organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Methyl-4-nitro­phenol–4-di­methyl­amino­pyridine (1/1)

aDepartment of Physics, Anna University, Chennai 600 025, India, and bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 20 September 2012; accepted 5 October 2012; online 13 October 2012)

In the title adduct, C7H7NO3.C7H10N2, the dihedral angle betwen the benzene ring and pyridine rings is 9.60 (8)° while the nitro group attached to the benzene ring makes a dihedral angle of 21.76 (13)°. The hydroxyl O atom deviates by 0.0247 (15) Å from the plane of the benzene ring. The crystal packing features O—H⋯N hydrogen bonds.

Related literature

For a related structure, see: Dong & Cheng (2012[Dong, S.-L. & Cheng, X. (2012). Acta Cryst. E68, o518.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7NO3·C7H10N2

  • Mr = 275.31

  • Monoclinic, P 21 /c

  • a = 11.4923 (9) Å

  • b = 9.8362 (8) Å

  • c = 12.7781 (10) Å

  • β = 103.870 (5)°

  • V = 1402.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.30 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]) Tmin = 0.968, Tmax = 0.973

  • 13307 measured reflections

  • 3498 independent reflections

  • 2469 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.185

  • S = 1.03

  • 3498 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N3i 0.82 1.79 2.594 (2) 168
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In the molecule (fig.1),the pyridine ring (N3/C10/C11/C12/C13/C14) makes a dihedral angle of 9.60 (8)° with the phenyl ring (C1/C2/C3/C4/C5/C6) system. The oxygen atom O3 deviates by -0.0247 (15)Å from the plane of the phenyl ring. The carbon atom C7 deviates by deviates by 0.0677 (21)Å from the plane of the phenyl ring.

The nitrogen atom N1 deviates by -0.0285 (18)Å from the plane of the phenyl ring. The nitrogen atom N2 devaites by -0.0292 (18)Å from the plane of the pyridine ring. The crystal packing is stabilized by intermolecular O—H···N hydrogen bonds

Related literature top

For a related structure, see: Dong & Cheng (2012).

Experimental top

4-Dimethylaminopyridine and 3-methyl-4-nitrophenol were taken in equimolar (1:1) ratio using acetone as solvent. The solution was filtered in a clean beaker and optimally closed. The prepared solution was kept at room temperature for two days after which crystals suitable for X-ray diffraction were obtained.

Refinement top

The hydrogen atoms were placed in calculated positions with C—H = 0.93 Å to 1.08 Å refined in the riding model with fixed isotropic displacement parameters:Uiso(H) = 1.5Ueq(C) for methyl group and Uiso(H) = 1.2Ueq(C) for other groups.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down c axis. H-atoms not involved in H-bonds have been excluded for clarity.
3-Methyl-4-nitrophenol–4-dimethylaminopyridine (1/1) top
Crystal data top
C7H7NO3·C7H10N2F(000) = 584
Mr = 275.31Dx = 1.304 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3498 reflections
a = 11.4923 (9) Åθ = 1.8–28.4°
b = 9.8362 (8) ŵ = 0.09 mm1
c = 12.7781 (10) ÅT = 293 K
β = 103.870 (5)°Block, colourless
V = 1402.3 (2) Å30.35 × 0.30 × 0.30 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3498 independent reflections
Radiation source: fine-focus sealed tube2469 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and ϕ scansθmax = 28.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1512
Tmin = 0.968, Tmax = 0.973k = 1213
13307 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.185H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0939P)2 + 0.361P]
where P = (Fo2 + 2Fc2)/3
3498 reflections(Δ/σ)max = 0.001
184 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C7H7NO3·C7H10N2V = 1402.3 (2) Å3
Mr = 275.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.4923 (9) ŵ = 0.09 mm1
b = 9.8362 (8) ÅT = 293 K
c = 12.7781 (10) Å0.35 × 0.30 × 0.30 mm
β = 103.870 (5)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3498 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2469 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.973Rint = 0.028
13307 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.185H-atom parameters constrained
S = 1.03Δρmax = 0.35 e Å3
3498 reflectionsΔρmin = 0.27 e Å3
184 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.15952 (12)0.10464 (16)0.99019 (11)0.0722 (4)
H30.12310.08780.92810.108*
N30.03318 (13)0.41197 (16)0.70694 (12)0.0580 (4)
N10.55651 (14)0.22673 (19)1.12638 (14)0.0661 (4)
O10.63106 (15)0.1883 (2)1.20437 (15)0.0964 (6)
N20.17044 (15)0.41211 (18)1.02568 (13)0.0637 (4)
C140.10524 (14)0.41079 (16)0.92229 (13)0.0474 (4)
C60.38178 (14)0.15782 (17)0.97841 (13)0.0475 (4)
C10.45173 (14)0.14230 (17)1.08398 (13)0.0498 (4)
C130.13746 (15)0.48787 (18)0.84064 (15)0.0524 (4)
H130.20610.54150.85670.063*
C30.32858 (16)0.0365 (2)1.12182 (14)0.0568 (4)
H3A0.31130.10111.16910.068*
C100.00038 (16)0.33308 (18)0.88898 (16)0.0569 (4)
H100.02530.27780.93810.068*
C50.28341 (14)0.07288 (18)0.94833 (13)0.0499 (4)
H50.23470.08060.87910.060*
C40.25448 (14)0.02386 (17)1.01789 (13)0.0507 (4)
C110.06391 (16)0.33887 (19)0.78414 (17)0.0615 (5)
H110.13420.28820.76520.074*
C20.42568 (15)0.0457 (2)1.15360 (13)0.0558 (4)
H20.47490.03691.22260.067*
O20.56459 (19)0.3367 (2)1.08688 (19)0.1206 (8)
C120.06747 (16)0.48361 (18)0.73744 (15)0.0560 (4)
H120.09200.53430.68520.067*
C70.40796 (19)0.2548 (2)0.89618 (16)0.0650 (5)
H7A0.35870.23270.82640.098*
H7B0.49090.24780.89480.098*
H7C0.39100.34600.91480.098*
C90.1410 (3)0.3213 (3)1.10553 (18)0.0842 (7)
H9A0.06570.34781.11940.126*
H9B0.20260.32641.17110.126*
H9C0.13530.22971.07870.126*
C80.26892 (19)0.5044 (3)1.06203 (19)0.0842 (7)
H8A0.33800.47141.04000.126*
H8B0.28700.51091.13920.126*
H8C0.24750.59261.03110.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0643 (8)0.0827 (10)0.0624 (8)0.0234 (7)0.0014 (6)0.0170 (7)
N30.0535 (8)0.0548 (8)0.0598 (9)0.0094 (7)0.0020 (6)0.0021 (7)
N10.0526 (9)0.0713 (11)0.0682 (10)0.0036 (8)0.0023 (7)0.0149 (8)
O10.0690 (10)0.1098 (13)0.0881 (11)0.0055 (9)0.0249 (8)0.0143 (10)
N20.0660 (10)0.0714 (10)0.0511 (8)0.0051 (8)0.0087 (7)0.0005 (7)
C140.0456 (8)0.0435 (8)0.0533 (9)0.0073 (6)0.0119 (6)0.0005 (7)
C60.0458 (8)0.0496 (9)0.0482 (8)0.0043 (6)0.0132 (6)0.0018 (6)
C10.0406 (8)0.0544 (9)0.0515 (9)0.0044 (7)0.0056 (6)0.0099 (7)
C130.0444 (8)0.0520 (9)0.0602 (10)0.0030 (7)0.0112 (7)0.0025 (7)
C30.0553 (9)0.0649 (11)0.0485 (9)0.0058 (8)0.0093 (7)0.0111 (8)
C100.0567 (10)0.0480 (9)0.0698 (11)0.0029 (7)0.0224 (8)0.0054 (8)
C50.0484 (8)0.0584 (9)0.0399 (8)0.0007 (7)0.0047 (6)0.0034 (7)
C40.0459 (8)0.0555 (9)0.0488 (9)0.0016 (7)0.0078 (6)0.0023 (7)
C110.0453 (9)0.0537 (10)0.0813 (13)0.0029 (7)0.0069 (8)0.0095 (9)
C20.0508 (9)0.0687 (11)0.0422 (8)0.0103 (8)0.0001 (7)0.0002 (7)
O20.1045 (15)0.1048 (15)0.1303 (17)0.0483 (12)0.0155 (12)0.0154 (13)
C120.0585 (10)0.0538 (9)0.0563 (10)0.0064 (8)0.0150 (8)0.0068 (7)
C70.0666 (11)0.0673 (12)0.0613 (11)0.0061 (9)0.0157 (9)0.0084 (9)
C90.1090 (18)0.0927 (16)0.0549 (11)0.0277 (14)0.0273 (11)0.0153 (11)
C80.0637 (12)0.115 (2)0.0667 (13)0.0000 (12)0.0009 (10)0.0245 (13)
Geometric parameters (Å, º) top
O3—C41.328 (2)C3—C41.401 (2)
O3—H30.8200C3—H3A0.9300
N3—C121.331 (2)C10—C111.367 (3)
N3—C111.335 (3)C10—H100.9300
N1—O21.207 (3)C5—C41.396 (2)
N1—O11.209 (2)C5—H50.9300
N1—C11.456 (2)C11—H110.9300
N2—C141.354 (2)C2—H20.9300
N2—C81.439 (3)C12—H120.9300
N2—C91.456 (3)C7—H7A0.9600
C14—C101.404 (2)C7—H7B0.9600
C14—C131.409 (2)C7—H7C0.9600
C6—C51.384 (2)C9—H9A0.9600
C6—C11.403 (2)C9—H9B0.9600
C6—C71.502 (3)C9—H9C0.9600
C1—C21.383 (3)C8—H8A0.9600
C13—C121.371 (3)C8—H8B0.9600
C13—H130.9300C8—H8C0.9600
C3—C21.359 (2)
C4—O3—H3109.5O3—C4—C3118.28 (15)
C12—N3—C11115.74 (15)C5—C4—C3118.74 (15)
O2—N1—O1121.00 (19)N3—C11—C10124.75 (16)
O2—N1—C1119.70 (17)N3—C11—H11117.6
O1—N1—C1119.19 (19)C10—C11—H11117.6
C14—N2—C8121.99 (18)C3—C2—C1120.37 (15)
C14—N2—C9120.72 (18)C3—C2—H2119.8
C8—N2—C9117.27 (18)C1—C2—H2119.8
N2—C14—C10122.35 (17)N3—C12—C13124.50 (17)
N2—C14—C13122.36 (16)N3—C12—H12117.8
C10—C14—C13115.29 (15)C13—C12—H12117.8
C5—C6—C1116.28 (15)C6—C7—H7A109.5
C5—C6—C7118.45 (15)C6—C7—H7B109.5
C1—C6—C7125.23 (16)H7A—C7—H7B109.5
C2—C1—C6122.06 (15)C6—C7—H7C109.5
C2—C1—N1116.10 (15)H7A—C7—H7C109.5
C6—C1—N1121.85 (17)H7B—C7—H7C109.5
C12—C13—C14119.88 (16)N2—C9—H9A109.5
C12—C13—H13120.1N2—C9—H9B109.5
C14—C13—H13120.1H9A—C9—H9B109.5
C2—C3—C4119.98 (16)N2—C9—H9C109.5
C2—C3—H3A120.0H9A—C9—H9C109.5
C4—C3—H3A120.0H9B—C9—H9C109.5
C11—C10—C14119.82 (17)N2—C8—H8A109.5
C11—C10—H10120.1N2—C8—H8B109.5
C14—C10—H10120.1H8A—C8—H8B109.5
C6—C5—C4122.56 (14)N2—C8—H8C109.5
C6—C5—H5118.7H8A—C8—H8C109.5
C4—C5—H5118.7H8B—C8—H8C109.5
O3—C4—C5122.98 (15)
C8—N2—C14—C10172.07 (18)C13—C14—C10—C111.7 (2)
C9—N2—C14—C106.4 (3)C1—C6—C5—C40.3 (2)
C8—N2—C14—C137.6 (3)C7—C6—C5—C4177.63 (17)
C9—N2—C14—C13174.00 (17)C6—C5—C4—O3179.17 (16)
C5—C6—C1—C21.3 (2)C6—C5—C4—C30.7 (3)
C7—C6—C1—C2176.47 (17)C2—C3—C4—O3179.11 (17)
C5—C6—C1—N1178.98 (15)C2—C3—C4—C50.7 (3)
C7—C6—C1—N13.2 (3)C12—N3—C11—C100.4 (3)
O2—N1—C1—C2156.9 (2)C14—C10—C11—N31.8 (3)
O1—N1—C1—C219.3 (3)C4—C3—C2—C10.2 (3)
O2—N1—C1—C623.4 (3)C6—C1—C2—C31.3 (3)
O1—N1—C1—C6160.43 (18)N1—C1—C2—C3178.99 (16)
N2—C14—C13—C12179.41 (16)C11—N3—C12—C131.2 (3)
C10—C14—C13—C120.3 (2)C14—C13—C12—N31.2 (3)
N2—C14—C10—C11178.01 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N3i0.821.792.594 (2)168
Symmetry code: (i) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC7H7NO3·C7H10N2
Mr275.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.4923 (9), 9.8362 (8), 12.7781 (10)
β (°) 103.870 (5)
V3)1402.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.30 × 0.30
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.968, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
13307, 3498, 2469
Rint0.028
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.185, 1.03
No. of reflections3498
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.27

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N3i0.821.792.594 (2)168
Symmetry code: (i) x, y1/2, z+3/2.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. TS thanks the DST for an Inspire fellowship.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.  Google Scholar
First citationDong, S.-L. & Cheng, X. (2012). Acta Cryst. E68, o518.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds