supplementary materials


nc2296 scheme

Acta Cryst. (2012). E68, o3133-o3134    [ doi:10.1107/S1600536812042328 ]

Dibenzo[b,f][1,4]thiazepin-11-yl-diethyl-amine

M. Altamura, A. Guidi, L. Jierry, P. Paoli and P. Rossi

Abstract top

In the title compound, C17H18N2S, the thiazepine ring adopts a boat conformation and the dihedral angle between the benzene rings is 75.92 (5)°, resulting in a butterfly-like conformation. In the crystal, molecules are connected via weak Caromatic-H...N contacts involving the imine N atom as acceptor and through a quite short C-H...[pi] interaction. The resulting molecular chains propagate along the c-axis direction.

Comment top

Many antidepressant drugs have a tricyclic structure with two aromatic rings fused to a central seven membered ring, on which one or more heteroatoms can be present. In this context, dibenzothiazepines are a class of heterocyclic scaffolds containing nitrogen and sulfur which belong to the class of the so-called "privileged structures", i.e. structures "able to provide high affinity ligands for more than one type of receptor" (Evans et al. 1988; Patchett & Nargund 2000; Fedi et al. 2008). In fact the dibenzothiazepine skeleton has a broad spectrum of medical applications; its derivatives are used to treat schizophrenia and also find applications as neuroleptics, antidepressants, antihistaminic, just to name a few (Ganesh et al. 2011; Pettersson et al. 2009; Riedel et al. 2007; Warawa et al. 2001). Within our programme research concerning the structural elucidation of tricyclic molecules in order to gain further insights into structure–property relationships (Altamura et al., 2008; Altamura et al., 2009; Altamura et al., 2011) we investigated the crystal and molecular structure of the title compound. The overall shape of the tricyclic skeleton is controlled both by the conformation of the central seven-membered ring and the relative arrangement of the aromatic rings bound to it. The central thiazepine ring adopts the usual boat conformation, with C1, C2, C8 and C9 as the basal plane, the S atom as the bow and the N1—C7 bond as the stern. The deviation from a pure boat conformation is quite small as can be seen from the asymmetry index ΔCs which is 3.97°; the bow angle is 51.04 (8)° and the stern angle is 41.89 (8)°(Duax et al. 1976; Bertolasi et al. 1982; Ravikumar & Sridhar, 2005). Finally, the dihedral angle between the benzene rings is 104.08 (5)°. As a consequence the dibenzothiazepine tricyclic skeleton assumes an overall butterfly-like shape (Fig. 1). The N2—C7 bond is shorter than an usual N—C single bond [1.368 (2) Å compared to 1.416 Å (Allen et al. 1987)] and the sum of the bond angles about N2 is 358°; consequently, N2 has a partial sp2 character. Molecular chains, which propagate along the c axis, are formed through intermolecular interactions (Fig. 2): a weak C—Haromatic···N contact which involves the imine nitrogen atom as acceptor and a quite short C—H···π interaction (Table 1).

Related literature top

For `privileged structures', see: Evans et al. (1988); Patchett & Nargund (2000); Fedi et al. (2008). For the clinical use of dibenzothiazepine derivatives, see: Ganesh et al. (2011); Pettersson et al. (2009); Riedel et al. (2007); Warawa et al. (2001). For structure–property relationships in (6,7,6)-tricyclic ring systems, see: Ravikumar & Sridhar (2005); Altamura et al. (2008, 2009, 2011). For geometrical data and descriptors, see: Duax et al. (1976); Bertolasi et al. (1982); Allen et al. (1987).

Experimental top

The synthesis of the title compound started from the commercially available tricyclic lactam (dibenzo[b,f][1,4]thiazepin-11(10H)-one) (0.89 g, 3.91 mmol), that was dissolved into 10 ml of phosphorus oxychloride and refluxed for two hours under nitrogen atmosphere. After removal of excess POCl3 under vacuum, the corresponding iminochloride (11-chlorodibenzo[b,f][1,4]thiazepine) was obtained as a yellow oil, that was dissolved in 20 ml of anhydrous toluene. An excess of diethylamine (20 ml, 191 mmol) was added and the mixture refluxed until complete conversion (monitored by HPLC; about 6 h were needed for complete conversion). After removal of the solvent in vacuo and purification by flash chromatography (eluent: gradient CH2Cl2/cyclohexane from 50:50 to 100% CH2Cl2), dibenzo[b,f][1,4]thiazepin-11-yl-diethyl-amine was obtained as a yellow oil (0.66 g, 60% yield), which became a white solid on standing at room temperature for several days. Crystals suitable for single-crystal X-ray diffraction analysis were obtained by slow evaporation of a water/DMSO solution of dibenzo[b,f][1,4]thiazepin-11-yl-diethyl-amine.

Refinement top

All the H atoms were positioned with idealized geometry using a riding model and refined with Uiso(H) 1.2 times Ueq(C) (1.5 for methyl H atoms).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the b-axis. Intermolecular H-bonding interactions are shown as dashed lines.
Dibenzo[b,f][1,4]thiazepin-11-yl-diethyl-amine top
Crystal data top
C17H18N2SF(000) = 600
Mr = 282.40Dx = 1.294 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
a = 12.0137 (2) ÅCell parameters from 3716 reflections
b = 8.2257 (1) Åθ = 3.8–64.6°
c = 15.0513 (2) ŵ = 1.89 mm1
β = 102.952 (1)°T = 150 K
V = 1449.54 (4) Å3Platelet, colourless
Z = 40.20 × 0.18 × 0.03 mm
Data collection top
Oxford Diffraction XcaliburPX
diffractometer
2364 independent reflections
Radiation source: Enhance (Cu) X-ray Source1837 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 8.1241 pixels mm-1θmax = 64.7°, θmin = 3.8°
ω scansh = 1311
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 99
Tmin = 0.722, Tmax = 0.945l = 1617
6173 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0564P)2]
where P = (Fo2 + 2Fc2)/3
2364 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C17H18N2SV = 1449.54 (4) Å3
Mr = 282.40Z = 4
Monoclinic, P21/cCu Kα radiation
a = 12.0137 (2) ŵ = 1.89 mm1
b = 8.2257 (1) ÅT = 150 K
c = 15.0513 (2) Å0.20 × 0.18 × 0.03 mm
β = 102.952 (1)°
Data collection top
Oxford Diffraction XcaliburPX
diffractometer
2364 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
1837 reflections with I > 2σ(I)
Tmin = 0.722, Tmax = 0.945Rint = 0.019
6173 measured reflectionsθmax = 64.7°
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.086Δρmax = 0.23 e Å3
S = 1.05Δρmin = 0.26 e Å3
2364 reflectionsAbsolute structure: ?
181 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.83045 (3)0.13292 (5)0.85602 (3)0.01958 (15)
N10.67962 (11)0.44375 (17)0.84814 (9)0.0179 (3)
N20.51660 (11)0.33602 (17)0.87760 (9)0.0181 (3)
C10.69759 (13)0.2400 (2)0.97172 (11)0.0177 (4)
C20.78691 (14)0.1378 (2)0.96160 (11)0.0175 (4)
C30.84541 (14)0.0447 (2)1.03477 (11)0.0198 (4)
H30.90470.02641.02680.024*
C40.81731 (14)0.0556 (2)1.11916 (11)0.0211 (4)
H40.85640.00891.16870.025*
C50.73182 (14)0.1613 (2)1.13056 (11)0.0211 (4)
H50.71370.17151.18860.025*
C60.67280 (13)0.2522 (2)1.05782 (11)0.0197 (4)
H60.61430.32411.06660.024*
C70.63322 (13)0.3418 (2)0.89419 (11)0.0169 (4)
C80.79782 (14)0.4649 (2)0.85930 (11)0.0188 (4)
C90.87701 (14)0.3391 (2)0.85923 (11)0.0188 (4)
C100.99058 (14)0.3727 (2)0.85997 (11)0.0237 (4)
H101.04300.28610.86040.028*
C111.02769 (15)0.5322 (2)0.86002 (12)0.0290 (5)
H111.10510.55510.85960.035*
C120.95124 (15)0.6578 (2)0.86075 (12)0.0280 (5)
H120.97670.76730.86180.034*
C130.83815 (14)0.6251 (2)0.86002 (11)0.0218 (4)
H130.78670.71280.86000.026*
C140.45010 (14)0.2064 (2)0.90866 (11)0.0200 (4)
H14A0.50320.12370.94210.024*
H14B0.40140.15290.85480.024*
C150.37461 (15)0.2692 (2)0.97035 (12)0.0252 (4)
H15A0.33240.17820.98910.038*
H15B0.32060.34930.93710.038*
H15C0.42240.32031.02450.038*
C160.45022 (14)0.4423 (2)0.80635 (11)0.0188 (4)
H16A0.48650.55100.81120.023*
H16B0.37230.45550.81700.023*
C170.44140 (14)0.3772 (2)0.71044 (11)0.0209 (4)
H17A0.39650.45270.66610.031*
H17B0.40390.27070.70460.031*
H17C0.51810.36620.69880.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0205 (2)0.0207 (3)0.0190 (2)0.00074 (18)0.00747 (17)0.00055 (18)
N10.0153 (7)0.0199 (8)0.0191 (7)0.0019 (6)0.0049 (6)0.0011 (6)
N20.0153 (7)0.0197 (8)0.0196 (8)0.0014 (6)0.0042 (6)0.0016 (6)
C10.0148 (8)0.0195 (9)0.0187 (9)0.0059 (7)0.0034 (7)0.0009 (7)
C20.0163 (9)0.0188 (9)0.0177 (9)0.0058 (7)0.0041 (7)0.0019 (7)
C30.0170 (9)0.0189 (10)0.0232 (9)0.0023 (7)0.0041 (7)0.0009 (8)
C40.0190 (10)0.0234 (10)0.0190 (9)0.0051 (8)0.0003 (7)0.0029 (8)
C50.0192 (9)0.0286 (10)0.0156 (9)0.0079 (8)0.0043 (7)0.0029 (7)
C60.0154 (9)0.0233 (10)0.0202 (9)0.0046 (8)0.0035 (7)0.0041 (7)
C70.0172 (9)0.0175 (9)0.0162 (8)0.0000 (7)0.0043 (7)0.0041 (7)
C80.0177 (9)0.0232 (10)0.0150 (8)0.0038 (7)0.0023 (7)0.0002 (7)
C90.0190 (9)0.0230 (10)0.0144 (8)0.0041 (7)0.0037 (7)0.0013 (7)
C100.0171 (9)0.0309 (11)0.0230 (9)0.0009 (8)0.0044 (7)0.0037 (8)
C110.0164 (9)0.0389 (12)0.0312 (11)0.0071 (9)0.0044 (8)0.0044 (9)
C120.0235 (10)0.0276 (11)0.0316 (11)0.0108 (8)0.0035 (8)0.0012 (9)
C130.0201 (9)0.0207 (10)0.0247 (10)0.0018 (8)0.0055 (8)0.0008 (8)
C140.0177 (9)0.0208 (10)0.0211 (9)0.0025 (8)0.0039 (7)0.0011 (8)
C150.0229 (10)0.0295 (11)0.0250 (9)0.0061 (8)0.0090 (8)0.0001 (8)
C160.0159 (9)0.0172 (9)0.0233 (9)0.0016 (7)0.0046 (7)0.0018 (7)
C170.0182 (9)0.0224 (10)0.0214 (9)0.0024 (8)0.0031 (7)0.0020 (7)
Geometric parameters (Å, º) top
S1—C21.7814 (16)C9—C101.390 (2)
S1—C91.7831 (18)C10—C111.385 (3)
N1—C71.291 (2)C10—H100.9500
N1—C81.403 (2)C11—C121.384 (3)
N2—C71.368 (2)C11—H110.9500
N2—C141.470 (2)C12—C131.383 (2)
N2—C161.472 (2)C12—H120.9500
C1—C61.397 (2)C13—H130.9500
C1—C21.398 (2)C14—C151.526 (2)
C1—C71.502 (2)C14—H14A0.9900
C2—C31.395 (2)C14—H14B0.9900
C3—C41.388 (2)C15—H15A0.9800
C3—H30.9500C15—H15B0.9800
C4—C51.385 (2)C15—H15C0.9800
C4—H40.9500C16—C171.521 (2)
C5—C61.383 (2)C16—H16A0.9900
C5—H50.9500C16—H16B0.9900
C6—H60.9500C17—H17A0.9800
C8—C131.403 (2)C17—H17B0.9800
C8—C91.406 (2)C17—H17C0.9800
C2—S1—C996.16 (8)C9—C10—H10119.9
C7—N1—C8124.28 (14)C12—C11—C10119.53 (17)
C7—N2—C14125.08 (14)C12—C11—H11120.2
C7—N2—C16118.54 (14)C10—C11—H11120.2
C14—N2—C16114.71 (13)C13—C12—C11120.46 (17)
C6—C1—C2118.19 (15)C13—C12—H12119.8
C6—C1—C7120.08 (15)C11—C12—H12119.8
C2—C1—C7121.64 (14)C12—C13—C8121.32 (17)
C3—C2—C1120.48 (15)C12—C13—H13119.3
C3—C2—S1119.67 (13)C8—C13—H13119.3
C1—C2—S1119.79 (13)N2—C14—C15112.82 (14)
C4—C3—C2120.26 (16)N2—C14—H14A109.0
C4—C3—H3119.9C15—C14—H14A109.0
C2—C3—H3119.9N2—C14—H14B109.0
C5—C4—C3119.52 (16)C15—C14—H14B109.0
C5—C4—H4120.2H14A—C14—H14B107.8
C3—C4—H4120.2C14—C15—H15A109.5
C6—C5—C4120.27 (15)C14—C15—H15B109.5
C6—C5—H5119.9H15A—C15—H15B109.5
C4—C5—H5119.9C14—C15—H15C109.5
C5—C6—C1121.19 (16)H15A—C15—H15C109.5
C5—C6—H6119.4H15B—C15—H15C109.5
C1—C6—H6119.4N2—C16—C17113.16 (14)
N1—C7—N2118.19 (15)N2—C16—H16A108.9
N1—C7—C1124.74 (14)C17—C16—H16A108.9
N2—C7—C1116.77 (14)N2—C16—H16B108.9
N1—C8—C13117.10 (16)C17—C16—H16B108.9
N1—C8—C9125.17 (16)H16A—C16—H16B107.8
C13—C8—C9117.30 (15)C16—C17—H17A109.5
C10—C9—C8121.12 (16)C16—C17—H17B109.5
C10—C9—S1119.41 (14)H17A—C17—H17B109.5
C8—C9—S1119.46 (13)C16—C17—H17C109.5
C11—C10—C9120.26 (17)H17A—C17—H17C109.5
C11—C10—H10119.9H17B—C17—H17C109.5
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C8–C12 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···N1i0.952.703.576 (2)154
C4—H4···Cgi0.952.813.5759 (18)139
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C8–C12 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···N1i0.952.703.576 (2)154
C4—H4···Cgi0.952.813.5759 (18)139
Symmetry code: (i) x, y+1/2, z+1/2.
Acknowledgements top

The authors acknowledge the CRIST (Centro di Cristallografia Strutturale, University of Firenze) where the data collection was performed.

references
References top

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Altamura, M., Dapporto, P., Guidi, A., Harmat, N., Jerry, L., Libralesso, E., Paoli, P. & Rossi, P. (2008). New J. Chem. 32, 1617–1627.

Altamura, M., Fedi, V., Giannotti, D., Paoli, P. & Rossi, P. (2009). New J. Chem. 33, 2219–2231.

Altamura, M., Guidi, A., Jerry, L., Paoli, P. & Rossi, P. (2011). CrystEngComm, 13, 2310–2317.

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Bertolasi, V., Ferretti, V., Gilli, G. & Borea, P. A. (1982). Cryst. Struct. Commun. 11, 1481–1486.

Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, edited by E. L. Eliel and N. Allinger. New York: John Wiley & Sons.

Evans, B. E., Rittle, K. E., Bock, M. G., DiPardo, R. M., Freidinger, R. M., Whittle, W. L., Lundell, G. F., Veber, D. F., Anderson, P. S., Chang, R. S. L., Lotti, V. J., Cerino, D. J., Chen, T. B., Kling, P. J., Kunkel, K. A., Springer, J. P. & Hirshfield, J. (1988). J. Med. Chem. 31, 2235–2246.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Fedi, V., Guidi, A. & Altamura, M. (2008). Mini Rev. Med. Chem. 8, 1464–1484.

Ganesh, D. M., Yogesh, M. K., Ashok, K., Dharmendra, S., Kisan, M. K. & Suresh, B. M. (2011). Indian J. Chem. 50B, 1196–, 1201.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.

Patchett, A. A. & Nargund, R. P. (2000). Annu. Rep. Med. Chem. 35, 289–298.

Pettersson, H., Bulow, A., Ek, F., Jensen, J., Ottesen, L. K., Fejzic, A., Ma, J.-N., Del Tredici, A. L., Currier, E. A., Gardell, L. R., Tabatabaei, A., Craig, D., McFarland, K., Ott, T. R., Piu, F., Burstein, E. S. & Olsson, R. (2009). J. Med. Chem. 52, 1975–1982.

Ravikumar, K. & Sridhar, B. (2005). Acta Cryst. E61, o3245–o3248.

Riedel, M., Mueller, N., Strassnig, M., Spellman, I., Severus, E. & Moeller, H.-J. (2007). Neuropsyc. Dis. Treat. 3, 219–235.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Warawa, E. J., Migler, B. M., Ohnmacht, C. J., Needles, A. L., Gatos, G. C., Mclaren, F. M., Nelson, C. L. & Kirkland, K. M. (2001). J. Med. Chem. 44, 372–389.