2 (2)C21—C20—C22—C2367.0 (3)
C6—C5—C10—C961.0 (2)C17—C20—C22—C2358.8 (3)
C4—C5—C10—C9166.10 (18)C20—C22—C23—C24A80.0 (6)
C11—C9—C10—C1962.2 (3)C20—C22—C23—C2493.2 (4)
C8—C9—C10—C1970.3 (3)C24A—C23—C24—C2512.1 (11)
C11—C9—C10—C156.5 (2)C22—C23—C24—C25134.1 (8)
C8—C9—C10—C1170.92 (19)C23—C24—C25—C270.7 (15)
C11—C9—C10—C5171.24 (18)C23—C24—C25—C26179.4 (9)
C8—C9—C10—C556.2 (2)C22—C23—C24A—C25A125.3 (8)
C8—C9—C11—C1255.7 (3)C24—C23—C24A—C25A165 (2)
C10—C9—C11—C12169.78 (18)C23—C24A—C25A—C26A177.2 (9)
C9—C11—C12—C1356.3 (3)C23—C24A—C25A—C27A2.7 (14)
C11—C12—C13—C17178.5 (2)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O1W0.842.022.816 (3)157
O1W—H1W1···O1ii0.841.942.783 (3)175
O2W—H1W2···O2iii0.831.892.718 (3)177
Symmetry codes: (ii) y, x+1, z+1/2; (iii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O1W0.842.022.816 (3)157
O1W—H1W1···O1i0.841.942.783 (3)175
O2W—H1W2···O2ii0.831.892.718 (3)177
Symmetry codes: (i) y, x+1, z+1/2; (ii) x, y, z+1.
Acknowledgements top

AS, DH and US thank Padjadjaran University for financial support. HKF and SC thank Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160.

references
References top

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Asakawa, J., Kasai, R., Yamasaki, K. & Tanaka, O. (1977). Tetrahedron, 33, 1935–1939.

Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Chairgulprasert, V., Krisornpornsan, B. & Hamad, A. (2006). Songklanakarin J. Sci. Technol. 28, 321–326.

Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.

Greger, H., Pacher, T., Bream, B., Bacher, M. & Hofer, O. (2001). Phytochemistry, 57, 57–64.

Grosvenor, P. W., Supriono, A. & Gray, D. O. (1995). J. Ethnopharm. 45, 97–111.

Lima, M. da P., Braga, P. A. de C., Macedo, M. L., Silva, M. F., da das, G. F., Ferreira, A. G., Fernandes, J. B. & Vierira, P. C. (2004). J. Braz. Chem. Soc. 15, 385–394.

Qiu, S.-X., van Hung, N., Xuan, L. T., Gu, J.-Q., Lobkovsky, E., Khanh, T. C., Soejarto, D. D., Clardy, J., Pezzuto, J. M., Dong, Y., Tri, M. V., Huong, L. M. & Fong, H. H. S. (2001). Phytochem. 56 775–780.

Roux, D., Martin, M.-T., Adeline, M.-T., Sevenet, T., Hadi, A. H. A. & Pais, M. (1998). Phytochemistry, 49, 1745–1748.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Yodsaoue, O., Sonprasit, J., Karalai, C., Ponglimanont, C., Tewtrakul, S. & Chantrapromma, S. (2012). Phytochemistry, 76, 83–91.

Zhang, F., Wang, J. S., Gu, J. S. & Kong, L. Y. (2010). J. Nat. Prod. 73, 2042–2046.