supplementary materials


hy2593 scheme

Acta Cryst. (2012). E68, m1361-m1362    [ doi:10.1107/S160053681204247X ]

(Ammine)(carbonyl)[hydridotris(pyrazol-1-yl-[kappa]N2)borato](triphenylphosphine-[kappa]P)ruthenium(II) chloride dichloromethane disolvate

T.-C. Hu, J.-X. Ye, S.-T. He, G.-R. Chiang and Y.-H. Lo

Abstract top

In the title compound, [Ru(CO)(NH3)(C9H10BN6)(C18H15P)]Cl·2CH2Cl2, the coordination environment around the RuII atom is distorted octahedral. One of the Ru-N(Tp) [Tp = hydridotris(pyrazol-1-yl)borate] bond lengths is slightly longer than the other two as a result of the influence of the trans CO ligand. In the crystal, N-H...Cl hydrogen bonds link the complex cations and Cl- anions. [pi]-[pi] interactions between the pyrazole rings [centroid-centroid distance = 3.764 (3) Å] are also present.

Comment top

Ruthenium(II) hydridotris(pyrazolyl)borate complexes, Ru(Tp) [Tp = hydridotris(pyrazol-1-yl)borate], are of interest for stoichiometric and catalytic transformations of organic molecules (Pavlik et al., 2005). The complex RuCl(Tp)(PPh3)2 (Alcock et al., 1992; Lin et al., 2008) has been used as a starting material for the synthesis of several complexes because of its substitutionally labile chloride and phosphines (Burrows, 2001). The development of Tp chemistry within group VIII has picked up the pace since then (Chen et al., 2010; Lo et al., 2010; Tong et al., 2008).

The title compound was obtained from the reaction of [Ru(Tp)(PPh3)(NH3)Cl] with CO (Fig. 1). The ν(B—H) vibration of the title complex is found at 2481 cm-1, which is characteristic of Tp bound to a metal center in a terdentate (N,N,N) manner. Yellow crystals were obtained by slow diffusion of hexane into a CH2Cl2 solution at room temperature. The coordination geometry is approximately octahedral. One of the Ru—N(Tp) bond lengths [2.136 (3) Å] is slightly longer than the other two due to the influence of trans CO ligand (Table 1) (Gemel et al., 1996; Slugovc et al., 1998). In the crystal, N—H···Cl hydrogen bonds link the complex cations and Cl- anions (Table 2). ππ interactions between the pyrazole rings [centroid–centroid distance = 3.764 (3) Å] are present.

Related literature top

For general background to complexes with hydridotris(pyrazolyl)borate ligands, see: Alcock et al. (1992); Burrows (2001); Chen et al. (2010); Lin et al. (2008); Lo et al. (2010); Pavlik et al. (2005); Tong et al. (2008). For related structures, see: Gemel et al. (1996); Slugovc et al. (1998).

Experimental top

The synthesis of the title compound was carried out as follows. To a solution of [(Tp)(PPh3)(NH3)RuCl] (0.39 g, 0.45 mmol) in methanol (20 ml), an excess of CO was added. The mixture was heated using a warm water bath for 30 min. A deep yellow color was developed during this time. The reaction mixture was stirred for a further 6 h at room temperature (298 K). Then it was concentrated to approximately half of the volume and cooled to 273 K. The yellow precipitate was filtered off, washed with ethanol and ether and dried under vacuum to give the title compound.

Refinement top

H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 (aromatic) and 0.99 (CH2), N—H = 0.91 and B—H = 1.00 Å and with Uiso(H) = 1.2(1.5 for ammine)Ueq(C, B, N). The highest residual electron density was found 1.11 Å from Cl4 the deepest hole 0.78 Å from Cl3.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
(Ammine)(carbonyl)[hydridotris(pyrazol-1-yl-κN2)borato](triphenylphosphine-κP)ruthenium(II) chloride dichloromethane disolvate top
Crystal data top
[Ru(CO)(NH3)(C9H10BN6)(C18H15P)]Cl·2CH2Cl2Z = 2
Mr = 826.73F(000) = 836
Triclinic, P1Dx = 1.513 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.4813 (4) ÅCell parameters from 6218 reflections
b = 12.5337 (4) Åθ = 1.9–25.0°
c = 14.5389 (5) ŵ = 0.88 mm1
α = 83.520 (1)°T = 200 K
β = 65.602 (1)°Prism, pale brown
γ = 61.757 (1)°0.19 × 0.18 × 0.06 mm
V = 1815.02 (11) Å3
Data collection top
Nonuis KappaCCD
diffractometer
6218 independent reflections
Radiation source: fine-focus sealed tube5363 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 1.9°
ω and φ scansh = 1413
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
k = 1414
Tmin = 0.851, Tmax = 0.949l = 1716
15492 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0531P)2 + 4.644P]
where P = (Fo2 + 2Fc2)/3
6218 reflections(Δ/σ)max = 0.002
414 parametersΔρmax = 1.38 e Å3
0 restraintsΔρmin = 1.29 e Å3
Crystal data top
[Ru(CO)(NH3)(C9H10BN6)(C18H15P)]Cl·2CH2Cl2γ = 61.757 (1)°
Mr = 826.73V = 1815.02 (11) Å3
Triclinic, P1Z = 2
a = 12.4813 (4) ÅMo Kα radiation
b = 12.5337 (4) ŵ = 0.88 mm1
c = 14.5389 (5) ÅT = 200 K
α = 83.520 (1)°0.19 × 0.18 × 0.06 mm
β = 65.602 (1)°
Data collection top
Nonuis KappaCCD
diffractometer
6218 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
5363 reflections with I > 2σ(I)
Tmin = 0.851, Tmax = 0.949Rint = 0.026
15492 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.119Δρmax = 1.38 e Å3
S = 1.06Δρmin = 1.29 e Å3
6218 reflectionsAbsolute structure: ?
414 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6168 (4)0.6084 (4)0.5701 (3)0.0318 (10)
C20.8651 (4)0.6798 (4)0.4754 (3)0.0346 (10)
H20.83430.68800.42380.041*
C30.9927 (5)0.6574 (4)0.4584 (4)0.0428 (12)
H31.06370.64850.39490.051*
C40.9938 (4)0.6510 (4)0.5529 (4)0.0386 (11)
H41.06750.63580.56670.046*
C50.5042 (4)0.9461 (4)0.8065 (3)0.0309 (9)
H50.42180.99630.80100.037*
C60.5517 (5)0.9794 (4)0.8629 (4)0.0402 (11)
H60.50961.05440.90310.048*
C70.6727 (5)0.8808 (4)0.8484 (4)0.0406 (11)
H70.73080.87550.87710.049*
C80.6801 (4)0.4640 (4)0.7665 (3)0.0305 (9)
H80.62400.43960.75660.037*
C90.7674 (5)0.3977 (4)0.8111 (4)0.0394 (11)
H90.78300.32100.83670.047*
C100.8270 (5)0.4663 (4)0.8105 (3)0.0375 (11)
H100.89230.44500.83640.045*
C110.3668 (4)0.6016 (4)0.7954 (3)0.0271 (9)
C120.3887 (4)0.5342 (4)0.7134 (3)0.0340 (10)
H120.40840.56280.64820.041*
C130.3819 (5)0.4265 (4)0.7261 (4)0.0406 (11)
H130.39590.38190.66980.049*
C140.3545 (5)0.3830 (4)0.8209 (4)0.0426 (12)
H140.35210.30780.82930.051*
C150.3311 (5)0.4494 (4)0.9023 (4)0.0391 (11)
H150.31150.42010.96730.047*
C160.3356 (4)0.5595 (4)0.8905 (3)0.0322 (10)
H160.31750.60560.94760.039*
C170.2429 (4)0.8429 (4)0.7386 (3)0.0288 (9)
C180.1595 (4)0.8063 (4)0.7260 (4)0.0382 (11)
H180.16970.72700.74010.046*
C190.0618 (5)0.8856 (5)0.6930 (4)0.0453 (12)
H190.00630.85960.68390.054*
C200.0447 (5)1.0004 (5)0.6735 (4)0.0463 (13)
H200.02111.05310.64950.056*
C210.1227 (5)1.0402 (4)0.6886 (3)0.0418 (11)
H210.10891.12090.67700.050*
C220.2209 (4)0.9622 (4)0.7207 (3)0.0336 (10)
H220.27440.99000.73090.040*
C230.3286 (4)0.8051 (4)0.9024 (3)0.0254 (9)
C240.2045 (4)0.9035 (4)0.9547 (3)0.0319 (9)
H240.14290.94040.92400.038*
C250.1699 (5)0.9481 (4)1.0515 (3)0.0381 (11)
H250.08531.01621.08620.046*
C260.2571 (5)0.8945 (4)1.0976 (3)0.0356 (10)
H260.23230.92481.16420.043*
C270.3814 (4)0.7963 (4)1.0463 (3)0.0314 (9)
H270.44210.75951.07770.038*
C280.4173 (4)0.7517 (4)0.9494 (3)0.0295 (9)
H280.50260.68440.91460.035*
C290.1096 (9)0.7309 (9)0.0766 (6)0.104 (2)
H29A0.10220.66490.12180.125*
H29B0.20050.79980.10930.125*
C300.6854 (7)0.1297 (6)0.5851 (7)0.091 (3)
H30A0.68220.14000.51760.109*
H30B0.59300.15730.63680.109*
N10.7924 (3)0.6881 (3)0.5748 (3)0.0286 (8)
N20.8728 (3)0.6699 (3)0.6227 (3)0.0312 (8)
N30.5912 (3)0.8327 (3)0.7607 (2)0.0257 (7)
N40.6956 (3)0.7934 (3)0.7871 (3)0.0292 (8)
N50.6857 (3)0.5683 (3)0.7391 (2)0.0273 (7)
N60.7776 (3)0.5686 (3)0.7671 (3)0.0297 (8)
N70.5307 (4)0.8656 (3)0.5813 (3)0.0340 (8)
H7A0.51290.93360.61410.051*
H7B0.45540.87630.57730.051*
H7C0.59560.85190.51770.051*
O10.6390 (4)0.5409 (3)0.5087 (3)0.0504 (9)
P10.38165 (10)0.74186 (9)0.77381 (8)0.0240 (2)
Ru10.59641 (3)0.71335 (3)0.66320 (2)0.02287 (11)
B10.8199 (5)0.6693 (5)0.7388 (4)0.0322 (11)
H10.88990.65450.76270.039*
Cl10.64723 (12)0.82746 (10)0.33609 (8)0.0368 (3)
Cl20.00232 (16)0.77728 (14)0.06739 (14)0.0696 (4)
Cl30.0912 (3)0.6798 (3)0.0359 (2)0.1344 (10)
Cl40.7435 (2)0.22085 (17)0.6034 (2)0.1061 (8)
Cl50.78060 (17)0.02459 (14)0.59197 (12)0.0695 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.034 (2)0.033 (2)0.027 (2)0.018 (2)0.010 (2)0.0062 (19)
C20.035 (2)0.031 (2)0.026 (2)0.014 (2)0.005 (2)0.0019 (18)
C30.035 (3)0.041 (3)0.035 (3)0.019 (2)0.003 (2)0.000 (2)
C40.028 (2)0.034 (2)0.050 (3)0.017 (2)0.009 (2)0.004 (2)
C50.036 (2)0.027 (2)0.027 (2)0.0175 (19)0.007 (2)0.0009 (18)
C60.054 (3)0.032 (2)0.036 (3)0.022 (2)0.015 (2)0.004 (2)
C70.054 (3)0.045 (3)0.038 (3)0.030 (2)0.023 (2)0.005 (2)
C80.029 (2)0.025 (2)0.027 (2)0.0135 (18)0.0020 (19)0.0007 (17)
C90.040 (3)0.029 (2)0.039 (3)0.014 (2)0.013 (2)0.012 (2)
C100.038 (3)0.039 (3)0.034 (2)0.015 (2)0.019 (2)0.010 (2)
C110.024 (2)0.024 (2)0.030 (2)0.0105 (17)0.0073 (18)0.0008 (17)
C120.036 (2)0.032 (2)0.034 (2)0.018 (2)0.011 (2)0.0003 (19)
C130.042 (3)0.035 (2)0.048 (3)0.020 (2)0.016 (2)0.007 (2)
C140.045 (3)0.028 (2)0.059 (3)0.022 (2)0.018 (3)0.003 (2)
C150.040 (3)0.033 (2)0.043 (3)0.021 (2)0.014 (2)0.011 (2)
C160.032 (2)0.030 (2)0.035 (2)0.0169 (19)0.011 (2)0.0012 (19)
C170.028 (2)0.034 (2)0.021 (2)0.0122 (19)0.0081 (18)0.0002 (17)
C180.035 (2)0.040 (3)0.040 (3)0.017 (2)0.015 (2)0.002 (2)
C190.034 (3)0.059 (3)0.043 (3)0.017 (2)0.020 (2)0.004 (2)
C200.033 (3)0.057 (3)0.034 (3)0.008 (2)0.017 (2)0.007 (2)
C210.037 (3)0.038 (3)0.034 (3)0.010 (2)0.011 (2)0.007 (2)
C220.033 (2)0.033 (2)0.031 (2)0.014 (2)0.011 (2)0.0020 (19)
C230.032 (2)0.024 (2)0.022 (2)0.0166 (18)0.0079 (18)0.0012 (16)
C240.030 (2)0.032 (2)0.032 (2)0.0121 (19)0.013 (2)0.0002 (18)
C250.033 (2)0.038 (3)0.030 (2)0.010 (2)0.008 (2)0.005 (2)
C260.042 (3)0.039 (3)0.027 (2)0.023 (2)0.009 (2)0.0017 (19)
C270.036 (2)0.037 (2)0.027 (2)0.021 (2)0.014 (2)0.0057 (18)
C280.029 (2)0.028 (2)0.030 (2)0.0131 (18)0.0108 (19)0.0035 (18)
C290.091 (6)0.1460.088 (6)0.076 (4)0.019 (5)0.008 (5)
C300.054 (4)0.051 (4)0.174 (8)0.020 (3)0.054 (5)0.003 (4)
N10.0305 (19)0.0272 (18)0.0270 (19)0.0141 (16)0.0101 (16)0.0030 (15)
N20.0300 (19)0.0270 (18)0.034 (2)0.0141 (16)0.0098 (17)0.0030 (15)
N30.0307 (19)0.0263 (18)0.0230 (17)0.0164 (15)0.0100 (15)0.0027 (14)
N40.035 (2)0.0319 (19)0.0258 (18)0.0196 (16)0.0123 (16)0.0008 (15)
N50.0277 (18)0.0252 (18)0.0234 (18)0.0118 (15)0.0056 (15)0.0002 (14)
N60.0329 (19)0.0297 (19)0.0264 (18)0.0146 (16)0.0129 (16)0.0058 (15)
N70.041 (2)0.0275 (19)0.0254 (19)0.0128 (17)0.0101 (17)0.0016 (15)
O10.065 (2)0.051 (2)0.0351 (19)0.0325 (19)0.0113 (18)0.0118 (17)
P10.0266 (5)0.0229 (5)0.0218 (5)0.0120 (4)0.0084 (5)0.0000 (4)
Ru10.02684 (19)0.02058 (18)0.01927 (18)0.01138 (14)0.00723 (14)0.00071 (12)
B10.033 (3)0.034 (3)0.032 (3)0.016 (2)0.016 (2)0.005 (2)
Cl10.0489 (7)0.0335 (6)0.0332 (6)0.0221 (5)0.0186 (5)0.0047 (5)
Cl20.0614 (9)0.0593 (9)0.0913 (12)0.0243 (8)0.0402 (9)0.0124 (8)
Cl30.214 (3)0.174 (3)0.1143 (18)0.144 (3)0.102 (2)0.0540 (18)
Cl40.0808 (13)0.0562 (10)0.186 (2)0.0259 (9)0.0583 (15)0.0194 (12)
Cl50.0807 (11)0.0480 (8)0.0658 (10)0.0308 (8)0.0186 (9)0.0117 (7)
Geometric parameters (Å, º) top
C1—O11.155 (5)C20—C211.380 (7)
C2—N11.336 (5)C20—H200.9500
C2—C31.395 (7)C21—C221.384 (6)
C2—H20.9500C21—H210.9500
C3—C41.373 (7)C22—H220.9500
C3—H30.9500C23—C241.389 (6)
C4—N21.348 (6)C23—C281.400 (6)
C4—H40.9500C23—P11.838 (4)
C5—N31.341 (5)C24—C251.388 (6)
C5—C61.383 (6)C24—H240.9500
C5—H50.9500C25—C261.376 (6)
C6—C71.372 (7)C25—H250.9500
C6—H60.9500C26—C271.387 (6)
C7—N41.339 (6)C26—H260.9500
C7—H70.9500C27—C281.385 (6)
C8—N51.349 (5)C27—H270.9500
C8—C91.379 (6)C28—H280.9500
C8—H80.9500C29—Cl31.710 (8)
C9—C101.375 (7)C29—Cl21.704 (8)
C9—H90.9500C29—H29A0.9900
C10—N61.346 (5)C29—H29B0.9900
C10—H100.9500C30—Cl41.707 (6)
C11—C161.388 (6)C30—Cl51.744 (7)
C11—C121.396 (6)C30—H30A0.9900
C11—P11.833 (4)C30—H30B0.9900
C12—C131.379 (6)N1—N21.367 (5)
C12—H120.9500N2—B11.538 (6)
C13—C141.390 (7)N3—N41.359 (5)
C13—H130.9500N4—B11.543 (6)
C14—C151.372 (7)N5—N61.368 (5)
C14—H140.9500N6—B11.541 (6)
C15—C161.397 (6)N7—H7A0.9100
C15—H150.9500N7—H7B0.9100
C16—H160.9500N7—H7C0.9100
C17—C181.398 (6)B1—H11.0000
C17—C221.400 (6)Ru1—N12.121 (3)
C17—P11.838 (4)Ru1—N32.136 (3)
C18—C191.391 (6)Ru1—N52.100 (3)
C18—H180.9500Ru1—N72.132 (3)
C19—C201.365 (7)Ru1—C11.851 (5)
C19—H190.9500Ru1—P12.3581 (11)
O1—C1—Ru1175.1 (4)C25—C26—C27119.7 (4)
N1—C2—C3110.0 (4)C25—C26—H26120.1
N1—C2—H2125.0C27—C26—H26120.1
C3—C2—H2125.0C28—C27—C26120.1 (4)
C4—C3—C2105.3 (4)C28—C27—H27119.9
C4—C3—H3127.4C26—C27—H27119.9
C2—C3—H3127.4C27—C28—C23120.4 (4)
N2—C4—C3108.6 (4)C27—C28—H28119.8
N2—C4—H4125.7C23—C28—H28119.8
C3—C4—H4125.7Cl3—C29—Cl2115.3 (5)
N3—C5—C6110.1 (4)Cl3—C29—H29A108.4
N3—C5—H5125.0Cl2—C29—H29A108.4
C6—C5—H5125.0Cl3—C29—H29B108.4
C7—C6—C5105.1 (4)Cl2—C29—H29B108.4
C7—C6—H6127.5H29A—C29—H29B107.5
C5—C6—H6127.5Cl4—C30—Cl5114.3 (4)
N4—C7—C6108.9 (4)Cl4—C30—H30A108.7
N4—C7—H7125.6Cl5—C30—H30A108.7
C6—C7—H7125.6Cl4—C30—H30B108.7
N5—C8—C9110.5 (4)Cl5—C30—H30B108.7
N5—C8—H8124.7H30A—C30—H30B107.6
C9—C8—H8124.7C2—N1—N2106.9 (3)
C10—C9—C8105.3 (4)C2—N1—Ru1134.2 (3)
C10—C9—H9127.4N2—N1—Ru1118.8 (2)
C8—C9—H9127.4C4—N2—N1109.2 (4)
N6—C10—C9108.8 (4)C4—N2—B1130.9 (4)
N6—C10—H10125.6N1—N2—B1119.9 (3)
C9—C10—H10125.6C5—N3—N4106.6 (3)
C16—C11—C12118.8 (4)C5—N3—Ru1134.6 (3)
C16—C11—P1122.2 (3)N4—N3—Ru1118.7 (2)
C12—C11—P1119.0 (3)C7—N4—N3109.4 (4)
C13—C12—C11120.7 (4)C7—N4—B1130.7 (4)
C13—C12—H12119.6N3—N4—B1119.7 (3)
C11—C12—H12119.6C8—N5—N6106.2 (3)
C12—C13—C14120.1 (4)C8—N5—Ru1135.4 (3)
C12—C13—H13119.9N6—N5—Ru1118.3 (2)
C14—C13—H13119.9C10—N6—N5109.3 (3)
C15—C14—C13119.6 (4)C10—N6—B1129.6 (4)
C15—C14—H14120.2N5—N6—B1120.8 (3)
C13—C14—H14120.2Ru1—N7—H7A109.5
C14—C15—C16120.7 (4)Ru1—N7—H7B109.5
C14—C15—H15119.7H7A—N7—H7B109.5
C16—C15—H15119.7Ru1—N7—H7C109.5
C11—C16—C15120.0 (4)H7A—N7—H7C109.5
C11—C16—H16120.0H7B—N7—H7C109.5
C15—C16—H16120.0C11—P1—C23103.28 (18)
C18—C17—C22117.9 (4)C11—P1—C17103.31 (19)
C18—C17—P1123.5 (3)C23—P1—C17104.22 (18)
C22—C17—P1118.6 (3)C11—P1—Ru1114.55 (13)
C19—C18—C17120.2 (5)C23—P1—Ru1112.47 (13)
C19—C18—H18119.9C17—P1—Ru1117.45 (14)
C17—C18—H18119.9C1—Ru1—N591.82 (16)
C20—C19—C18120.8 (5)C1—Ru1—N190.69 (16)
C20—C19—H19119.6N5—Ru1—N185.37 (13)
C18—C19—H19119.6C1—Ru1—N792.17 (16)
C19—C20—C21120.1 (4)N5—Ru1—N7171.29 (14)
C19—C20—H20119.9N1—Ru1—N786.84 (14)
C21—C20—H20119.9C1—Ru1—N3174.48 (16)
C20—C21—C22119.8 (5)N5—Ru1—N388.26 (13)
C20—C21—H21120.1N1—Ru1—N383.82 (13)
C22—C21—H21120.1N7—Ru1—N387.02 (13)
C21—C22—C17121.2 (4)C1—Ru1—P193.18 (14)
C21—C22—H22119.4N5—Ru1—P191.56 (9)
C17—C22—H22119.4N1—Ru1—P1175.14 (9)
C24—C23—C28118.8 (4)N7—Ru1—P195.95 (11)
C24—C23—P1122.7 (3)N3—Ru1—P192.33 (9)
C28—C23—P1118.5 (3)N2—B1—N6107.9 (4)
C25—C24—C23120.3 (4)N2—B1—N4108.1 (3)
C25—C24—H24119.8N6—B1—N4108.7 (4)
C23—C24—H24119.8N2—B1—H1110.7
C26—C25—C24120.6 (4)N6—B1—H1110.7
C26—C25—H25119.7N4—B1—H1110.7
C24—C25—H25119.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7A···Cl1i0.912.673.454 (4)145
N7—H7C···Cl10.912.463.240 (4)143
Symmetry code: (i) x+1, y+2, z+1.
Selected bond lengths (Å) top
Ru1—N12.121 (3)Ru1—N72.132 (3)
Ru1—N32.136 (3)Ru1—C11.851 (5)
Ru1—N52.100 (3)Ru1—P12.3581 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7A···Cl1i0.912.673.454 (4)145
N7—H7C···Cl10.912.463.240 (4)143
Symmetry code: (i) x+1, y+2, z+1.
Acknowledgements top

We gratefully acknowledge financial support from the National Science Council, Taiwan (NSC 99-2113-M-133-001-MY3) and from the Project of the Specific Research Fields, Taipei Municipal University of Education, Taiwan. We also thank Mr Ting Shen Kuo (Department of Chemistry, National Taiwan Normal University) for his assistance with the X-ray single-crystal structure analysis.

references
References top

Alcock, N. W., Burns, I. D., Claire, K. S. & Hill, A. F. (1992). Inorg. Chem. 31, 2906–2908.

Burrows, A. D. (2001). CrystEngComm, 46, 1–5.

Chen, H.-G., Lo, Y.-H., Wang, H.-Y., Wu, F.-L., Hsiao, P.-I., Hsu, L.-S., Liang, Y.-R., Kuo, T.-S. & Huang, C.-C. (2010). Inorg. Chem. Commun. 13, 956–958.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Gemel, C., Trimmel, G., Slugovc, C., Kremel, S., Mereiter, K., Schmid, R. & Kirchner, K. (1996). Organometallics, 15, 3998–4004.

Lin, C.-H., Liang, Y.-R., Tong, H.-C., Lo, Y. H. & Kuo, T. S. (2008). Acta Cryst. E64, m1535.

Lo, Y.-H., Fong, Y.-H., Tong, H.-C., Liang, Y.-R., Kuo, T.-S. & Huang, C.-C. (2010). Inorg. Chem. Commun. 13, 331–333.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Pavlik, S., Mereiter, K., Puchberger, M. & Kirchner, K. (2005). Organometallics, 24, 3561–3575.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Slugovc, C., Mereiter, K., Schmid, R. & Kirchner, K. (1998). Organometallics, 17, 827–831.

Tong, H.-C., Chen Hsu, C.-Y., Liang, Y.-R., Lo, Y. H. & Lin, C.-H. (2008). Acta Cryst. E64, m1372–m1373.