supplementary materials


im2405 scheme

Acta Cryst. (2012). E68, o3126    [ doi:10.1107/S1600536812042158 ]

1-(2-Hydroxy-5-methoxyphenyl)-3-methylbut-2-en-1-one

C. T. Alexander, D. Vargas, F. R. Fronczek and S. F. Watkins

Abstract top

The title compound, C12H14O3, is a natural product derived from the medium-sized hawthorn Crataegus persimilis ('prunifolia'). The mean plane of the butene moiety is twisted by 13.27 (7)° with respect to the that of the dioxobenzaldehyde moiety. There is an intramolecular hydrogen bond between the hydroxyl group and the carbonyl O atom.

Comment top

The structure of title compound I can be described in terms of four planar moieties as defined by their constituent non-hydrogen atoms. The phenyl ring and three atoms bonded to it define the main molecular plane, with mean deviation of the defining atoms of δr.m.s. = 0.0145 (6) Å. With respect to this molecular plane, the mean plane of the carbonyl group (four atoms, δr.m.s. = 0.0044 (4) Å) and the plane of the methoxy group (three atoms) have dihedral angles of 2.50 (6)° and 4.33 (6)° respectively, while the mean plane of the butene moiety (four atoms, δr.m.s. = 0.0018 (4) Å) has dihedral angle 13.27 (7)°.

Related literature top

For isolation from plant material, see: Castro et al. (1989). For the synthesis, see: Camps et al. (1985). For photolysis to form 4-chromanones, see: Primo et al. (1982). For a related structure, see: Zeller et al. (2010).

Experimental top

Compound I was isolated as a natural product (Castro et al., 1989). It has also been synthesized (Camps et al., 1985). Suitable crystals were formed by very slow evaporation of a hexane solution over a period of three years.

Refinement top

The positional and isotropic displacement parameters of hydroxyl atom H2A were refined independently. All other H atoms were placed in calculated positions, guided by difference maps, and refined as riding. Torsional parameters for the three methyl groups were refined, with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C), while H atoms attached to sp2 C atoms have C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with displacement ellipsoids at the 50% probability level.
1-(2-Hydroxy-5-methoxyphenyl)-3-methylbut-2-en-1-one top
Crystal data top
C12H14O3F(000) = 440
Mr = 206.23Dx = 1.309 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3442 reflections
a = 14.027 (3) Åθ = 2.5–32.6°
b = 5.816 (1) ŵ = 0.09 mm1
c = 12.829 (3) ÅT = 100 K
β = 91.409 (8)°Fragment, yellow
V = 1046.3 (4) Å30.45 × 0.37 × 0.23 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3784 independent reflections
Radiation source: sealed tube3179 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.018
Detector resolution: 9 pixels mm-1θmax = 32.6°, θmin = 3.2°
φ and ω scansh = 2121
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski & Minor 1997)
k = 87
Tmin = 0.959, Tmax = 0.979l = 1919
6425 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0692P)2 + 0.2297P]
where P = (Fo2 + 2Fc2)/3
3784 reflections(Δ/σ)max = 0.001
143 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.22 e Å3
0 constraints
Crystal data top
C12H14O3V = 1046.3 (4) Å3
Mr = 206.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.027 (3) ŵ = 0.09 mm1
b = 5.816 (1) ÅT = 100 K
c = 12.829 (3) Å0.45 × 0.37 × 0.23 mm
β = 91.409 (8)°
Data collection top
Nonius KappaCCD
diffractometer
3784 independent reflections
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski & Minor 1997)
3179 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.979Rint = 0.018
6425 measured reflectionsθmax = 32.6°
Refinement top
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.127Δρmax = 0.43 e Å3
S = 1.04Δρmin = 0.22 e Å3
3784 reflectionsAbsolute structure: ?
143 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.38220 (6)1.03873 (14)0.88580 (6)0.01713 (16)
C20.31710 (6)0.89827 (14)0.93398 (6)0.01652 (15)
H20.30030.92811.00400.020*
C30.27530 (6)0.71019 (14)0.87973 (6)0.01641 (15)
C40.30238 (6)0.66752 (15)0.77617 (6)0.01796 (16)
C50.36779 (6)0.81313 (15)0.72851 (6)0.01992 (17)
H50.38530.78530.65860.024*
C60.40689 (6)0.99610 (16)0.78231 (6)0.01999 (17)
H60.45091.09440.74910.024*
C70.20366 (6)0.55840 (14)0.92711 (7)0.01901 (16)
C80.17084 (6)0.60621 (15)1.03279 (7)0.01893 (16)
H80.18970.74851.06320.023*
C90.11620 (6)0.46622 (15)1.09083 (7)0.01933 (16)
C100.08404 (7)0.54666 (17)1.19537 (7)0.02467 (19)
H10A0.10690.70371.20790.037*
H10B0.11000.44461.24980.037*
H10C0.01420.54421.19670.037*
C110.08255 (7)0.23100 (16)1.05970 (8)0.02593 (19)
H11A0.01970.24241.02510.039*
H11B0.07810.13421.12190.039*
H11C0.12790.16251.01170.039*
C120.40983 (6)1.26466 (15)1.03865 (7)0.02072 (17)
H12A0.34251.30411.04650.031*
H12B0.44971.39251.06370.031*
H12C0.42491.12631.07940.031*
O10.42786 (5)1.22263 (11)0.93148 (5)0.02247 (15)
O20.26717 (5)0.49087 (12)0.71825 (5)0.02388 (15)
H2A0.2287 (12)0.416 (3)0.7580 (14)0.052 (5)*
O30.17042 (5)0.39337 (13)0.87547 (6)0.02755 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0188 (3)0.0184 (3)0.0143 (3)0.0008 (3)0.0011 (3)0.0000 (3)
C20.0168 (3)0.0186 (3)0.0142 (3)0.0004 (3)0.0009 (3)0.0004 (3)
C30.0166 (3)0.0175 (3)0.0152 (3)0.0007 (3)0.0007 (3)0.0006 (3)
C40.0195 (3)0.0188 (3)0.0156 (3)0.0018 (3)0.0008 (3)0.0011 (3)
C50.0230 (4)0.0234 (4)0.0134 (3)0.0002 (3)0.0018 (3)0.0006 (3)
C60.0226 (4)0.0235 (4)0.0140 (3)0.0026 (3)0.0031 (3)0.0010 (3)
C70.0181 (3)0.0192 (4)0.0198 (4)0.0002 (3)0.0004 (3)0.0002 (3)
C80.0179 (3)0.0191 (3)0.0199 (4)0.0006 (3)0.0027 (3)0.0002 (3)
C90.0157 (3)0.0199 (4)0.0224 (4)0.0013 (3)0.0007 (3)0.0035 (3)
C100.0241 (4)0.0267 (4)0.0236 (4)0.0015 (3)0.0071 (3)0.0029 (3)
C110.0265 (4)0.0208 (4)0.0305 (5)0.0040 (3)0.0023 (4)0.0039 (3)
C120.0243 (4)0.0223 (4)0.0157 (3)0.0029 (3)0.0026 (3)0.0027 (3)
O10.0286 (3)0.0238 (3)0.0153 (3)0.0094 (2)0.0052 (2)0.0030 (2)
O20.0301 (3)0.0225 (3)0.0190 (3)0.0042 (3)0.0017 (3)0.0051 (2)
O30.0317 (4)0.0260 (3)0.0251 (3)0.0101 (3)0.0034 (3)0.0049 (3)
Geometric parameters (Å, º) top
C1—O11.3708 (10)C8—H80.95
C1—C21.3824 (11)C9—C111.4982 (13)
C1—C61.4023 (12)C9—C101.5003 (13)
C2—C31.4159 (11)C10—H10A0.98
C2—H20.95C10—H10B0.98
C3—C41.4127 (12)C10—H10C0.98
C3—C71.4795 (12)C11—H11A0.98
C4—O21.3540 (10)C11—H11B0.98
C4—C51.4002 (12)C11—H11C0.98
C5—C61.3751 (12)C12—O11.4251 (11)
C5—H50.95C12—H12A0.98
C6—H60.95C12—H12B0.98
C7—O31.2499 (11)C12—H12C0.98
C7—C81.4690 (12)O2—H2A0.870 (18)
C8—C91.3538 (12)
O1—C1—C2125.22 (7)C8—C9—C11125.55 (8)
O1—C1—C6114.77 (7)C8—C9—C10119.40 (8)
C2—C1—C6120.00 (8)C11—C9—C10115.05 (8)
C1—C2—C3120.46 (7)C9—C10—H10A109.5
C1—C2—H2119.8C9—C10—H10B109.5
C3—C2—H2119.8H10A—C10—H10B109.5
C4—C3—C2118.71 (7)C9—C10—H10C109.5
C4—C3—C7118.86 (7)H10A—C10—H10C109.5
C2—C3—C7122.43 (7)H10B—C10—H10C109.5
O2—C4—C5116.96 (8)C9—C11—H11A109.5
O2—C4—C3123.13 (8)C9—C11—H11B109.5
C5—C4—C3119.91 (8)H11A—C11—H11B109.5
C6—C5—C4120.43 (8)C9—C11—H11C109.5
C6—C5—H5119.8H11A—C11—H11C109.5
C4—C5—H5119.8H11B—C11—H11C109.5
C5—C6—C1120.48 (8)O1—C12—H12A109.5
C5—C6—H6119.8O1—C12—H12B109.5
C1—C6—H6119.8H12A—C12—H12B109.5
O3—C7—C8120.88 (8)O1—C12—H12C109.5
O3—C7—C3119.26 (8)H12A—C12—H12C109.5
C8—C7—C3119.85 (7)H12B—C12—H12C109.5
C9—C8—C7126.04 (8)C1—O1—C12117.01 (7)
C9—C8—H8117C4—O2—H2A106.4 (12)
C7—C8—H8117
O1—C1—C2—C3178.95 (8)C2—C1—C6—C50.92 (13)
C6—C1—C2—C30.33 (13)C4—C3—C7—O31.59 (12)
C1—C2—C3—C40.82 (12)C2—C3—C7—O3179.06 (8)
C1—C2—C3—C7178.54 (8)C4—C3—C7—C8176.96 (7)
C2—C3—C4—O2179.35 (7)C2—C3—C7—C82.39 (12)
C7—C3—C4—O21.28 (12)O3—C7—C8—C911.11 (14)
C2—C3—C4—C51.39 (12)C3—C7—C8—C9170.37 (8)
C7—C3—C4—C5177.99 (8)C7—C8—C9—C112.89 (14)
O2—C4—C5—C6179.87 (8)C7—C8—C9—C10176.50 (8)
C3—C4—C5—C60.82 (13)C2—C1—O1—C123.14 (12)
C4—C5—C6—C10.34 (13)C6—C1—O1—C12176.18 (8)
O1—C1—C6—C5178.43 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O30.87 (2)1.74 (2)2.523 (1)149 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O30.87 (2)1.74 (2)2.523 (1)149 (2)
Acknowledgements top

The purchase of the diffractometer was made possible by grant No. LEQSF (1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

references
References top

Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.

Camps, F., Coll, J., Colomina, O. & Messeguer, A. (1985). J. Heterocycl. Chem. 22, 363–368.

Castro, V., Tamayo-Castillo, G. & Jakupovic, J. (1989). Phytochemistry, 28, 2415–2418.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Primo, J., Tormo, R. & Miranda, M. A. (1982). Heterocycles, 19, 1819–1822.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Zeller, M., Sridharan, M., Rajendra Prasad, K. J. & Ngendahimana, A. (2010). Acta Cryst. E66, o297–o298.