supplementary materials


nc2292 scheme

Acta Cryst. (2012). E68, m1352-m1353    [ doi:10.1107/S1600536812041852 ]

(Acetato-[kappa]O)(acetato-[kappa]O,O')bis(1,3-diazinane-2-thione-[kappa]S)cadmium(II)

R. Mahmood, S. Ghulam Hussain, M. Fettouhi, A. A. Isab and S. Ahmad

Abstract top

In the title complex, [Cd(CH3COO)2(C4H8N2S)2], the CdII cation is coordinated by three acetate O atoms and two S atoms of Diaz [Diaz = 1,3-diazinane-2-thione = 3,4,5,6-tetrahydropyrimidine-2(1H)-thione]. The CdII coordination is augmented by one considerably longer Cd-O bond of 2.782 (3) Å to a carboxylate O atom. The resulting coordination polyhedron around the CdII cations can be described as a highly distorted octahedron. The Diaz ligand and the acetate anions are linked by N-H...O hydrogen-bonding interactions.

Comment top

The structural reports on cadmium(II) complexes of thiones describe that in most of the cases, the cadmium(II) complexes exist as neutral monomeric (Ahmad et al. 2011, 2012; Beheshti et al., 2007; Lobana et al. 2008; Nawaz et al., 2010; Wazeer et al., 2007) or polymeric (Moloto et al., 2007; Wang et al., 2002) with cadmium atom possessing a tetrahedral or distorted octahedral coordination environment respectively. In continuation of our studies on the structural chemistry of cadmium(II) complexes with thione ligands, we report here the crystal structure of the title compound. The crystal structure of the title complex (Figure 1) consists of discrete monomeric species in which the Cd(II) ion is bound to two sulfur Diaz atoms, two oxygen atoms belonging to a chelating acetate and a third oxygen atom of a second acetate anion. The Cd—S bond distances are 2.5787 (8) and 2.529 (1) Å respectively while the Cd—O bond distances are in the range of 2.266 (2)- 2.421 (2) Å. In addition, a secondary bonding interaction takes place with the second oxygen of one acetate anion with a distance of 2.782 (3) Å. The van der Waals radii for cadmium and oxygen are 1.58 and 1.52 Å respectively (Bondi, 1964). Considering the secondary bonding, the geometry could be considered as highly distorted octahedral. The S—Cd—S bond angle is 97.02 (3) °, the O—Cd—O bond angle for the bidentate acetate ligand is 53.86 (7) ° and the S—Cd—O bond angles vary from 92.37 (5) ° to 144.34 (6) °. The Cd—S and Cd—O bond lengths are in agreement with those reported for related compounds. Two intramolecular (N—H···O) hydrogen bonds are found between the Diaz ligands and acetate anions. The discrte complex molecules are also linked by intermolecular N—H···O hydrogen bonding (Table 1).

Related literature top

For crystal structures of CdII complexes of thiones, see: Ahmad et al. (2011, 2012); Altaf et al. (2011); Beheshti et al. (2007); Lobana et al. (2008); Nawaz et al. (2010); Moloto et al. (2003, 2007); Wang et al. (2002); Wazeer et al. (2007). For van der Waals radii, see: Bondi (1964).

Experimental top

The title complex was prepared by adding 0.24 g (2.0 mmol) of 1,3-diazinane-2-thione in 15 ml of methanol to an aqueous solution (5 ml) of 0.26 g (1.0 mmol) cadmium sulfate in water followed by addition of 2 equivalents of sodium acetate in 10 ml water and stirring the mixture for 30 minutes. The colorless solution was filtered and the filtrate was kept at room temperature for crystallization. As a result, white crystalline product was obtained, that was washed with methanol and dried.

Refinement top

All H atoms were placed in calculated positions and were refined isotropic with Uiso(H) = 1.2Ueq(C,N) (1.5 for methyl H atoms) using a riding model with C—H distances of 0.96 Å and 0.97 Å and N—H distances of 0.86 Å.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and dashed lines indicate intramolecular hydrogen bonding and the secondary Cd···O interaction.
(Acetato-κO)(acetato-κO,O')bis(1,3-diazinane-2-thione- κS)cadmium(II) top
Crystal data top
[Cd(C2H3O2)2(C4H8N2S)2]Z = 2
Mr = 462.86F(000) = 468
Triclinic, P1Dx = 1.597 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6930 (17) ÅCell parameters from 13173 reflections
b = 10.175 (2) Åθ = 1.7–28.3°
c = 12.203 (2) ŵ = 1.37 mm1
α = 97.452 (4)°T = 294 K
β = 100.683 (4)°Block, colourless
γ = 111.610 (3)°0.19 × 0.18 × 0.10 mm
V = 962.6 (3) Å3
Data collection top
Bruker SMART APEX area-detector
diffractometer
4775 independent reflections
Radiation source: normal-focus sealed tube3705 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.781, Tmax = 0.875k = 1313
13173 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0408P)2 + 0.0579P]
where P = (Fo2 + 2Fc2)/3
4775 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Cd(C2H3O2)2(C4H8N2S)2]γ = 111.610 (3)°
Mr = 462.86V = 962.6 (3) Å3
Triclinic, P1Z = 2
a = 8.6930 (17) ÅMo Kα radiation
b = 10.175 (2) ŵ = 1.37 mm1
c = 12.203 (2) ÅT = 294 K
α = 97.452 (4)°0.19 × 0.18 × 0.10 mm
β = 100.683 (4)°
Data collection top
Bruker SMART APEX area-detector
diffractometer
4775 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3705 reflections with I > 2σ(I)
Tmin = 0.781, Tmax = 0.875Rint = 0.024
13173 measured reflectionsθmax = 28.3°
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.082Δρmax = 0.47 e Å3
S = 1.02Δρmin = 0.43 e Å3
4775 reflectionsAbsolute structure: ?
210 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.71521 (3)0.17566 (2)0.769239 (17)0.05732 (9)
S10.98165 (9)0.11886 (8)0.77361 (6)0.05721 (17)
S20.73948 (12)0.30728 (12)0.60691 (8)0.0827 (3)
O10.5230 (3)0.0768 (2)0.69890 (17)0.0679 (5)
O20.4199 (3)0.0743 (2)0.76067 (19)0.0713 (6)
O30.7698 (3)0.2558 (2)0.96021 (19)0.0753 (6)
O40.6916 (4)0.4146 (3)0.8923 (2)0.1107 (10)
N11.0593 (3)0.1951 (2)1.00174 (18)0.0515 (5)
H10.96150.20070.99170.062*
N21.2447 (3)0.1265 (3)0.92374 (19)0.0569 (6)
H21.27310.09890.86380.068*
N30.4916 (3)0.3743 (3)0.6630 (2)0.0655 (6)
H30.56400.41520.72830.079*
N40.4398 (3)0.2662 (3)0.4764 (2)0.0677 (7)
H40.47570.23140.42330.081*
C11.1027 (3)0.1503 (3)0.9105 (2)0.0464 (5)
C21.1658 (4)0.2360 (3)1.1187 (2)0.0595 (7)
H2A1.12360.15811.15790.071*
H2B1.15970.32161.15960.071*
C31.3496 (4)0.2664 (3)1.1175 (3)0.0623 (7)
H3A1.40040.35731.09450.075*
H3B1.41500.27451.19350.075*
C41.3539 (4)0.1449 (3)1.0350 (3)0.0612 (7)
H4A1.47020.16701.02920.073*
H4B1.31430.05591.06240.073*
C50.5411 (4)0.3152 (3)0.5810 (2)0.0593 (7)
C60.2707 (4)0.2682 (4)0.4463 (3)0.0800 (10)
H6A0.19560.18550.38540.096*
H6B0.27840.35560.41960.096*
C70.2012 (5)0.2632 (5)0.5474 (3)0.0978 (13)
H7A0.17350.16790.56450.117*
H7B0.09620.27830.53050.117*
C80.3232 (4)0.3746 (4)0.6498 (3)0.0768 (9)
H8A0.32820.46950.64130.092*
H8B0.28350.35440.71740.092*
C90.4005 (3)0.0511 (3)0.7195 (2)0.0561 (6)
C100.2272 (4)0.1727 (4)0.6978 (4)0.0892 (11)
H10A0.21250.20380.76760.134*
H10B0.21830.25230.64160.134*
H10C0.14010.13950.67040.134*
C110.7493 (3)0.3726 (3)0.9725 (2)0.0574 (7)
C120.7991 (5)0.4611 (3)1.0914 (3)0.0779 (10)
H12A0.92140.50381.11880.117*
H12B0.75040.40011.14060.117*
H12C0.75730.53631.09110.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.05297 (13)0.06353 (14)0.05545 (14)0.02626 (10)0.00898 (9)0.01124 (9)
S10.0544 (4)0.0699 (4)0.0480 (4)0.0297 (3)0.0097 (3)0.0057 (3)
S20.0714 (5)0.1273 (8)0.0748 (6)0.0542 (6)0.0299 (4)0.0473 (5)
O10.0557 (11)0.0753 (13)0.0716 (13)0.0327 (10)0.0119 (10)0.0007 (10)
O20.0577 (12)0.0688 (13)0.0832 (15)0.0238 (10)0.0231 (11)0.0012 (11)
O30.0630 (13)0.0762 (14)0.0839 (15)0.0388 (11)0.0061 (11)0.0071 (11)
O40.164 (3)0.0721 (16)0.0651 (16)0.0344 (17)0.0127 (16)0.0102 (12)
N10.0450 (11)0.0592 (13)0.0509 (13)0.0223 (10)0.0126 (9)0.0096 (10)
N20.0503 (13)0.0674 (14)0.0554 (13)0.0291 (11)0.0123 (10)0.0068 (11)
N30.0695 (16)0.0747 (16)0.0498 (14)0.0336 (13)0.0068 (11)0.0033 (12)
N40.0780 (17)0.0855 (18)0.0496 (14)0.0462 (15)0.0164 (12)0.0077 (12)
C10.0436 (13)0.0442 (13)0.0503 (14)0.0163 (11)0.0129 (10)0.0093 (11)
C20.0680 (18)0.0619 (17)0.0464 (15)0.0261 (14)0.0098 (13)0.0115 (12)
C30.0562 (17)0.0582 (16)0.0622 (18)0.0188 (13)0.0008 (13)0.0114 (13)
C40.0504 (15)0.0641 (17)0.0674 (18)0.0255 (14)0.0046 (13)0.0162 (14)
C50.0674 (18)0.0646 (17)0.0522 (16)0.0305 (15)0.0159 (14)0.0206 (13)
C60.078 (2)0.100 (3)0.0587 (19)0.045 (2)0.0041 (16)0.0017 (17)
C70.071 (2)0.147 (4)0.068 (2)0.046 (2)0.0096 (18)0.000 (2)
C80.078 (2)0.093 (2)0.066 (2)0.0462 (19)0.0191 (16)0.0012 (17)
C90.0519 (15)0.0685 (18)0.0475 (15)0.0267 (14)0.0096 (12)0.0082 (13)
C100.066 (2)0.077 (2)0.110 (3)0.0162 (18)0.0223 (19)0.004 (2)
C110.0501 (15)0.0525 (16)0.0573 (17)0.0102 (12)0.0139 (12)0.0025 (13)
C120.093 (2)0.0612 (19)0.0603 (19)0.0145 (17)0.0210 (17)0.0023 (15)
Geometric parameters (Å, º) top
Cd1—O32.266 (2)C2—C31.515 (4)
Cd1—O22.364 (2)C2—H2A0.9700
Cd1—O12.421 (2)C2—H2B0.9700
Cd1—S22.5291 (10)C3—C41.507 (4)
Cd1—S12.5787 (8)C3—H3A0.9700
Cd1—O42.782 (3)C3—H3B0.9700
S1—C11.721 (3)C4—H4A0.9700
S2—C51.728 (3)C4—H4B0.9700
O1—C91.245 (3)C6—C71.470 (5)
O2—C91.247 (3)C6—H6A0.9700
O3—C111.259 (4)C6—H6B0.9700
O4—C111.215 (4)C7—C81.492 (5)
N1—C11.319 (3)C7—H7A0.9700
N1—C21.462 (3)C7—H7B0.9700
N1—H10.8600C8—H8A0.9700
N2—C11.329 (3)C8—H8B0.9700
N2—C41.451 (3)C9—C101.505 (4)
N2—H20.8600C10—H10A0.9600
N3—C51.320 (4)C10—H10B0.9600
N3—C81.444 (4)C10—H10C0.9600
N3—H30.8600C11—C121.499 (4)
N4—C51.322 (4)C12—H12A0.9600
N4—C61.456 (4)C12—H12B0.9600
N4—H40.8600C12—H12C0.9600
O3—Cd1—O289.05 (8)H3A—C3—H3B108.3
O3—Cd1—O1114.48 (8)N2—C4—C3109.3 (2)
O2—Cd1—O153.86 (7)N2—C4—H4A109.8
O3—Cd1—S2132.00 (7)C3—C4—H4A109.8
O2—Cd1—S2105.07 (6)N2—C4—H4B109.8
O1—Cd1—S2110.65 (6)C3—C4—H4B109.8
O3—Cd1—S196.66 (5)H4A—C4—H4B108.3
O2—Cd1—S1144.34 (6)N3—C5—N4119.3 (3)
O1—Cd1—S192.37 (5)N3—C5—S2121.1 (2)
S2—Cd1—S197.02 (3)N4—C5—S2119.5 (2)
O3—Cd1—O449.63 (8)N4—C6—C7109.1 (3)
O2—Cd1—O481.01 (8)N4—C6—H6A109.9
O1—Cd1—O4134.07 (8)C7—C6—H6A109.9
S2—Cd1—O486.90 (6)N4—C6—H6B109.9
S1—Cd1—O4128.48 (7)C7—C6—H6B109.9
C1—S1—Cd1112.35 (9)H6A—C6—H6B108.3
C5—S2—Cd198.79 (10)C6—C7—C8112.5 (3)
C9—O1—Cd191.30 (17)C6—C7—H7A109.1
C9—O2—Cd193.95 (17)C8—C7—H7A109.1
C11—O3—Cd1105.62 (19)C6—C7—H7B109.1
C11—O4—Cd181.81 (19)C8—C7—H7B109.1
C1—N1—C2124.6 (2)H7A—C7—H7B107.8
C1—N1—H1117.7N3—C8—C7110.3 (3)
C2—N1—H1117.7N3—C8—H8A109.6
C1—N2—C4122.8 (2)C7—C8—H8A109.6
C1—N2—H2118.6N3—C8—H8B109.6
C4—N2—H2118.6C7—C8—H8B109.6
C5—N3—C8124.0 (2)H8A—C8—H8B108.1
C5—N3—H3118.0O1—C9—O2120.9 (3)
C8—N3—H3118.0O1—C9—C10120.2 (3)
C5—N4—C6123.5 (2)O2—C9—C10118.9 (3)
C5—N4—H4118.3C9—C10—H10A109.5
C6—N4—H4118.3C9—C10—H10B109.5
N1—C1—N2119.2 (2)H10A—C10—H10B109.5
N1—C1—S1122.82 (19)C9—C10—H10C109.5
N2—C1—S1117.95 (19)H10A—C10—H10C109.5
N1—C2—C3110.1 (2)H10B—C10—H10C109.5
N1—C2—H2A109.6O4—C11—O3122.5 (3)
C3—C2—H2A109.6O4—C11—C12119.9 (3)
N1—C2—H2B109.6O3—C11—C12117.6 (3)
C3—C2—H2B109.6C11—C12—H12A109.5
H2A—C2—H2B108.2C11—C12—H12B109.5
C4—C3—C2109.2 (2)H12A—C12—H12B109.5
C4—C3—H3A109.8C11—C12—H12C109.5
C2—C3—H3A109.8H12A—C12—H12C109.5
C4—C3—H3B109.8H12B—C12—H12C109.5
C2—C3—H3B109.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.861.942.779 (3)167
N3—H3···O40.862.102.897 (4)154
N2—H2···O2i0.862.012.829 (3)160
N4—H4···O1ii0.862.032.836 (3)156
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.861.942.779 (3)166.6
N3—H3···O40.862.102.897 (4)153.5
N2—H2···O2i0.862.012.829 (3)160.0
N4—H4···O1ii0.862.032.836 (3)156.3
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1.
Acknowledgements top

The authors gratefully acknowledge King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, for providing X-ray facilities.

references
References top

Ahmad, S., Altaf, M., Stoeckli-Evans, H., Isab, A. A., Malik, M. R., Ali, S. & Shuja, S. (2011). J. Chem. Crystallogr. 41, 1099–1104.

Ahmad, S., Amir, Q., Naz, G., Fettouhi, M., Isab, A. A., Rüffer, T. & Lang, H. (2012). J. Chem. Crystallogr. 42, 615–620.

Altaf, M., Stoeckli Evans, H., Murtaza, G., Isab, A. A., Ahmad, S. & Shaheen, M. A. (2011). J. Struct. Chem. 52, 625–630.

Beheshti, A., Clegg, W., Dale, S. H. & Hyvadi, R. (2007). Inorg. Chim. Acta, 360, 2967–2972.

Bondi, A. (1964). J. Phys. Chem. 68, 441–451.

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Lobana, T. S., Sharma, R., Sharma, R., Sultana, R. & Butcher, R. J. (2008). Z. Anorg. Allg. Chem. 634, 718–723.

Moloto, M. J., Malik, M. A., O'Brien, P., Motevalli, M. & Kolawole, G. A. (2003). Polyhedron, 22, 595–603.

Moloto, N., Revaprasadu, N., Moloto, M. J., O'Brien, P. & Helliwell, M. (2007). Polyhedron, 26, 3947–3955.

Nawaz, S., Sadaf, S., Fettouhi, M., Fazal, A. & Ahmad, S. (2010). Acta Cryst. E66, m950.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wang, X. Q., Yu, W. T., Xu, D., Lu, M. K. & Yuan, D. R. (2002). Acta Cryst. C58, m336–m337.

Wazeer, M. I. M., Isab, A. A. & Fettouhi, M. (2007). Polyhedron, 26, 1725–1730.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.