supplementary materials


pv2590 scheme

Acta Cryst. (2012). E68, o3106    [ doi:10.1107/S1600536812041670 ]

3-Methyl-4-nitrophenol-4-dimethylaminopyridine (1/1)

S. Muralidharan, P. Nagapandiselvi, T. Srinivasan, R. Gopalakrishnan and D. Velmurugan

Abstract top

In the title adduct, C7H7NO3.C7H10N2, the dihedral angle betwen the benzene ring and pyridine rings is 9.60 (8)° while the nitro group attached to the benzene ring makes a dihedral angle of 21.76 (13)°. The hydroxyl O atom deviates by 0.0247 (15) Å from the plane of the benzene ring. The crystal packing features O-H...N hydrogen bonds.

Comment top

In the molecule (fig.1),the pyridine ring (N3/C10/C11/C12/C13/C14) makes a dihedral angle of 9.60 (8)° with the phenyl ring (C1/C2/C3/C4/C5/C6) system. The oxygen atom O3 deviates by -0.0247 (15)Å from the plane of the phenyl ring. The carbon atom C7 deviates by deviates by 0.0677 (21)Å from the plane of the phenyl ring.

The nitrogen atom N1 deviates by -0.0285 (18)Å from the plane of the phenyl ring. The nitrogen atom N2 devaites by -0.0292 (18)Å from the plane of the pyridine ring. The crystal packing is stabilized by intermolecular O—H···N hydrogen bonds

Related literature top

For a related structure, see: Dong & Cheng (2012).

Experimental top

4-Dimethylaminopyridine and 3-methyl-4-nitrophenol were taken in equimolar (1:1) ratio using acetone as solvent. The solution was filtered in a clean beaker and optimally closed. The prepared solution was kept at room temperature for two days after which crystals suitable for X-ray diffraction were obtained.

Refinement top

The hydrogen atoms were placed in calculated positions with C—H = 0.93 Å to 1.08 Å refined in the riding model with fixed isotropic displacement parameters:Uiso(H) = 1.5Ueq(C) for methyl group and Uiso(H) = 1.2Ueq(C) for other groups.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down c axis. H-atoms not involved in H-bonds have been excluded for clarity.
3-Methyl-4-nitrophenol–4-dimethylaminopyridine (1/1) top
Crystal data top
C7H7NO3·C7H10N2F(000) = 584
Mr = 275.31Dx = 1.304 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3498 reflections
a = 11.4923 (9) Åθ = 1.8–28.4°
b = 9.8362 (8) ŵ = 0.09 mm1
c = 12.7781 (10) ÅT = 293 K
β = 103.870 (5)°Block, colourless
V = 1402.3 (2) Å30.35 × 0.30 × 0.30 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3498 independent reflections
Radiation source: fine-focus sealed tube2469 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and φ scansθmax = 28.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1512
Tmin = 0.968, Tmax = 0.973k = 1213
13307 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.185H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0939P)2 + 0.361P]
where P = (Fo2 + 2Fc2)/3
3498 reflections(Δ/σ)max = 0.001
184 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C7H7NO3·C7H10N2V = 1402.3 (2) Å3
Mr = 275.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.4923 (9) ŵ = 0.09 mm1
b = 9.8362 (8) ÅT = 293 K
c = 12.7781 (10) Å0.35 × 0.30 × 0.30 mm
β = 103.870 (5)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3498 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2469 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.973Rint = 0.028
13307 measured reflectionsθmax = 28.4°
Refinement top
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.185Δρmax = 0.35 e Å3
S = 1.03Δρmin = 0.27 e Å3
3498 reflectionsAbsolute structure: ?
184 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.15952 (12)0.10464 (16)0.99019 (11)0.0722 (4)
H30.12310.08780.92810.108*
N30.03318 (13)0.41197 (16)0.70694 (12)0.0580 (4)
N10.55651 (14)0.22673 (19)1.12638 (14)0.0661 (4)
O10.63106 (15)0.1883 (2)1.20437 (15)0.0964 (6)
N20.17044 (15)0.41211 (18)1.02568 (13)0.0637 (4)
C140.10524 (14)0.41079 (16)0.92229 (13)0.0474 (4)
C60.38178 (14)0.15782 (17)0.97841 (13)0.0475 (4)
C10.45173 (14)0.14230 (17)1.08398 (13)0.0498 (4)
C130.13746 (15)0.48787 (18)0.84064 (15)0.0524 (4)
H130.20610.54150.85670.063*
C30.32858 (16)0.0365 (2)1.12182 (14)0.0568 (4)
H3A0.31130.10111.16910.068*
C100.00038 (16)0.33308 (18)0.88898 (16)0.0569 (4)
H100.02530.27780.93810.068*
C50.28341 (14)0.07288 (18)0.94833 (13)0.0499 (4)
H50.23470.08060.87910.060*
C40.25448 (14)0.02386 (17)1.01789 (13)0.0507 (4)
C110.06391 (16)0.33887 (19)0.78414 (17)0.0615 (5)
H110.13420.28820.76520.074*
C20.42568 (15)0.0457 (2)1.15360 (13)0.0558 (4)
H20.47490.03691.22260.067*
O20.56459 (19)0.3367 (2)1.08688 (19)0.1206 (8)
C120.06747 (16)0.48361 (18)0.73744 (15)0.0560 (4)
H120.09200.53430.68520.067*
C70.40796 (19)0.2548 (2)0.89618 (16)0.0650 (5)
H7A0.35870.23270.82640.098*
H7B0.49090.24780.89480.098*
H7C0.39100.34600.91480.098*
C90.1410 (3)0.3213 (3)1.10553 (18)0.0842 (7)
H9A0.06570.34781.11940.126*
H9B0.20260.32641.17110.126*
H9C0.13530.22971.07870.126*
C80.26892 (19)0.5044 (3)1.06203 (19)0.0842 (7)
H8A0.33800.47141.04000.126*
H8B0.28700.51091.13920.126*
H8C0.24750.59261.03110.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0643 (8)0.0827 (10)0.0624 (8)0.0234 (7)0.0014 (6)0.0170 (7)
N30.0535 (8)0.0548 (8)0.0598 (9)0.0094 (7)0.0020 (6)0.0021 (7)
N10.0526 (9)0.0713 (11)0.0682 (10)0.0036 (8)0.0023 (7)0.0149 (8)
O10.0690 (10)0.1098 (13)0.0881 (11)0.0055 (9)0.0249 (8)0.0143 (10)
N20.0660 (10)0.0714 (10)0.0511 (8)0.0051 (8)0.0087 (7)0.0005 (7)
C140.0456 (8)0.0435 (8)0.0533 (9)0.0073 (6)0.0119 (6)0.0005 (7)
C60.0458 (8)0.0496 (9)0.0482 (8)0.0043 (6)0.0132 (6)0.0018 (6)
C10.0406 (8)0.0544 (9)0.0515 (9)0.0044 (7)0.0056 (6)0.0099 (7)
C130.0444 (8)0.0520 (9)0.0602 (10)0.0030 (7)0.0112 (7)0.0025 (7)
C30.0553 (9)0.0649 (11)0.0485 (9)0.0058 (8)0.0093 (7)0.0111 (8)
C100.0567 (10)0.0480 (9)0.0698 (11)0.0029 (7)0.0224 (8)0.0054 (8)
C50.0484 (8)0.0584 (9)0.0399 (8)0.0007 (7)0.0047 (6)0.0034 (7)
C40.0459 (8)0.0555 (9)0.0488 (9)0.0016 (7)0.0078 (6)0.0023 (7)
C110.0453 (9)0.0537 (10)0.0813 (13)0.0029 (7)0.0069 (8)0.0095 (9)
C20.0508 (9)0.0687 (11)0.0422 (8)0.0103 (8)0.0001 (7)0.0002 (7)
O20.1045 (15)0.1048 (15)0.1303 (17)0.0483 (12)0.0155 (12)0.0154 (13)
C120.0585 (10)0.0538 (9)0.0563 (10)0.0064 (8)0.0150 (8)0.0068 (7)
C70.0666 (11)0.0673 (12)0.0613 (11)0.0061 (9)0.0157 (9)0.0084 (9)
C90.1090 (18)0.0927 (16)0.0549 (11)0.0277 (14)0.0273 (11)0.0153 (11)
C80.0637 (12)0.115 (2)0.0667 (13)0.0000 (12)0.0009 (10)0.0245 (13)
Geometric parameters (Å, º) top
O3—C41.328 (2)C3—C41.401 (2)
O3—H30.8200C3—H3A0.9300
N3—C121.331 (2)C10—C111.367 (3)
N3—C111.335 (3)C10—H100.9300
N1—O21.207 (3)C5—C41.396 (2)
N1—O11.209 (2)C5—H50.9300
N1—C11.456 (2)C11—H110.9300
N2—C141.354 (2)C2—H20.9300
N2—C81.439 (3)C12—H120.9300
N2—C91.456 (3)C7—H7A0.9600
C14—C101.404 (2)C7—H7B0.9600
C14—C131.409 (2)C7—H7C0.9600
C6—C51.384 (2)C9—H9A0.9600
C6—C11.403 (2)C9—H9B0.9600
C6—C71.502 (3)C9—H9C0.9600
C1—C21.383 (3)C8—H8A0.9600
C13—C121.371 (3)C8—H8B0.9600
C13—H130.9300C8—H8C0.9600
C3—C21.359 (2)
C4—O3—H3109.5O3—C4—C3118.28 (15)
C12—N3—C11115.74 (15)C5—C4—C3118.74 (15)
O2—N1—O1121.00 (19)N3—C11—C10124.75 (16)
O2—N1—C1119.70 (17)N3—C11—H11117.6
O1—N1—C1119.19 (19)C10—C11—H11117.6
C14—N2—C8121.99 (18)C3—C2—C1120.37 (15)
C14—N2—C9120.72 (18)C3—C2—H2119.8
C8—N2—C9117.27 (18)C1—C2—H2119.8
N2—C14—C10122.35 (17)N3—C12—C13124.50 (17)
N2—C14—C13122.36 (16)N3—C12—H12117.8
C10—C14—C13115.29 (15)C13—C12—H12117.8
C5—C6—C1116.28 (15)C6—C7—H7A109.5
C5—C6—C7118.45 (15)C6—C7—H7B109.5
C1—C6—C7125.23 (16)H7A—C7—H7B109.5
C2—C1—C6122.06 (15)C6—C7—H7C109.5
C2—C1—N1116.10 (15)H7A—C7—H7C109.5
C6—C1—N1121.85 (17)H7B—C7—H7C109.5
C12—C13—C14119.88 (16)N2—C9—H9A109.5
C12—C13—H13120.1N2—C9—H9B109.5
C14—C13—H13120.1H9A—C9—H9B109.5
C2—C3—C4119.98 (16)N2—C9—H9C109.5
C2—C3—H3A120.0H9A—C9—H9C109.5
C4—C3—H3A120.0H9B—C9—H9C109.5
C11—C10—C14119.82 (17)N2—C8—H8A109.5
C11—C10—H10120.1N2—C8—H8B109.5
C14—C10—H10120.1H8A—C8—H8B109.5
C6—C5—C4122.56 (14)N2—C8—H8C109.5
C6—C5—H5118.7H8A—C8—H8C109.5
C4—C5—H5118.7H8B—C8—H8C109.5
O3—C4—C5122.98 (15)
C8—N2—C14—C10172.07 (18)C13—C14—C10—C111.7 (2)
C9—N2—C14—C106.4 (3)C1—C6—C5—C40.3 (2)
C8—N2—C14—C137.6 (3)C7—C6—C5—C4177.63 (17)
C9—N2—C14—C13174.00 (17)C6—C5—C4—O3179.17 (16)
C5—C6—C1—C21.3 (2)C6—C5—C4—C30.7 (3)
C7—C6—C1—C2176.47 (17)C2—C3—C4—O3179.11 (17)
C5—C6—C1—N1178.98 (15)C2—C3—C4—C50.7 (3)
C7—C6—C1—N13.2 (3)C12—N3—C11—C100.4 (3)
O2—N1—C1—C2156.9 (2)C14—C10—C11—N31.8 (3)
O1—N1—C1—C219.3 (3)C4—C3—C2—C10.2 (3)
O2—N1—C1—C623.4 (3)C6—C1—C2—C31.3 (3)
O1—N1—C1—C6160.43 (18)N1—C1—C2—C3178.99 (16)
N2—C14—C13—C12179.41 (16)C11—N3—C12—C131.2 (3)
C10—C14—C13—C120.3 (2)C14—C13—C12—N31.2 (3)
N2—C14—C10—C11178.01 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N3i0.821.792.594 (2)168
Symmetry code: (i) x, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N3i0.821.792.594 (2)168
Symmetry code: (i) x, y1/2, z+3/2.
Acknowledgements top

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. TS thanks the DST for an Inspire fellowship.

references
References top

Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.

Dong, S.-L. & Cheng, X. (2012). Acta Cryst. E68, o518.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D 65, 148–155.