supplementary materials


pv2586 scheme

Acta Cryst. (2012). E68, o3136    [ doi:10.1107/S1600536812042432 ]

7-[(3-Chloro-6-methyl-6,11-dihydrodibenzo[c,f][1,2]thiazepin-11-yl)amino]heptanoic acid S,S-dioxide hydrochloride

A. Mishnev, A. Zvirgzdins, A. Actins and M. Delina

Abstract top

In the title compound, C21H26ClN2O4S.Cl, also known as tianeptine hydrochloride, the seven-membered ring adopts a boat conformation. The dihedral angle between the mean planes of the benzene rings is 44.44 (7)°. There is an intramolecular hydrogen bond formed via S= O...H-N. In the crystal, molecules are connected via pairs of N-H.·O, N-H...Cl and O-H...Cl hydrogen bonds, forming inversion dimers, which are consolidated by C-H...O interactions. The dimers are linked by C-H...O and C-H...Cl interactions, forming a two-dimensional network lying parallel to (011).

Comment top

Tianeptine salts are of wide interest since they are crystalline. Although the synthesis of the title compound, tianeptine hydrochloride, has been described (Guzman et al., 2010) we describe in this article an improved method of its synthesis and its crystal structure.

In the title compound (Fig. 1), the seven-membered ring adopts a boat conformation with the values of torsion angles: C1—S1—N1—C13 = -78.4 (2) and C1—C6—C7—C8 = -56.3 (3)°. The dihedral angle between the mean planes of the two benzene rings (C1–C6 and C8–C13) is 44.44 (7)°. There is an intramolecular hydrogen bond in the title molecule which is formed via S1O2···H3B—N2 that stabilizes the molecular structure. In the crystal, the molecules are connected via hydrogen bonds between carboxyl and amine groups and chloride anion, O4—H6···Cl2, N2—H3A···Cl2 and N2—H3B···O3. The crystal structure is further consolidated by intermolecular interactions, C18—H6A···O4, C4—H3···Cl2, C16—H11B···O3 and C7—H7···Cl2 (Table 1 and Fig. 2). The supramolecular structure of tianeptine hydrochloride consists of parallel oriented tricyclic fragment and parallel oriented carbon atom chains (heptanoic acid). Carbon atom chains are linked with hydrogen bonds via chloride anion, amine and carboxylgroup. The torsion angle C8—C7—N2—C15 is -168.4 (2)° so that the carbon atom chain C15—C20 is almost parallel to the benzene ring C8—C13.

The crystal structures of tianeptine polymorphs have been reported recently (Orola et al., 2012). The title structure is more similar with polymorph A structure in which tianeptine molecules are linked via hydrogen bonds between amine and carboxyl groups. The tianeptine molecules in the structure of tianeptine polymorph B are in a zwiterrion form.

Related literature top

For general information about tianeptine and its preparation, see: Guzman et al. (2010). For related structures, see: Orola et al. (2012).

Experimental top

Tianeptine sodium salt (0.5 g;1.09 mmol) was dissolved in 20 ml deionized water in a Erlenmeyer flask and added ~3 mmol of hydrochloric acid. Mixture were stirred for 6 h. After 6 h suspension was filtered and washed with cold water. The product was dried and recrystallized from water by slow evaporation at room temperature.

Refinement top

All hydrogen atoms were positioned geometrically with C—H distances ranging from 0.93 to 0.97 Å and refined as riding on their parent atoms with Uiso(H) = 1.5 Ueq(C) for methyl groups and Uiso(H) = 1.2 Ueq(C) for others.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: HKL DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability ellipsoids and hydrogen atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the c axis. Blue lines indicate hydrogen bonds.
7-[(3-Chloro-6-methyl-6,11-dihydrodibenzo[c,f][1,2]thiazepin- 11-yl)amino]heptanoic acid S,S-dioxide hydrochloride top
Crystal data top
C21H26ClN2O4S+·ClZ = 2
Mr = 473.40F(000) = 496
Triclinic, P1Dx = 1.380 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5439 (2) ÅCell parameters from 6759 reflections
b = 10.0910 (2) Åθ = 1.0–27.1°
c = 13.1802 (3) ŵ = 0.41 mm1
α = 104.4000 (12)°T = 190 K
β = 101.538 (1)°Plate, colourless
γ = 105.0180 (11)°0.24 × 0.20 × 0.14 mm
V = 1139.04 (4) Å3
Data collection top
Nonius KappaCCD
diffractometer
4015 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 27.1°, θmin = 3.1°
CCD scansh = 1112
7552 measured reflectionsk = 1212
4985 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0363P)2 + 0.641P]
where P = (Fo2 + 2Fc2)/3
4985 reflections(Δ/σ)max = 0.018
273 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C21H26ClN2O4S+·Clγ = 105.0180 (11)°
Mr = 473.40V = 1139.04 (4) Å3
Triclinic, P1Z = 2
a = 9.5439 (2) ÅMo Kα radiation
b = 10.0910 (2) ŵ = 0.41 mm1
c = 13.1802 (3) ÅT = 190 K
α = 104.4000 (12)°0.24 × 0.20 × 0.14 mm
β = 101.538 (1)°
Data collection top
Nonius KappaCCD
diffractometer
4015 reflections with I > 2σ(I)
7552 measured reflectionsRint = 0.021
4985 independent reflectionsθmax = 27.1°
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.100Δρmax = 0.76 e Å3
S = 1.03Δρmin = 0.34 e Å3
4985 reflectionsAbsolute structure: ?
273 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.48761 (6)0.92769 (6)0.32682 (5)0.03721 (15)
S11.08561 (5)1.04778 (5)0.36222 (4)0.02568 (12)
Cl20.77093 (5)0.48993 (5)0.09234 (4)0.03147 (13)
O21.17517 (14)0.95570 (14)0.37600 (11)0.0274 (3)
N21.04759 (17)0.69630 (16)0.20172 (13)0.0218 (3)
H3A1.11390.66820.16890.026*
H3B1.09940.75160.27080.026*
O40.57739 (17)0.42297 (18)0.67606 (12)0.0375 (4)
H60.63310.44430.73780.056*
O11.08744 (17)1.15746 (16)0.45495 (12)0.0371 (4)
O30.76590 (16)0.35639 (18)0.62834 (12)0.0382 (4)
N11.13800 (18)1.12491 (17)0.27471 (14)0.0281 (4)
C50.7141 (2)0.7622 (2)0.13441 (16)0.0264 (4)
H20.69030.69260.06670.032*
C40.5978 (2)0.7900 (2)0.17507 (17)0.0288 (4)
H30.49740.73980.13520.035*
C60.8655 (2)0.83537 (19)0.19193 (15)0.0212 (4)
C20.7818 (2)0.9710 (2)0.33545 (16)0.0265 (4)
H50.80471.04160.40250.032*
C180.7174 (2)0.4501 (2)0.40383 (16)0.0266 (4)
H6A0.65210.50920.40110.032*
H6B0.79880.49700.47130.032*
C70.9826 (2)0.7887 (2)0.14329 (15)0.0216 (4)
H70.92530.72260.06980.026*
C30.6328 (2)0.8933 (2)0.27553 (17)0.0272 (4)
C210.6408 (2)0.3647 (2)0.60345 (16)0.0261 (4)
C200.5396 (2)0.3075 (2)0.48869 (16)0.0282 (4)
H10A0.47750.36850.47960.034*
H10B0.47260.21090.47610.034*
C160.8769 (2)0.5855 (2)0.30509 (16)0.0268 (4)
H11A0.81580.64860.30350.032*
H11B0.96220.63120.37020.032*
C10.8963 (2)0.9404 (2)0.29264 (15)0.0228 (4)
C150.9334 (2)0.5636 (2)0.20475 (16)0.0249 (4)
H13A0.97850.48730.20070.030*
H13B0.84750.53100.14050.030*
C131.1778 (2)1.0475 (2)0.18368 (16)0.0273 (4)
C190.6274 (2)0.3021 (2)0.40408 (16)0.0291 (4)
H15A0.69630.24860.41770.035*
H15B0.55700.24970.33220.035*
C81.1112 (2)0.8998 (2)0.12618 (15)0.0244 (4)
C170.7835 (3)0.4409 (2)0.30818 (18)0.0338 (5)
H17A0.70140.39490.24110.041*
H17B0.84650.37960.31040.041*
C91.1641 (2)0.8421 (3)0.03912 (17)0.0338 (5)
H181.12170.74380.00040.041*
C141.0767 (3)1.2418 (2)0.2609 (2)0.0444 (6)
H19A1.12971.29320.22030.067*
H19B1.08951.30740.33130.067*
H19C0.97101.20070.22210.067*
C121.2910 (2)1.1316 (3)0.1514 (2)0.0381 (5)
H201.33411.23010.18910.046*
C101.2774 (3)0.9263 (3)0.0089 (2)0.0437 (6)
H211.31100.88510.04890.052*
C111.3399 (3)1.0725 (3)0.0656 (2)0.0437 (6)
H221.41511.13060.04550.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0319 (3)0.0313 (3)0.0597 (4)0.0146 (2)0.0278 (3)0.0173 (3)
S10.0248 (2)0.0244 (2)0.0245 (2)0.00797 (19)0.00501 (19)0.0035 (2)
Cl20.0313 (3)0.0342 (3)0.0234 (2)0.0100 (2)0.0077 (2)0.0005 (2)
O20.0264 (7)0.0312 (7)0.0254 (7)0.0130 (6)0.0048 (6)0.0086 (6)
N20.0221 (8)0.0241 (8)0.0221 (8)0.0099 (6)0.0091 (6)0.0075 (7)
O40.0396 (9)0.0494 (9)0.0282 (8)0.0243 (8)0.0087 (7)0.0107 (7)
O10.0359 (8)0.0334 (8)0.0324 (8)0.0106 (7)0.0060 (6)0.0025 (7)
O30.0293 (8)0.0611 (10)0.0343 (8)0.0210 (7)0.0112 (6)0.0242 (8)
N10.0265 (8)0.0238 (8)0.0337 (9)0.0080 (7)0.0070 (7)0.0102 (7)
C50.0272 (10)0.0288 (10)0.0235 (10)0.0096 (8)0.0062 (8)0.0091 (8)
C40.0223 (10)0.0304 (11)0.0353 (11)0.0078 (8)0.0088 (8)0.0132 (9)
C60.0222 (9)0.0227 (9)0.0225 (9)0.0088 (7)0.0083 (7)0.0108 (8)
C20.0321 (10)0.0236 (10)0.0290 (10)0.0129 (8)0.0132 (8)0.0096 (8)
C180.0287 (10)0.0273 (10)0.0288 (10)0.0114 (8)0.0123 (8)0.0119 (9)
C70.0234 (9)0.0242 (9)0.0180 (9)0.0085 (7)0.0065 (7)0.0068 (8)
C30.0277 (10)0.0262 (10)0.0398 (11)0.0140 (8)0.0192 (9)0.0179 (9)
C210.0273 (10)0.0261 (10)0.0300 (10)0.0086 (8)0.0106 (8)0.0160 (9)
C200.0254 (10)0.0293 (10)0.0291 (10)0.0047 (8)0.0082 (8)0.0119 (9)
C160.0299 (10)0.0284 (10)0.0264 (10)0.0109 (8)0.0135 (8)0.0103 (9)
C10.0230 (9)0.0219 (9)0.0249 (9)0.0086 (7)0.0072 (7)0.0086 (8)
C150.0274 (10)0.0221 (9)0.0271 (10)0.0081 (8)0.0112 (8)0.0083 (8)
C130.0233 (10)0.0323 (11)0.0311 (10)0.0111 (8)0.0076 (8)0.0163 (9)
C190.0324 (11)0.0262 (10)0.0272 (10)0.0064 (8)0.0107 (8)0.0074 (9)
C80.0227 (9)0.0314 (10)0.0235 (9)0.0114 (8)0.0072 (8)0.0133 (8)
C170.0452 (12)0.0280 (11)0.0340 (11)0.0132 (9)0.0209 (10)0.0105 (9)
C90.0341 (11)0.0434 (12)0.0309 (11)0.0161 (10)0.0141 (9)0.0162 (10)
C140.0553 (15)0.0302 (12)0.0531 (15)0.0198 (11)0.0141 (12)0.0171 (11)
C120.0286 (11)0.0400 (13)0.0507 (14)0.0077 (9)0.0107 (10)0.0270 (12)
C100.0401 (13)0.0665 (17)0.0386 (13)0.0212 (12)0.0233 (11)0.0272 (13)
C110.0323 (12)0.0622 (17)0.0528 (15)0.0146 (11)0.0216 (11)0.0391 (14)
Geometric parameters (Å, º) top
Cl1—C31.7332 (19)C7—H70.9800
S1—O11.4240 (15)C21—C201.499 (3)
S1—O21.4354 (14)C20—C191.522 (3)
S1—N11.6315 (17)C20—H10A0.9700
S1—C11.7629 (19)C20—H10B0.9700
N2—C151.507 (2)C16—C151.513 (3)
N2—C71.521 (2)C16—C171.515 (3)
N2—H3A0.9000C16—H11A0.9700
N2—H3B0.9000C16—H11B0.9700
O4—C211.328 (2)C15—H13A0.9700
O4—H60.8200C15—H13B0.9700
O3—C211.204 (2)C13—C81.397 (3)
N1—C131.436 (3)C13—C121.400 (3)
N1—C141.480 (3)C19—H15A0.9700
C5—C41.387 (3)C19—H15B0.9700
C5—C61.392 (3)C8—C91.401 (3)
C5—H20.9300C17—H17A0.9700
C4—C31.381 (3)C17—H17B0.9700
C4—H30.9300C9—C101.384 (3)
C6—C11.398 (3)C9—H180.9300
C6—C71.513 (2)C14—H19A0.9600
C2—C31.388 (3)C14—H19B0.9600
C2—C11.393 (3)C14—H19C0.9600
C2—H50.9300C12—C111.369 (3)
C18—C171.512 (3)C12—H200.9300
C18—C191.518 (3)C10—C111.381 (4)
C18—H6A0.9700C10—H210.9300
C18—H6B0.9700C11—H220.9300
C7—C81.529 (2)
O1—S1—O2119.59 (9)C15—C16—C17109.79 (16)
O1—S1—N1108.15 (9)C15—C16—H11A109.7
O2—S1—N1106.88 (8)C17—C16—H11A109.7
O1—S1—C1108.63 (9)C15—C16—H11B109.7
O2—S1—C1109.38 (8)C17—C16—H11B109.7
N1—S1—C1102.91 (8)H11A—C16—H11B108.2
C15—N2—C7115.42 (14)C2—C1—C6122.19 (17)
C15—N2—H3A108.4C2—C1—S1118.86 (15)
C7—N2—H3A108.4C6—C1—S1118.74 (14)
C15—N2—H3B108.4N2—C15—C16114.61 (16)
C7—N2—H3B108.4N2—C15—H13A108.6
H3A—N2—H3B107.5C16—C15—H13A108.6
C21—O4—H6109.5N2—C15—H13B108.6
C13—N1—C14117.16 (17)C16—C15—H13B108.6
C13—N1—S1120.96 (13)H13A—C15—H13B107.6
C14—N1—S1115.98 (15)C8—C13—C12119.4 (2)
C4—C5—C6121.92 (19)C8—C13—N1125.42 (17)
C4—C5—H2119.0C12—C13—N1115.16 (19)
C6—C5—H2119.0C18—C19—C20113.90 (17)
C3—C4—C5119.18 (18)C18—C19—H15A108.8
C3—C4—H3120.4C20—C19—H15A108.8
C5—C4—H3120.4C18—C19—H15B108.8
C5—C6—C1117.17 (17)C20—C19—H15B108.8
C5—C6—C7117.27 (17)H15A—C19—H15B107.7
C1—C6—C7125.46 (16)C13—C8—C9117.75 (18)
C3—C2—C1118.31 (18)C13—C8—C7128.70 (17)
C3—C2—H5120.8C9—C8—C7113.54 (18)
C1—C2—H5120.8C18—C17—C16114.47 (17)
C17—C18—C19112.27 (17)C18—C17—H17A108.6
C17—C18—H6A109.2C16—C17—H17A108.6
C19—C18—H6A109.2C18—C17—H17B108.6
C17—C18—H6B109.2C16—C17—H17B108.6
C19—C18—H6B109.2H17A—C17—H17B107.6
H6A—C18—H6B107.9C10—C9—C8122.2 (2)
C6—C7—N2111.23 (14)C10—C9—H18118.9
C6—C7—C8120.45 (16)C8—C9—H18118.9
N2—C7—C8109.32 (14)N1—C14—H19A109.5
C6—C7—H7104.8N1—C14—H19B109.5
N2—C7—H7104.8H19A—C14—H19B109.5
C8—C7—H7104.8N1—C14—H19C109.5
C4—C3—C2121.21 (18)H19A—C14—H19C109.5
C4—C3—Cl1119.27 (15)H19B—C14—H19C109.5
C2—C3—Cl1119.51 (16)C11—C12—C13121.6 (2)
O3—C21—O4122.96 (19)C11—C12—H20119.2
O3—C21—C20123.80 (19)C13—C12—H20119.2
O4—C21—C20113.22 (17)C11—C10—C9119.1 (2)
C21—C20—C19112.61 (16)C11—C10—H21120.4
C21—C20—H10A109.1C9—C10—H21120.4
C19—C20—H10A109.1C12—C11—C10119.9 (2)
C21—C20—H10B109.1C12—C11—H22120.0
C19—C20—H10B109.1C10—C11—H22120.0
H10A—C20—H10B107.8
O1—S1—N1—C13166.82 (14)N1—S1—C1—C2116.33 (15)
O2—S1—N1—C1336.83 (17)O1—S1—C1—C6173.00 (14)
C1—S1—N1—C1378.34 (16)O2—S1—C1—C654.86 (16)
O1—S1—N1—C1441.01 (17)N1—S1—C1—C658.50 (16)
O2—S1—N1—C14170.99 (15)C7—N2—C15—C1692.52 (19)
C1—S1—N1—C1473.83 (17)C17—C16—C15—N2170.85 (16)
C6—C5—C4—C30.0 (3)C14—N1—C13—C8117.4 (2)
C4—C5—C6—C10.8 (3)S1—N1—C13—C834.5 (3)
C4—C5—C6—C7175.82 (17)C14—N1—C13—C1261.3 (2)
C5—C6—C7—N2102.80 (18)S1—N1—C13—C12146.80 (15)
C1—C6—C7—N273.5 (2)C17—C18—C19—C20171.27 (17)
C5—C6—C7—C8127.40 (18)C21—C20—C19—C1868.0 (2)
C1—C6—C7—C856.3 (2)C12—C13—C8—C91.3 (3)
C15—N2—C7—C656.1 (2)N1—C13—C8—C9179.94 (17)
C15—N2—C7—C8168.43 (15)C12—C13—C8—C7177.35 (18)
C5—C4—C3—C21.0 (3)N1—C13—C8—C71.3 (3)
C5—C4—C3—Cl1179.69 (14)C6—C7—C8—C1327.4 (3)
C1—C2—C3—C41.2 (3)N2—C7—C8—C13103.2 (2)
C1—C2—C3—Cl1179.56 (13)C6—C7—C8—C9151.28 (17)
O3—C21—C20—C1926.4 (3)N2—C7—C8—C978.08 (19)
O4—C21—C20—C19155.14 (17)C19—C18—C17—C16178.95 (17)
C3—C2—C1—C60.3 (3)C15—C16—C17—C18178.47 (17)
C3—C2—C1—S1174.95 (13)C13—C8—C9—C100.6 (3)
C5—C6—C1—C20.7 (3)C7—C8—C9—C10178.25 (19)
C7—C6—C1—C2175.65 (17)C8—C13—C12—C110.9 (3)
C5—C6—C1—S1174.00 (13)N1—C13—C12—C11179.73 (19)
C7—C6—C1—S19.7 (2)C8—C9—C10—C110.5 (3)
O1—S1—C1—C21.84 (17)C13—C12—C11—C100.2 (3)
O2—S1—C1—C2130.31 (15)C9—C10—C11—C120.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H3A···Cl2i0.902.313.154 (2)157
N2—H3B···O3ii0.902.322.821 (2)115
C16—H11B···O3ii0.972.563.201 (2)124
O4—H6···Cl2iii0.822.223.043 (2)176
C4—H3···Cl2iv0.932.823.651 (2)150
C18—H6A···O4v0.972.563.467 (2)157
C7—H7···Cl20.982.593.534 (2)162
N2—H3B···S10.902.983.533 (2)121
N2—H3B···O20.902.022.802 (2)144
C2—H5···O10.932.522.894 (2)104
C14—H19B···O10.962.482.881 (3)105
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y+1, z+1; (iii) x, y, z+1; (iv) x+1, y+1, z; (v) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H3A···Cl2i0.902.313.154 (2)156.7
N2—H3B···O3ii0.902.322.821 (2)115.2
C16—H11B···O3ii0.972.563.201 (2)123.5
O4—H6···Cl2iii0.822.223.043 (2)175.7
C4—H3···Cl2iv0.932.823.651 (2)149.6
C18—H6A···O4v0.972.563.467 (2)156.6
C7—H7···Cl20.982.593.534 (2)162.2
N2—H3B···O20.902.022.802 (2)144.0
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y+1, z+1; (iii) x, y, z+1; (iv) x+1, y+1, z; (v) x+1, y+1, z+1.
Acknowledgements top

This work was supported by the European Regional Development Fund (No. 2011/0014/2DP/2.1.1.1.0/10/APIA/VIAA/092).

references
References top

Guzman, H., Popov, A., Rammeloo, T. J. L., Remenar, J., Saoud, J. B. & Tawa, M. (2010). US Patent No. 20,100,112,051 A1 20100506.

Hooft, R. (1998). COLLECT. Nonius B V, Delft, The Netherlands.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Orola, L., Veidis, M. V., Sarcevica, I., Actins, A., Belyakov, S. & Platonenko, A. (2012). Int. J. Pharm. 432, 50–56.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.