supplementary materials


nc2295 scheme

Acta Cryst. (2012). E68, m1368    [ doi:10.1107/S1600536812042456 ]

Potassium N-bromo-2,4-dichlorobenzenesulfonamidate sesquihydrate

B. T. Gowda, S. Foro and H. S. Spandana

Abstract top

The asymmetric unit of the title salt, K+·C6H3BrCl2NO2S-·1.5H2O, contains one K+ cation, one N-bromo-2,4-dichlorobenzenesulfonamidate anion, one water molecule in general position and one water molecule located on a twofold rotation axis. The K+ cation is hepta-coordinated by three water O atoms and four sulfonyl O atoms from three symmetry-related N-bromo-2,4-dichlorobenzenesulfonamide anions. The S=N distance of 1.575 (3) Å is consistent with that of a double bond. In the crystal, the anions are linked by O-H...Br and O-H...N hydrogen bonds into layers parallel to the ac plane.

Comment top

The present work was undertaken in order to explore the effect of replacing sodium ion by potassium ion on the solid state structures of metal salts of N-haloarylsulfonamidates (Gowda et al., 2007, 2011a,b). As part of this work, the structure of potassium N-bromo-2,4-dichlorobenzenesulfonamidate sesquihydrate (I) has been determined (Fig. 1). The structure of (I) resembles those of potassium N-bromo-2-chlorobenzenesulfonamidate sesquihydrate (II) (Gowda et al., 2011a), potassium N-bromo-4-chlorobenzenesulfonamidate sesquihydrate (III) (Gowda et al., 2011b), sodium N-bromo-2,4-dichlorobenzenesulfonamidate sesquihydrate (IV) (Gowda et al., 2007) and other sodium N-chloro-arylsulfonamidates (George et al., 2000; Olmstead & Power, 1986).

In the title compound, K+ ion is hepta coordinated by three O atoms from water molecules and four sulfonyl O atoms of three different N-bromo-2,4-dichlorobenzenesulfonamide anions. The replacement of Na+ by K+ changes co-ordination from hexa to hepta in the structure (Gowda et al., 2007) and other parameters.

The S—N distance of 1.575 (3) Å is consistent with a S—N double bond and is in agreement with the observed values of 1.582 (4) Å in (II), 1.584 (6) Å in (III) and 1.590 (6) Å in (IV).

The asymmetric unit of (I) consists of one potassium cation, one N-bromo-2,4-dichlorobenzenesulfonamidate anion and one water molecule in general position and and one water molecule located on a twofold rotation axis.

In the crystal structure the anions are linked by intermolecular O—H···Br and O—H···N hydrogen bonding into layers, that are parallel to the ac plane (Fig. 2 and Table 1).

Related literature top

For preparation of N-haloarylsulfonamides, see: Gowda & Mahadevappa (1983). For studies of the effect of substituents on the structures of N-haloarylsulfonamides, see: George et al. (2000); Gowda et al. (2007, 2011a,b); Olmstead & Power (1986).

Experimental top

The title compound was prepared by a method similar to the one described by Gowda & Mahadevappa (Gowda & Mahadevappa, 1983). 2 g of 2,4-dichlorobenzenesulfonamide was dissolved with stirring in 40 ml of 5M KOH at room temperature. The resultant solution was cooled in ice and 4 ml of liquid bromine was added drop wise with constant stirring. The resultant potassium salt of N-bromo-2,4-dichlorobenzenesulfonamide was filtered under suction, washed quickly with a minimum quantity of ice cold water. The purity of the compound was checked by determining its melting point (203–205° C) and estimating, iodometrically, the amount of active bromine present in it. It was further characterized from its infrared spectrum.

Prism like yellow single crystals of the title compound used in the X-ray diffraction studies were obtained from its aqueous solution at room temperature.

Refinement top

H atoms bonded to C were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å. The H atoms bound to O atoms were located in difference map and later restrained to O—H = 0.82 (2) Å. All H atoms were refined with isotropic displacement parameters set at 1.2 Ueq of the parent atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme for the asymmetric unit and extended to show the coordination geometry for the K+. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
Potassium N-bromo-2,4-dichlorobenzenesulfonamidate sesquihydrate top
Crystal data top
K+·C6H3BrCl2NO2S·1.5H2OF(000) = 1448
Mr = 740.18Dx = 1.975 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2489 reflections
a = 12.5263 (7) Åθ = 3.0–27.7°
b = 6.7638 (4) ŵ = 4.22 mm1
c = 29.703 (2) ÅT = 293 K
β = 98.352 (5)°Prism, yellow
V = 2489.9 (3) Å30.32 × 0.32 × 0.28 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
2535 independent reflections
Radiation source: fine-focus sealed tube2204 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Rotation method data acquisition using ω scans.θmax = 26.4°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1513
Tmin = 0.345, Tmax = 0.384k = 85
4960 measured reflectionsl = 3722
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0429P)2 + 8.3581P]
where P = (Fo2 + 2Fc2)/3
2535 reflections(Δ/σ)max = 0.001
150 parametersΔρmax = 0.76 e Å3
3 restraintsΔρmin = 0.65 e Å3
Crystal data top
K+·C6H3BrCl2NO2S·1.5H2OV = 2489.9 (3) Å3
Mr = 740.18Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.5263 (7) ŵ = 4.22 mm1
b = 6.7638 (4) ÅT = 293 K
c = 29.703 (2) Å0.32 × 0.32 × 0.28 mm
β = 98.352 (5)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
2535 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2204 reflections with I > 2σ(I)
Tmin = 0.345, Tmax = 0.384Rint = 0.014
4960 measured reflectionsθmax = 26.4°
Refinement top
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093Δρmax = 0.76 e Å3
S = 1.09Δρmin = 0.65 e Å3
2535 reflectionsAbsolute structure: ?
150 parametersFlack parameter: ?
3 restraintsRogers parameter: ?
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0780 (3)0.4566 (5)0.11591 (11)0.0271 (7)
C20.1438 (3)0.3775 (5)0.08637 (12)0.0317 (7)
C30.1538 (3)0.4716 (6)0.04598 (12)0.0392 (9)
H30.19800.41920.02640.047*
C40.0974 (3)0.6446 (6)0.03496 (13)0.0426 (9)
C50.0320 (3)0.7248 (6)0.06337 (14)0.0447 (9)
H50.00560.84130.05560.054*
C60.0228 (3)0.6302 (5)0.10361 (13)0.0367 (8)
H60.02140.68410.12300.044*
Br10.11245 (3)0.10625 (6)0.130655 (14)0.04440 (14)
Cl10.21550 (9)0.15999 (15)0.09788 (4)0.0485 (3)
Cl20.10726 (10)0.7571 (2)0.01671 (4)0.0650 (4)
K10.34306 (6)0.13766 (12)0.23492 (3)0.0366 (2)
N10.0277 (2)0.1274 (4)0.16389 (10)0.0319 (6)
O10.1712 (2)0.3416 (4)0.19584 (8)0.0386 (6)
O20.0093 (2)0.4804 (4)0.18845 (8)0.0383 (6)
O30.2037 (2)0.1486 (4)0.19206 (10)0.0426 (6)
H310.234 (3)0.195 (7)0.1725 (12)0.051*
H320.155 (3)0.088 (6)0.1774 (14)0.051*
O40.50000.4277 (6)0.25000.0471 (10)
H410.490 (4)0.502 (6)0.2710 (11)0.056*
S10.06429 (7)0.34987 (12)0.16983 (3)0.02745 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0271 (16)0.0256 (16)0.0280 (16)0.0039 (13)0.0014 (12)0.0003 (13)
C20.0261 (16)0.0319 (18)0.0371 (18)0.0031 (14)0.0042 (14)0.0000 (15)
C30.0350 (19)0.048 (2)0.0364 (19)0.0108 (17)0.0109 (15)0.0008 (17)
C40.040 (2)0.048 (2)0.038 (2)0.0161 (18)0.0006 (16)0.0113 (17)
C50.047 (2)0.036 (2)0.050 (2)0.0043 (18)0.0016 (18)0.0116 (18)
C60.0359 (19)0.0322 (18)0.041 (2)0.0040 (15)0.0036 (15)0.0029 (15)
Br10.0342 (2)0.0494 (3)0.0498 (2)0.00725 (17)0.00672 (16)0.01193 (18)
Cl10.0484 (6)0.0376 (5)0.0645 (7)0.0110 (4)0.0250 (5)0.0029 (5)
Cl20.0592 (7)0.0857 (9)0.0483 (6)0.0170 (6)0.0024 (5)0.0322 (6)
K10.0312 (4)0.0354 (4)0.0423 (4)0.0051 (3)0.0021 (3)0.0034 (3)
N10.0307 (15)0.0279 (15)0.0373 (16)0.0006 (12)0.0060 (12)0.0047 (12)
O10.0373 (14)0.0399 (14)0.0353 (14)0.0026 (11)0.0064 (11)0.0010 (11)
O20.0444 (15)0.0387 (14)0.0339 (13)0.0094 (12)0.0130 (11)0.0046 (11)
O30.0475 (17)0.0380 (15)0.0434 (16)0.0052 (12)0.0099 (13)0.0004 (12)
O40.073 (3)0.031 (2)0.041 (2)0.0000.022 (2)0.000
S10.0302 (4)0.0260 (4)0.0260 (4)0.0028 (3)0.0033 (3)0.0000 (3)
Geometric parameters (Å, º) top
C1—C61.384 (5)K1—O32.788 (3)
C1—C21.395 (5)K1—O1iii2.895 (3)
C1—S11.787 (3)K1—O2iii3.045 (3)
C2—C31.380 (5)K1—S1iii3.4910 (12)
C2—Cl11.732 (4)N1—S11.575 (3)
C3—C41.381 (6)O1—S11.447 (3)
C3—H30.9300O1—K1ii2.895 (3)
C4—C51.370 (6)O2—S11.443 (3)
C4—Cl21.734 (4)O2—K1iv2.683 (2)
C5—C61.375 (5)O2—K1ii3.045 (3)
C5—H50.9300O3—K1iii2.740 (3)
C6—H60.9300O3—H310.802 (19)
Br1—N11.890 (3)O3—H320.808 (19)
K1—O12.675 (3)O4—K1v2.767 (3)
K1—O2i2.683 (2)O4—H410.820 (19)
K1—O3ii2.740 (3)S1—K1ii3.4910 (12)
K1—O42.767 (3)
C6—C1—C2118.5 (3)O3—K1—K1v130.38 (6)
C6—C1—S1118.0 (3)O1iii—K1—K1v90.06 (6)
C2—C1—S1123.4 (3)O2iii—K1—K1v43.27 (5)
C3—C2—C1120.4 (3)S1iii—K1—K1v66.97 (2)
C3—C2—Cl1117.0 (3)O1—K1—K1iii94.01 (7)
C1—C2—Cl1122.6 (3)O2i—K1—K1iii103.41 (6)
C2—C3—C4119.3 (4)O3ii—K1—K1iii93.78 (7)
C2—C3—H3120.4O4—K1—K1iii157.36 (5)
C4—C3—H3120.4O3—K1—K1iii38.92 (6)
C5—C4—C3121.4 (4)O1iii—K1—K1iii38.01 (5)
C5—C4—Cl2119.8 (3)O2iii—K1—K1iii84.35 (5)
C3—C4—Cl2118.8 (3)S1iii—K1—K1iii61.08 (2)
C4—C5—C6118.9 (4)K1v—K1—K1iii120.90 (2)
C4—C5—H5120.5O1—K1—K1ii41.78 (6)
C6—C5—H5120.5O2i—K1—K1ii149.20 (6)
C5—C6—C1121.5 (4)O3ii—K1—K1ii39.74 (6)
C5—C6—H6119.2O4—K1—K1ii78.55 (6)
C1—C6—H6119.2O3—K1—K1ii108.70 (7)
O1—K1—O2i123.54 (8)O1iii—K1—K1ii107.85 (6)
O1—K1—O3ii79.66 (9)O2iii—K1—K1ii117.01 (6)
O2i—K1—O3ii149.20 (9)S1iii—K1—K1ii113.48 (3)
O1—K1—O4102.28 (8)K1v—K1—K1ii120.90 (2)
O2i—K1—O480.66 (7)K1iii—K1—K1ii104.55 (3)
O3ii—K1—O474.11 (7)S1—N1—Br1111.33 (16)
O1—K1—O375.45 (8)S1—O1—K1151.14 (16)
O2i—K1—O385.56 (9)S1—O1—K1ii101.80 (13)
O3ii—K1—O3122.44 (5)K1—O1—K1ii100.21 (8)
O4—K1—O3161.68 (7)S1—O2—K1iv165.01 (16)
O1—K1—O1iii122.42 (5)S1—O2—K1ii95.45 (12)
O2i—K1—O1iii102.09 (8)K1iv—O2—K1ii85.68 (7)
O3ii—K1—O1iii76.13 (8)K1iii—O3—K1101.34 (10)
O4—K1—O1iii119.42 (6)K1iii—O3—H31123 (4)
O3—K1—O1iii75.21 (8)K1—O3—H31106 (4)
O1—K1—O2iii157.55 (8)K1iii—O3—H32117 (4)
O2i—K1—O2iii78.37 (9)K1—O3—H32106 (3)
O3ii—K1—O2iii78.12 (8)H31—O3—H32102 (5)
O4—K1—O2iii74.58 (7)K1—O4—K1v89.71 (12)
O3—K1—O2iii114.43 (8)K1—O4—H41112 (3)
O1iii—K1—O2iii48.19 (7)K1v—O4—H41119 (3)
O1—K1—S1iii142.27 (7)O2—S1—O1114.34 (16)
O2i—K1—S1iii91.31 (6)O2—S1—N1115.83 (16)
O3ii—K1—S1iii74.74 (7)O1—S1—N1104.73 (16)
O4—K1—S1iii96.86 (5)O2—S1—C1104.25 (15)
O3—K1—S1iii95.47 (7)O1—S1—C1107.00 (16)
O1iii—K1—S1iii23.94 (5)N1—S1—C1110.46 (16)
O2iii—K1—S1iii24.30 (5)O2—S1—K1ii60.25 (11)
O1—K1—K1v145.05 (6)O1—S1—K1ii54.26 (11)
O2i—K1—K1v51.05 (6)N1—S1—K1ii132.87 (12)
O3ii—K1—K1v98.18 (7)C1—S1—K1ii115.93 (11)
O4—K1—K1v45.15 (6)
C6—C1—C2—C30.3 (5)S1iii—K1—O3—K1iii26.89 (8)
S1—C1—C2—C3177.6 (3)K1v—K1—O3—K1iii91.14 (10)
C6—C1—C2—Cl1179.3 (3)K1ii—K1—O3—K1iii90.17 (8)
S1—C1—C2—Cl12.9 (4)O1—K1—O4—K1v165.19 (7)
C1—C2—C3—C40.3 (5)O2i—K1—O4—K1v42.70 (6)
Cl1—C2—C3—C4179.3 (3)O3ii—K1—O4—K1v119.46 (7)
C2—C3—C4—C50.1 (6)O3—K1—O4—K1v84.4 (3)
C2—C3—C4—Cl2178.0 (3)O1iii—K1—O4—K1v55.99 (7)
C3—C4—C5—C60.0 (6)O2iii—K1—O4—K1v37.71 (5)
Cl2—C4—C5—C6178.1 (3)S1iii—K1—O4—K1v47.51 (2)
C4—C5—C6—C10.1 (6)K1iii—K1—O4—K1v59.77 (14)
C2—C1—C6—C50.1 (5)K1ii—K1—O4—K1v160.16 (4)
S1—C1—C6—C5177.9 (3)K1iv—O2—S1—O189.2 (6)
O2i—K1—O1—S177.2 (4)K1ii—O2—S1—O14.50 (17)
O3ii—K1—O1—S1124.9 (3)K1iv—O2—S1—N132.8 (7)
O4—K1—O1—S1164.0 (3)K1ii—O2—S1—N1126.44 (14)
O3—K1—O1—S12.7 (3)K1iv—O2—S1—C1154.3 (6)
O1iii—K1—O1—S158.8 (3)K1ii—O2—S1—C1111.99 (12)
O2iii—K1—O1—S1116.7 (3)K1iv—O2—S1—K1ii93.7 (6)
S1iii—K1—O1—S177.2 (4)K1—O1—S1—O2134.2 (3)
K1v—K1—O1—S1145.6 (3)K1ii—O1—S1—O24.81 (18)
K1iii—K1—O1—S131.8 (3)K1—O1—S1—N16.3 (4)
K1ii—K1—O1—S1139.2 (4)K1ii—O1—S1—N1132.65 (13)
O2i—K1—O1—K1ii143.58 (9)K1—O1—S1—C1111.0 (3)
O3ii—K1—O1—K1ii14.32 (8)K1ii—O1—S1—C1110.07 (14)
O4—K1—O1—K1ii56.74 (8)K1—O1—S1—K1ii139.0 (4)
O3—K1—O1—K1ii141.96 (10)Br1—N1—S1—O252.7 (2)
O1iii—K1—O1—K1ii80.46 (13)Br1—N1—S1—O1179.61 (16)
O2iii—K1—O1—K1ii22.6 (2)Br1—N1—S1—C165.5 (2)
S1iii—K1—O1—K1ii62.01 (13)Br1—N1—S1—K1ii125.06 (12)
K1v—K1—O1—K1ii75.18 (13)C6—C1—S1—O21.3 (3)
K1iii—K1—O1—K1ii107.44 (7)C2—C1—S1—O2179.2 (3)
O1—K1—O3—K1iii115.86 (10)C6—C1—S1—O1120.2 (3)
O2i—K1—O3—K1iii117.79 (9)C2—C1—S1—O157.7 (3)
O3ii—K1—O3—K1iii48.49 (13)C6—C1—S1—N1126.4 (3)
O4—K1—O3—K1iii159.0 (2)C2—C1—S1—N155.8 (3)
O1iii—K1—O3—K1iii14.03 (8)C6—C1—S1—K1ii62.2 (3)
O2iii—K1—O3—K1iii42.71 (11)C2—C1—S1—K1ii115.6 (3)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x1/2, y+1/2, z; (v) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···Br1i0.80 (2)2.78 (2)3.550 (3)160 (4)
O3—H32···N10.81 (2)2.15 (3)2.917 (4)158 (5)
O4—H41···N1ii0.82 (2)2.16 (2)2.957 (3)165 (5)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···Br1i0.802 (19)2.78 (2)3.550 (3)160 (4)
O3—H32···N10.808 (19)2.15 (3)2.917 (4)158 (5)
O4—H41···N1ii0.820 (19)2.16 (2)2.957 (3)165 (5)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z+1/2.
Acknowledgements top

BTG thanks the University Grants Commission, Government of India, New Delhi, for a one-time grant to Faculty/Professors under UGC–BSR.

references
References top

George, E., Vivekanandan, S. & Sivakumar, K. (2000). Acta Cryst. C56, 1208–1209.

Gowda, B. T., Foro, S. & Shakuntala, K. (2011a). Acta Cryst. E67, m926.

Gowda, B. T., Foro, S. & Shakuntala, K. (2011b). Acta Cryst. E67, m962.

Gowda, B. T. & Mahadevappa, D. S. (1983). Talanta, 30, 359–362.

Gowda, B. T., Tokarčík, M., Kožíšek, J. & Fuess, H. (2007). Acta Cryst. E63, m2115–m2116.

Olmstead, M. M. & Power, P. P. (1986). Inorg. Chem. 25, 4057–4058.

Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.