organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl (E)-2-cyano-3-(6-nitro-1,3-benzodioxol-5-yl)acrylate

aDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India, bDepartment of Chemistry, Pondicherry University, Puducherry 605 014, India, cDepartment of Physics, C. Abdul Hakeem College of Engineering & Technology, Melvisharam, Vellore 632 509, India, and dDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India
*Correspondence e-mail: smurugavel27@gmail.com

(Received 4 October 2012; accepted 16 October 2012; online 20 October 2012)

In the title compound, C12H8N2O6, the 1,3-benzodioxole ring system is essentially planar [maximum deviation = 0.036 (2) Å] and the nitro group is oriented at a dihedral angle of 15.4 (1)° with respect to its mean plane. In the crystal, moleucles are linked into C(8) [101] chains by C—H⋯O hydrogen bonds, and weak aromatic ππ stacking [centroid–centroid distance = 3.887 (1) Å] also occurs.

Related literature

For a related structure and background references, see: Karthikeyan et al. (2011[Karthikeyan, S., Sethusankar, K., Devaraj, A. & Bakthadoss, M. (2011). Acta Cryst. E67, o3469.]); Loghmani-Khouzani et al. (2009[Loghmani-Khouzani, H., Abdul Rahman, N., Robinson, W. T., Yaeghoobi, M. & Kia, R. (2009). Acta Cryst. E65, o2545.]).

[Scheme 1]

Experimental

Crystal data
  • C12H8N2O6

  • Mr = 276.20

  • Monoclinic, P 21 /n

  • a = 10.8191 (9) Å

  • b = 7.3220 (6) Å

  • c = 15.4133 (13) Å

  • β = 91.691 (2)°

  • V = 1220.47 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.23 × 0.22 × 0.17 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.972, Tmax = 0.979

  • 14190 measured reflections

  • 3567 independent reflections

  • 2286 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.129

  • S = 1.03

  • 3567 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3B⋯O4i 0.97 2.51 3.247 (2) 132
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia (1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing studies of benzodioxoles with possible biological activities (Karthikeyan et al., 2011), the crystal structure of the title compound has been determined and the results are presented here.

Fig. 1. shows a displacement ellipsoid plot of (I), with the atom numbering scheme. The benzodioxole ring system is essentially planar [maximum deviation = 0.036 (2) Å for the C3 atom] and is oriented at a dihedral angle of 15.4 (1)° with respect to the nitro group. The sum of bond angles around N2 (360°) indicates that N2 is in sp2 hybridization. The carbonitrile side chain (C9–C12–N1) is almost linear, with the angle around central carbon atom being 179.6 (2)°. The geometric parameters of the title molecule agrees well with those reported for similar structures (Karthikeyan et al., 2011, Loghmani-Khouzani et al., 2009).

The crystal packing features C—H···O hydrogen bonds. Atom C3 in the molecule at x, y, z) directs its C—H bonds towards atom O4 at 1/2+x,1/2-y,1/2+z, forming a C(8) chain along [101] (Fig. 2). Weak aromatic ππ interactions between the benzene rings of neighbouring molecules, with CgCgv distance of 3.887 (1) Å [Fig. 3; Cg is the centroid of the C1/C2/C4/C5/C6/C7 benzene ring, Symmetry code as in Fig. 3] are also observed.

Related literature top

For a related structure and background references, see: Karthikeyan et al. (2011); Loghmani-Khouzani et al. (2009).

Experimental top

To a solution of methyl 2-cyanoacetate (0.1 g, 1 mmol) in dichloromethane (5 ml), pyrrolidine (0.073 g, 1 mmol) was added and stirred well for 10 minutes. To this solution 6–nitrobenzo [d][1,3]dioxole–5–carbaldehyde (0.2 g, 1 mmol) was added and allowed to stir well for 12 h. After the completion of the reaction as evidenced by TLC, the reaction mixture was poured into 2 N HCl solution (10 ml) and extracted using 20 ml of dichloromethane. The organic layer thus obtained was concentrated under reduced pressure. Column purification (silica gel, mesh size: 60–120) of the crude mixture using 10% ethyl acetate in hexanes successfully provided the desired title compound in 92% yield (0.25 g).

Refinement top

All the H atoms were positioned geometrically with C–H = 0.93–0.97 Å and constrained to ride on their parent atom, with Uiso(H) =1.5Ueq for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia (1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing C—H···O hydrogen bonds (dotted lines), with the formation of C(8) chains along [101]. [Symmetry codes: (i)1/2+x, 1/2-y, 1/2+z; (ii)1+x, y, 1+z; (iii)<3/2+x, 1/2-y, 3/2+z; (iv)2+x, y, 2+z].
[Figure 3] Fig. 3. A view of ππ (green dotted lines) interactions in the crystal structure of the title compound. Cg denotes the centroid of the C1/C2/C4/C5/C6/C7 benzene ring [Symmetry code:(v)1-x, 1-y, -z].
Methyl (E)-2-cyano-3-(6-nitro-1,3-benzodioxol-5-yl)acrylate top
Crystal data top
C12H8N2O6F(000) = 568
Mr = 276.20Dx = 1.503 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3589 reflections
a = 10.8191 (9) Åθ = 2.3–30.1°
b = 7.3220 (6) ŵ = 0.12 mm1
c = 15.4133 (13) ÅT = 293 K
β = 91.691 (2)°Block, colourless
V = 1220.47 (18) Å30.23 × 0.22 × 0.17 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3567 independent reflections
Radiation source: fine-focus sealed tube2286 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10.0 pixels mm-1θmax = 30.1°, θmin = 2.3°
ω scansh = 1514
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 610
Tmin = 0.972, Tmax = 0.979l = 2119
14190 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.1956P]
where P = (Fo2 + 2Fc2)/3
3567 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C12H8N2O6V = 1220.47 (18) Å3
Mr = 276.20Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.8191 (9) ŵ = 0.12 mm1
b = 7.3220 (6) ÅT = 293 K
c = 15.4133 (13) Å0.23 × 0.22 × 0.17 mm
β = 91.691 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3567 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2286 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.979Rint = 0.027
14190 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.03Δρmax = 0.20 e Å3
3567 reflectionsΔρmin = 0.18 e Å3
182 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.34825 (14)0.0705 (2)0.14286 (9)0.0415 (3)
H10.31940.01630.19290.050*
C20.44834 (14)0.1836 (2)0.14611 (9)0.0408 (3)
C30.60882 (16)0.3581 (3)0.18676 (11)0.0560 (4)
H3A0.59740.47740.21260.067*
H3B0.69120.31490.20260.067*
C40.49334 (13)0.26561 (19)0.07304 (10)0.0395 (3)
C50.43953 (14)0.2399 (2)0.00694 (9)0.0406 (3)
H50.46970.29550.05630.049*
C60.33678 (13)0.12542 (19)0.01065 (8)0.0372 (3)
C70.28993 (13)0.03817 (19)0.06181 (9)0.0375 (3)
C80.18022 (14)0.0796 (2)0.05853 (9)0.0428 (3)
H80.11150.03840.02660.051*
C90.17142 (13)0.2415 (2)0.09786 (9)0.0414 (3)
C100.05270 (16)0.3443 (2)0.09545 (10)0.0481 (4)
C110.0446 (2)0.6111 (3)0.14488 (14)0.0865 (8)
H11A0.09370.56370.19060.130*
H11B0.02150.73490.15790.130*
H11C0.09170.60770.09110.130*
C120.27569 (16)0.3259 (2)0.14154 (11)0.0484 (4)
N10.35768 (15)0.3935 (2)0.17628 (12)0.0710 (5)
N20.28260 (12)0.09294 (19)0.09677 (8)0.0472 (3)
O10.51784 (12)0.23313 (16)0.21683 (7)0.0566 (3)
O20.59385 (11)0.36932 (17)0.09442 (7)0.0549 (3)
O30.21209 (14)0.03492 (18)0.10801 (8)0.0666 (4)
O40.31029 (14)0.1961 (2)0.15503 (8)0.0796 (5)
O50.03967 (12)0.2902 (2)0.06023 (9)0.0704 (4)
O60.06541 (12)0.50122 (16)0.13725 (8)0.0589 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0503 (9)0.0418 (8)0.0322 (6)0.0033 (7)0.0004 (6)0.0053 (6)
C20.0479 (8)0.0384 (8)0.0357 (7)0.0000 (6)0.0082 (6)0.0024 (6)
C30.0527 (10)0.0612 (10)0.0530 (9)0.0109 (8)0.0154 (8)0.0049 (8)
C40.0381 (7)0.0362 (7)0.0440 (7)0.0009 (6)0.0040 (6)0.0060 (6)
C50.0440 (8)0.0405 (7)0.0374 (7)0.0013 (6)0.0008 (6)0.0083 (6)
C60.0411 (7)0.0374 (7)0.0327 (6)0.0029 (6)0.0050 (6)0.0023 (6)
C70.0390 (7)0.0346 (7)0.0389 (7)0.0005 (6)0.0001 (6)0.0027 (6)
C80.0398 (8)0.0483 (8)0.0403 (7)0.0002 (7)0.0014 (6)0.0014 (6)
C90.0381 (7)0.0464 (8)0.0400 (7)0.0044 (6)0.0054 (6)0.0008 (6)
C100.0468 (9)0.0586 (10)0.0395 (7)0.0135 (8)0.0091 (7)0.0080 (7)
C110.0961 (16)0.0936 (16)0.0707 (13)0.0623 (14)0.0181 (11)0.0093 (12)
C120.0437 (9)0.0436 (8)0.0584 (9)0.0069 (7)0.0090 (7)0.0084 (7)
N10.0541 (9)0.0636 (10)0.0951 (13)0.0040 (8)0.0009 (9)0.0224 (9)
N20.0523 (8)0.0526 (8)0.0364 (6)0.0010 (7)0.0047 (6)0.0011 (6)
O10.0685 (8)0.0590 (7)0.0412 (6)0.0174 (6)0.0175 (5)0.0084 (5)
O20.0505 (7)0.0605 (7)0.0529 (6)0.0165 (6)0.0125 (5)0.0109 (6)
O30.0882 (9)0.0585 (8)0.0520 (7)0.0219 (7)0.0152 (6)0.0052 (6)
O40.0919 (10)0.1096 (12)0.0367 (6)0.0364 (9)0.0120 (6)0.0199 (7)
O50.0437 (7)0.0963 (10)0.0708 (8)0.0157 (7)0.0048 (6)0.0024 (7)
O60.0640 (8)0.0560 (7)0.0575 (7)0.0254 (6)0.0143 (6)0.0048 (6)
Geometric parameters (Å, º) top
C1—C21.363 (2)C7—C81.467 (2)
C1—C71.403 (2)C8—C91.336 (2)
C1—H10.9300C8—H80.9300
C2—O11.3553 (17)C9—C121.436 (2)
C2—C41.378 (2)C9—C101.488 (2)
C3—O21.430 (2)C10—O51.191 (2)
C3—O11.431 (2)C10—O61.323 (2)
C3—H3A0.9700C11—O61.444 (2)
C3—H3B0.9700C11—H11A0.9600
C4—O21.3589 (18)C11—H11B0.9600
C4—C51.361 (2)C11—H11C0.9600
C5—C61.392 (2)C12—N11.136 (2)
C5—H50.9300N2—O31.2169 (17)
C6—C71.3949 (19)N2—O41.2177 (17)
C6—N21.4547 (18)
C2—C1—C7118.11 (13)C1—C7—C8118.17 (13)
C2—C1—H1120.9C9—C8—C7125.06 (14)
C7—C1—H1120.9C9—C8—H8117.5
O1—C2—C1127.85 (13)C7—C8—H8117.5
O1—C2—C4109.86 (13)C8—C9—C12121.93 (14)
C1—C2—C4122.29 (13)C8—C9—C10120.68 (14)
O2—C3—O1107.47 (12)C12—C9—C10117.36 (14)
O2—C3—H3A110.2O5—C10—O6125.79 (15)
O1—C3—H3A110.2O5—C10—C9123.73 (16)
O2—C3—H3B110.2O6—C10—C9110.48 (15)
O1—C3—H3B110.2O6—C11—H11A109.5
H3A—C3—H3B108.5O6—C11—H11B109.5
O2—C4—C5127.95 (13)H11A—C11—H11B109.5
O2—C4—C2110.18 (13)O6—C11—H11C109.5
C5—C4—C2121.88 (13)H11A—C11—H11C109.5
C4—C5—C6116.13 (13)H11B—C11—H11C109.5
C4—C5—H5121.9N1—C12—C9179.57 (18)
C6—C5—H5121.9O3—N2—O4122.63 (13)
C5—C6—C7123.46 (13)O3—N2—C6119.32 (13)
C5—C6—N2115.83 (12)O4—N2—C6118.05 (13)
C7—C6—N2120.64 (13)C2—O1—C3106.34 (11)
C6—C7—C1118.12 (13)C4—O2—C3105.99 (12)
C6—C7—C8123.67 (13)C10—O6—C11116.71 (16)
C7—C1—C2—O1179.97 (15)C7—C8—C9—C126.3 (2)
C7—C1—C2—C40.1 (2)C7—C8—C9—C10175.68 (13)
O1—C2—C4—O20.51 (18)C8—C9—C10—O50.7 (2)
C1—C2—C4—O2179.41 (14)C12—C9—C10—O5178.88 (16)
O1—C2—C4—C5179.43 (13)C8—C9—C10—O6179.10 (13)
C1—C2—C4—C50.7 (2)C12—C9—C10—O60.96 (19)
O2—C4—C5—C6179.86 (14)C5—C6—N2—O3163.45 (14)
C2—C4—C5—C60.2 (2)C7—C6—N2—O313.6 (2)
C4—C5—C6—C70.7 (2)C5—C6—N2—O416.5 (2)
C4—C5—C6—N2177.74 (13)C7—C6—N2—O4166.40 (15)
C5—C6—C7—C11.2 (2)C1—C2—O1—C3178.04 (16)
N2—C6—C7—C1178.11 (13)C4—C2—O1—C32.05 (18)
C5—C6—C7—C8178.73 (13)O2—C3—O1—C23.74 (18)
N2—C6—C7—C84.4 (2)C5—C4—O2—C3177.10 (16)
C2—C1—C7—C60.8 (2)C2—C4—O2—C32.83 (17)
C2—C1—C7—C8178.41 (13)O1—C3—O2—C44.01 (18)
C6—C7—C8—C9135.22 (16)O5—C10—O6—C113.8 (2)
C1—C7—C8—C947.3 (2)C9—C10—O6—C11176.34 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O4i0.972.513.247 (2)132
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H8N2O6
Mr276.20
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.8191 (9), 7.3220 (6), 15.4133 (13)
β (°) 91.691 (2)
V3)1220.47 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.23 × 0.22 × 0.17
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.972, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
14190, 3567, 2286
Rint0.027
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.129, 1.03
No. of reflections3567
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.18

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia (1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O4i0.972.513.247 (2)132
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: bhakthadoss@yahoo.com.

Acknowledgements

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals
First citationKarthikeyan, S., Sethusankar, K., Devaraj, A. & Bakthadoss, M. (2011). Acta Cryst. E67, o3469.  Web of Science CSD CrossRef IUCr Journals
First citationLoghmani-Khouzani, H., Abdul Rahman, N., Robinson, W. T., Yaeghoobi, M. & Kia, R. (2009). Acta Cryst. E65, o2545.  Web of Science CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds