supplementary materials


cv5335 scheme

Acta Cryst. (2012). E68, m1335-m1336    [ doi:10.1107/S1600536812040998 ]

Bis[2,3,4-trimethyl-5-[(3,4,5-trimethyl-2H-pyrrol-2-ylidene-[kappa]N)methyl]-1H-pyrrolato-[kappa]N]copper(II)

S. S. Erdem, F. R. Fronczek and S. F. Watkins

Abstract top

In the title complex, [Cu(C15H19N2)2] or [Cu(L2)] (HL is 3,3',4,4',5,5'-hexamethylpyrromethene), the CuII atom is coordinated by four N atoms [Cu-N 1.939 (2)-1.976 (2) Å] from two L ligands in a distorted tetrahedral geometry. The mean planes of the CuN2C3 metallocyclic rings form a dihedral angle of 72.73 (6)°. In the L ligands, the pyrrole rings are inclined to each other at dihedral angles of 3.03 (7) and 9.83 (7)°. The crystal packing exhibits weak intermolecular C-H...[pi] interactions, which form chains in [100].

Comment top

Dipyrromethenes are fully conjugated anionic ligands which create stable transition metal complexes (Bruckner et al., 1997, Zhang et al., 1998). The high chemical stability of the title compound (I) is associated with its extended aromatic structure. Pyrroles also form crucial building blocks for bile pigments, linear polypyrroles and porphyrins, and have been investigated for treatment of cancer by photodynamic therapy (Dolphin, 1979; Falk, 1989).

The structure of the neutral protonated ligand, C15H20N2, has been determined (Mroginski et al., 2005, CCDC refcode PALFEO, Allen, 2002). Comparison of the ligated anions in I with the neutral species shows excellent structural coincidence for all non-hydrogen atoms, with δr.m.s. = 0.091 Å (IDEAL, Gould et al., 1988).

Intermolecular interactions include weak C—H···π contacts involving methyl group C15 and the pyrrole ring N3/C16-C19 (Table 1), thus forming chains in the [100] direction.

Related literature top

For the structure of the neutral ligand, see: Mroginski et al. (2005). For the structures of related organometallic complexes, see: Elder & Penfold (1969); Cotton et al. (1970); Fergusson et al. (1971). For a description of the Cambridge Structural Database, see: Allen (2002). For transition metal complexes of dipyrromethenes, see: Bruckner et al. (1997); Zhang et al. (1998). For the chemistry and applications of pyrrole derivatives, see: Dolphin (1979); Falk (1989). For the synthesis of the title compound, see: Murakami & Sakata (1968). For IDEAL software, see: Gould et al. (1988).

Experimental top

The title compound was synthesized by heating a suspension of dipyrromethene hydrochloride, copper acetate monohydrate and sodium acetate in ethanol-water (Murakami & Sakata, 1968).

Refinement top

H atoms were placed in calculated positions, guided by difference maps, with C—H bond distances 0.95–0.98 Å, Uiso = 1.2Ueq of the attached carbon atom (1.5 for methyl), and thereafter treated as riding. A torsional parameter was refined for each methyl group.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids). H atoms are not shown.
Bis[2,3,4-trimethyl-5-[(3,4,5-trimethyl-2H-pyrrol-2-ylidene-κN)methyl]-1H-pyrrolato-κN]copper(II) top
Crystal data top
[Cu(C15H19N2)2]Z = 2
Mr = 518.18F(000) = 550
Triclinic, P1Dx = 1.331 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9737 (1) ÅCell parameters from 6313 reflections
b = 12.0896 (3) Åθ = 2.5–30°
c = 13.9411 (4) ŵ = 0.87 mm1
α = 92.8065 (8)°T = 120 K
β = 105.4205 (8)°Lath fragment, metallic green
γ = 91.9772 (18)°0.18 × 0.10 × 0.02 mm
V = 1292.39 (5) Å3
Data collection top
Nonius KappaCCD
diffractometer
7342 independent reflections
Radiation source: sealed tube5581 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.052
Detector resolution: 9 pixels mm-1θmax = 30.0°, θmin = 2.6°
φ and ω scansh = 1110
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski & Minor, 1997)
k = 1716
Tmin = 0.859, Tmax = 0.983l = 019
20968 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0459P)2 + 1.301P]
where P = (Fo2 + 2Fc2)/3
7342 reflections(Δ/σ)max = 0.001
328 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.48 e Å3
0 constraints
Crystal data top
[Cu(C15H19N2)2]γ = 91.9772 (18)°
Mr = 518.18V = 1292.39 (5) Å3
Triclinic, P1Z = 2
a = 7.9737 (1) ÅMo Kα radiation
b = 12.0896 (3) ŵ = 0.87 mm1
c = 13.9411 (4) ÅT = 120 K
α = 92.8065 (8)°0.18 × 0.10 × 0.02 mm
β = 105.4205 (8)°
Data collection top
Nonius KappaCCD
diffractometer
7342 independent reflections
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski & Minor, 1997)
5581 reflections with I > 2σ(I)
Tmin = 0.859, Tmax = 0.983Rint = 0.052
20968 measured reflectionsθmax = 30.0°
Refinement top
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.117Δρmax = 0.49 e Å3
S = 1.02Δρmin = 0.48 e Å3
7342 reflectionsAbsolute structure: ?
328 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0551 (3)0.30099 (19)0.06874 (18)0.0170 (4)
C20.1508 (3)0.3865 (2)0.03636 (18)0.0182 (5)
C30.2301 (3)0.45455 (19)0.11937 (18)0.0177 (5)
C40.1808 (3)0.41018 (18)0.20159 (18)0.0163 (4)
C50.2270 (3)0.45235 (19)0.30043 (18)0.0166 (4)
H50.2930.5210.3130.02*
C60.1901 (3)0.40808 (18)0.38310 (18)0.0161 (4)
C70.2300 (3)0.45367 (19)0.48376 (18)0.0182 (5)
C80.1726 (3)0.3752 (2)0.53829 (18)0.0180 (5)
C90.0982 (3)0.28389 (19)0.47050 (18)0.0167 (4)
C100.0506 (3)0.2066 (2)0.00526 (19)0.0228 (5)
H10A0.05810.14440.04670.034*
H10B0.0050.18320.04670.034*
H10C0.1680.23020.02590.034*
C110.1629 (3)0.3977 (2)0.06840 (19)0.0246 (5)
H11A0.16080.47620.08310.037*
H11B0.0640.35660.1150.037*
H11C0.27190.36770.07550.037*
C120.3503 (4)0.5533 (2)0.1225 (2)0.0278 (6)
H12A0.45910.52890.11020.042*
H12B0.37560.59280.18820.042*
H12C0.2950.6030.07110.042*
C130.3121 (3)0.5663 (2)0.5217 (2)0.0239 (5)
H13A0.2210.61790.52410.036*
H13B0.37910.59270.4770.036*
H13C0.390.56190.58870.036*
C140.1815 (3)0.3850 (2)0.64745 (19)0.0273 (6)
H14A0.28340.43240.6830.041*
H14B0.19110.31130.6740.041*
H14C0.07560.41790.65650.041*
C150.0127 (3)0.1785 (2)0.49176 (19)0.0206 (5)
H15A0.11340.18640.47720.031*
H15B0.05910.16370.56210.031*
H15C0.03650.11690.44980.031*
C160.3462 (3)0.07330 (19)0.34173 (17)0.0149 (4)
C170.4012 (3)0.03756 (19)0.35150 (16)0.0155 (4)
C180.2537 (3)0.10652 (19)0.31410 (17)0.0152 (4)
C190.1112 (3)0.03552 (18)0.28089 (16)0.0133 (4)
C200.0604 (3)0.06651 (18)0.23318 (16)0.0146 (4)
H200.08810.14410.2250.018*
C210.1988 (3)0.00086 (18)0.19539 (17)0.0150 (4)
C220.3776 (3)0.03267 (19)0.15404 (17)0.0161 (4)
C230.4672 (3)0.0633 (2)0.13321 (17)0.0169 (4)
C240.3418 (3)0.15334 (19)0.16063 (17)0.0169 (4)
C250.4632 (3)0.1757 (2)0.37120 (19)0.0205 (5)
H25A0.40760.23760.33430.031*
H25B0.57410.16320.35570.031*
H25C0.48440.19340.44290.031*
C260.5858 (3)0.0683 (2)0.39435 (18)0.0202 (5)
H26A0.59030.14910.39480.03*
H26B0.62880.03570.46270.03*
H26C0.65880.040.35360.03*
C270.2415 (3)0.23026 (19)0.3073 (2)0.0211 (5)
H27A0.35890.25840.32520.032*
H27B0.18060.2570.2390.032*
H27C0.17690.25660.35320.032*
C280.4551 (3)0.1488 (2)0.13782 (19)0.0221 (5)
H28A0.55560.15350.16560.033*
H28B0.36770.19950.1710.033*
H28C0.49270.16950.06620.033*
C290.6605 (3)0.0712 (2)0.09145 (19)0.0234 (5)
H29A0.69250.05220.01950.035*
H29B0.6930.1470.10370.035*
H29C0.72210.01960.12390.035*
C300.3737 (3)0.2739 (2)0.1535 (2)0.0235 (5)
H30A0.31210.3140.21650.035*
H30B0.49890.28460.14020.035*
H30C0.3310.30230.09930.035*
N10.0723 (2)0.31450 (16)0.16751 (15)0.0158 (4)
N20.1078 (2)0.30305 (15)0.37825 (14)0.0150 (4)
N30.1743 (2)0.07482 (15)0.30066 (14)0.0141 (4)
N40.1810 (2)0.11631 (16)0.19835 (15)0.0154 (4)
Cu10.03402 (3)0.20344 (2)0.25992 (2)0.01496 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0148 (10)0.0179 (11)0.0179 (11)0.0046 (8)0.0028 (8)0.0022 (9)
C20.0173 (11)0.0181 (11)0.0208 (12)0.0059 (8)0.0071 (9)0.0030 (9)
C30.0178 (11)0.0155 (11)0.0209 (12)0.0026 (8)0.0063 (9)0.0036 (9)
C40.0165 (11)0.0118 (10)0.0217 (12)0.0026 (8)0.0064 (8)0.0034 (9)
C50.0148 (10)0.0116 (10)0.0223 (12)0.0016 (8)0.0028 (8)0.0012 (9)
C60.0146 (10)0.0118 (10)0.0202 (12)0.0015 (8)0.0019 (8)0.0008 (9)
C70.0151 (11)0.0169 (11)0.0208 (12)0.0030 (8)0.0018 (8)0.0012 (9)
C80.0159 (11)0.0203 (12)0.0166 (11)0.0027 (8)0.0026 (8)0.0009 (9)
C90.0126 (10)0.0179 (11)0.0193 (12)0.0041 (8)0.0027 (8)0.0033 (9)
C100.0208 (12)0.0254 (13)0.0203 (13)0.0014 (9)0.0030 (9)0.0015 (10)
C110.0264 (13)0.0280 (14)0.0229 (13)0.0025 (10)0.0117 (10)0.0067 (11)
C120.0325 (14)0.0204 (13)0.0333 (15)0.0065 (10)0.0147 (11)0.0030 (11)
C130.0266 (13)0.0182 (12)0.0233 (13)0.0004 (9)0.0016 (10)0.0059 (10)
C140.0287 (14)0.0321 (15)0.0194 (13)0.0012 (11)0.0044 (10)0.0015 (11)
C150.0218 (12)0.0202 (12)0.0211 (12)0.0001 (9)0.0080 (9)0.0025 (10)
C160.0157 (10)0.0170 (11)0.0126 (10)0.0000 (8)0.0053 (8)0.0003 (8)
C170.0187 (11)0.0186 (11)0.0104 (10)0.0029 (8)0.0057 (8)0.0017 (8)
C180.0193 (11)0.0141 (10)0.0132 (11)0.0019 (8)0.0058 (8)0.0016 (8)
C190.0150 (10)0.0126 (10)0.0126 (10)0.0011 (8)0.0042 (8)0.0015 (8)
C200.0193 (11)0.0133 (10)0.0131 (10)0.0014 (8)0.0080 (8)0.0003 (8)
C210.0173 (11)0.0150 (11)0.0128 (11)0.0013 (8)0.0044 (8)0.0005 (8)
C220.0165 (11)0.0197 (11)0.0126 (11)0.0027 (8)0.0057 (8)0.0017 (9)
C230.0139 (11)0.0246 (12)0.0120 (11)0.0003 (8)0.0034 (8)0.0001 (9)
C240.0172 (11)0.0191 (11)0.0146 (11)0.0030 (8)0.0042 (8)0.0014 (9)
C250.0164 (11)0.0206 (12)0.0235 (13)0.0031 (9)0.0048 (9)0.0015 (10)
C260.0183 (11)0.0258 (13)0.0166 (12)0.0058 (9)0.0039 (9)0.0028 (10)
C270.0240 (12)0.0149 (11)0.0262 (13)0.0051 (9)0.0091 (10)0.0028 (10)
C280.0174 (11)0.0235 (13)0.0235 (13)0.0063 (9)0.0037 (9)0.0030 (10)
C290.0168 (12)0.0332 (14)0.0200 (12)0.0023 (10)0.0046 (9)0.0010 (11)
C300.0227 (12)0.0205 (12)0.0270 (14)0.0047 (9)0.0054 (10)0.0030 (10)
N10.0166 (9)0.0128 (9)0.0174 (10)0.0012 (7)0.0032 (7)0.0025 (7)
N20.0142 (9)0.0142 (9)0.0155 (10)0.0008 (7)0.0024 (7)0.0001 (7)
N30.0151 (9)0.0130 (9)0.0145 (9)0.0002 (7)0.0045 (7)0.0005 (7)
N40.0144 (9)0.0139 (9)0.0175 (10)0.0009 (7)0.0035 (7)0.0018 (7)
Cu10.01634 (14)0.01081 (13)0.01597 (15)0.00039 (9)0.00133 (10)0.00120 (10)
Geometric parameters (Å, º) top
C1—N11.348 (3)C16—C251.496 (3)
C1—C21.425 (3)C17—C181.384 (3)
C1—C101.495 (3)C17—C261.501 (3)
C2—C31.378 (3)C18—C191.438 (3)
C2—C111.501 (4)C18—C271.493 (3)
C3—C41.429 (3)C19—C201.383 (3)
C3—C121.497 (3)C19—N31.397 (3)
C4—C51.394 (3)C20—C211.397 (3)
C4—N11.404 (3)C20—H200.95
C5—C61.390 (3)C21—N41.395 (3)
C5—H50.95C21—C221.425 (3)
C6—N21.399 (3)C22—C231.386 (3)
C6—C71.431 (3)C22—C281.496 (3)
C7—C81.384 (3)C23—C241.418 (3)
C7—C131.499 (3)C23—C291.504 (3)
C8—C91.420 (3)C24—N41.351 (3)
C8—C141.503 (4)C24—C301.492 (3)
C9—N21.339 (3)C25—H25A0.98
C9—C151.503 (3)C25—H25B0.98
C10—H10A0.98C25—H25C0.98
C10—H10B0.98C26—H26A0.98
C10—H10C0.98C26—H26B0.98
C11—H11A0.98C26—H26C0.98
C11—H11B0.98C27—H27A0.98
C11—H11C0.98C27—H27B0.98
C12—H12A0.98C27—H27C0.98
C12—H12B0.98C28—H28A0.98
C12—H12C0.98C28—H28B0.98
C13—H13A0.98C28—H28C0.98
C13—H13B0.98C29—H29A0.98
C13—H13C0.98C29—H29B0.98
C14—H14A0.98C29—H29C0.98
C14—H14B0.98C30—H30A0.98
C14—H14C0.98C30—H30B0.98
C15—H15A0.98C30—H30C0.98
C15—H15B0.98N1—Cu11.9762 (19)
C15—H15C0.98N2—Cu11.9385 (19)
C16—N31.339 (3)N3—Cu11.9650 (19)
C16—C171.426 (3)N4—Cu11.9471 (19)
N1—C1—C2110.9 (2)C20—C19—N3123.4 (2)
N1—C1—C10122.6 (2)C20—C19—C18127.7 (2)
C2—C1—C10126.5 (2)N3—C19—C18108.78 (18)
C3—C2—C1106.8 (2)C19—C20—C21128.7 (2)
C3—C2—C11127.4 (2)C19—C20—H20115.6
C1—C2—C11125.8 (2)C21—C20—H20115.6
C2—C3—C4106.9 (2)N4—C21—C20123.4 (2)
C2—C3—C12126.1 (2)N4—C21—C22108.86 (19)
C4—C3—C12127.0 (2)C20—C21—C22127.6 (2)
C5—C4—N1123.5 (2)C23—C22—C21106.8 (2)
C5—C4—C3127.6 (2)C23—C22—C28126.4 (2)
N1—C4—C3108.9 (2)C21—C22—C28126.8 (2)
C6—C5—C4129.1 (2)C22—C23—C24106.8 (2)
C6—C5—H5115.5C22—C23—C29126.8 (2)
C4—C5—H5115.5C24—C23—C29126.4 (2)
C5—C6—N2122.2 (2)N4—C24—C23110.6 (2)
C5—C6—C7129.2 (2)N4—C24—C30122.1 (2)
N2—C6—C7108.6 (2)C23—C24—C30127.3 (2)
C8—C7—C6106.7 (2)C16—C25—H25A109.5
C8—C7—C13126.8 (2)C16—C25—H25B109.5
C6—C7—C13126.5 (2)H25A—C25—H25B109.5
C7—C8—C9106.7 (2)C16—C25—H25C109.5
C7—C8—C14127.0 (2)H25A—C25—H25C109.5
C9—C8—C14126.2 (2)H25B—C25—H25C109.5
N2—C9—C8110.9 (2)C17—C26—H26A109.5
N2—C9—C15121.2 (2)C17—C26—H26B109.5
C8—C9—C15127.9 (2)H26A—C26—H26B109.5
C1—C10—H10A109.5C17—C26—H26C109.5
C1—C10—H10B109.5H26A—C26—H26C109.5
H10A—C10—H10B109.5H26B—C26—H26C109.5
C1—C10—H10C109.5C18—C27—H27A109.5
H10A—C10—H10C109.5C18—C27—H27B109.5
H10B—C10—H10C109.5H27A—C27—H27B109.5
C2—C11—H11A109.5C18—C27—H27C109.5
C2—C11—H11B109.5H27A—C27—H27C109.5
H11A—C11—H11B109.5H27B—C27—H27C109.5
C2—C11—H11C109.5C22—C28—H28A109.5
H11A—C11—H11C109.5C22—C28—H28B109.5
H11B—C11—H11C109.5H28A—C28—H28B109.5
C3—C12—H12A109.5C22—C28—H28C109.5
C3—C12—H12B109.5H28A—C28—H28C109.5
H12A—C12—H12B109.5H28B—C28—H28C109.5
C3—C12—H12C109.5C23—C29—H29A109.5
H12A—C12—H12C109.5C23—C29—H29B109.5
H12B—C12—H12C109.5H29A—C29—H29B109.5
C7—C13—H13A109.5C23—C29—H29C109.5
C7—C13—H13B109.5H29A—C29—H29C109.5
H13A—C13—H13B109.5H29B—C29—H29C109.5
C7—C13—H13C109.5C24—C30—H30A109.5
H13A—C13—H13C109.5C24—C30—H30B109.5
H13B—C13—H13C109.5H30A—C30—H30B109.5
C8—C14—H14A109.5C24—C30—H30C109.5
C8—C14—H14B109.5H30A—C30—H30C109.5
H14A—C14—H14B109.5H30B—C30—H30C109.5
C8—C14—H14C109.5C1—N1—C4106.43 (19)
H14A—C14—H14C109.5C1—N1—Cu1128.71 (16)
H14B—C14—H14C109.5C4—N1—Cu1121.56 (15)
C9—C15—H15A109.5C9—N2—C6107.10 (19)
C9—C15—H15B109.5C9—N2—Cu1127.50 (16)
H15A—C15—H15B109.5C6—N2—Cu1125.33 (16)
C9—C15—H15C109.5C16—N3—C19106.97 (18)
H15A—C15—H15C109.5C16—N3—Cu1128.25 (15)
H15B—C15—H15C109.5C19—N3—Cu1124.45 (14)
N3—C16—C17111.2 (2)C24—N4—C21106.98 (18)
N3—C16—C25123.5 (2)C24—N4—Cu1127.95 (16)
C17—C16—C25125.3 (2)C21—N4—Cu1124.74 (15)
C18—C17—C16106.57 (19)N2—Cu1—N4133.10 (8)
C18—C17—C26128.8 (2)N2—Cu1—N3101.81 (8)
C16—C17—C26124.7 (2)N4—Cu1—N395.11 (8)
C17—C18—C19106.50 (19)N2—Cu1—N195.00 (8)
C17—C18—C27127.7 (2)N4—Cu1—N1109.25 (8)
C19—C18—C27125.8 (2)N3—Cu1—N1126.54 (8)
N1—C1—C2—C30.3 (3)C2—C1—N1—C40.0 (2)
C10—C1—C2—C3179.1 (2)C10—C1—N1—C4179.4 (2)
N1—C1—C2—C11179.5 (2)C2—C1—N1—Cu1159.31 (16)
C10—C1—C2—C110.2 (4)C10—C1—N1—Cu120.1 (3)
C1—C2—C3—C40.4 (2)C5—C4—N1—C1179.0 (2)
C11—C2—C3—C4179.7 (2)C3—C4—N1—C10.3 (2)
C1—C2—C3—C12177.4 (2)C5—C4—N1—Cu119.9 (3)
C11—C2—C3—C121.8 (4)C3—C4—N1—Cu1160.86 (15)
C2—C3—C4—C5178.8 (2)C8—C9—N2—C60.2 (2)
C12—C3—C4—C53.4 (4)C15—C9—N2—C6178.6 (2)
C2—C3—C4—N10.4 (3)C8—C9—N2—Cu1177.39 (15)
C12—C3—C4—N1177.4 (2)C15—C9—N2—Cu14.3 (3)
N1—C4—C5—C65.1 (4)C5—C6—N2—C9177.6 (2)
C3—C4—C5—C6175.8 (2)C7—C6—N2—C90.5 (2)
C4—C5—C6—N25.8 (4)C5—C6—N2—Cu10.3 (3)
C4—C5—C6—C7176.6 (2)C7—C6—N2—Cu1177.68 (14)
C5—C6—C7—C8177.3 (2)C17—C16—N3—C190.8 (3)
N2—C6—C7—C80.5 (2)C25—C16—N3—C19178.2 (2)
C5—C6—C7—C134.7 (4)C17—C16—N3—Cu1174.31 (15)
N2—C6—C7—C13177.5 (2)C25—C16—N3—Cu14.6 (3)
C6—C7—C8—C90.3 (2)C20—C19—N3—C16176.4 (2)
C13—C7—C8—C9177.6 (2)C18—C19—N3—C161.2 (2)
C6—C7—C8—C14178.6 (2)C20—C19—N3—Cu12.5 (3)
C13—C7—C8—C140.6 (4)C18—C19—N3—Cu1175.09 (15)
C7—C8—C9—N20.1 (3)C23—C24—N4—C210.5 (3)
C14—C8—C9—N2178.3 (2)C30—C24—N4—C21179.0 (2)
C7—C8—C9—C15178.1 (2)C23—C24—N4—Cu1173.08 (16)
C14—C8—C9—C150.2 (4)C30—C24—N4—Cu15.5 (3)
N3—C16—C17—C180.0 (3)C20—C21—N4—C24176.6 (2)
C25—C16—C17—C18178.9 (2)C22—C21—N4—C240.1 (3)
N3—C16—C17—C26179.8 (2)C20—C21—N4—Cu12.8 (3)
C25—C16—C17—C260.8 (4)C22—C21—N4—Cu1173.90 (15)
C16—C17—C18—C190.8 (2)C9—N2—Cu1—N450.3 (2)
C26—C17—C18—C19179.0 (2)C6—N2—Cu1—N4133.06 (17)
C16—C17—C18—C27179.9 (2)C9—N2—Cu1—N358.40 (19)
C26—C17—C18—C270.2 (4)C6—N2—Cu1—N3118.25 (18)
C17—C18—C19—C20176.2 (2)C9—N2—Cu1—N1172.63 (18)
C27—C18—C19—C203.0 (4)C6—N2—Cu1—N110.71 (18)
C17—C18—C19—N31.2 (3)C24—N4—Cu1—N262.3 (2)
C27—C18—C19—N3179.6 (2)C21—N4—Cu1—N2110.21 (19)
N3—C19—C20—C211.0 (4)C24—N4—Cu1—N3173.7 (2)
C18—C19—C20—C21176.1 (2)C21—N4—Cu1—N31.21 (19)
C19—C20—C21—N41.9 (4)C24—N4—Cu1—N154.6 (2)
C19—C20—C21—C22174.2 (2)C21—N4—Cu1—N1132.85 (18)
N4—C21—C22—C230.6 (3)C16—N3—Cu1—N250.2 (2)
C20—C21—C22—C23175.9 (2)C19—N3—Cu1—N2137.32 (18)
N4—C21—C22—C28179.6 (2)C16—N3—Cu1—N4173.8 (2)
C20—C21—C22—C283.0 (4)C19—N3—Cu1—N41.31 (19)
C21—C22—C23—C240.9 (3)C16—N3—Cu1—N155.3 (2)
C28—C22—C23—C24179.8 (2)C19—N3—Cu1—N1117.27 (18)
C21—C22—C23—C29178.0 (2)C1—N1—Cu1—N2176.26 (19)
C28—C22—C23—C290.9 (4)C4—N1—Cu1—N219.68 (18)
C22—C23—C24—N40.9 (3)C1—N1—Cu1—N444.5 (2)
C29—C23—C24—N4178.1 (2)C4—N1—Cu1—N4158.88 (16)
C22—C23—C24—C30179.3 (2)C1—N1—Cu1—N367.6 (2)
C29—C23—C24—C300.4 (4)C4—N1—Cu1—N389.01 (19)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N3/C16–C19 pyrrole ring.
D—H···AD—HH···AD···AD—H···A
C29—H29C···Cgi0.982.783.551 (3)136
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N3/C16–C19 pyrrole ring.
D—H···AD—HH···AD···AD—H···A
C29—H29C···Cgi0.982.783.551 (3)136
Symmetry code: (i) x1, y, z.
Acknowledgements top

Purchase of the diffractometer was made possible by grant No. LEQSF(1999–2000)-ESH-TR-13, administered by the Louisiana Board of Regents.

references
References top

Allen, F. H. (2002). Acta Cryst. B58, 380–388.

Bruckner, C., Zhang, Y., Rettig, S. J. & Dolphin, D. (1997). Inorg. Chim. Acta, 263, 279–286.

Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.

Cotton, F. A., DeBoer, B. G. & Pipal, J. R. (1970). Inorg. Chem. 9, 783–788.

Dolphin, D. (1979). The porphyrins, New York: Academic Press.

Elder, M. & Penfold, B. R. (1969). J. Chem. Soc. A, pp. 2556–2559.

Falk, H. (1989). The Chemistry of Linear Oligopyrroles and Bile Pigments, Vienna: Springer-Verlag.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Fergusson, J. E., March, F. C., Couch, D. A., Emerson, K. & Robinson, W. T. (1971). J. Chem. Soc. A, pp. 440–448.

Gould, R. O., Moulden, N. & Taylor, P. (1988). IDEAL. Department of Chemistry, University of Edinburgh, Scotland.

Mroginski, M.-A., Nemeth, K., Bauschlicher, T., Klotzbucher, W., Goddard, R., Heinemann, O., Hildebrandt, P. & Mark, F. (2005). J. Phys. Chem. A, 109, 2139–2150.

Murakami, Y. & Sakata, K. (1968). Inorg. Chim. Acta, 2, 273–279.

Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Zhang, Y., Thompson, A., Retting, S. J. & Dolphin, D. (1998). J. Am. Chem. Soc. 120, 13537–13538.