supplementary materials


pv2593 scheme

Acta Cryst. (2012). E68, m1320    [ doi:10.1107/S1600536812040925 ]

Bis(2,4,6-trimethylpyridinium) tetrabromidozincate

B. F. Ali, S. F. Haddad and R. Al-Far

Abstract top

In the title compound, (C8H12N)2[ZnBr4], the coordination geometry of the anion is approximately tetrahedral. The Zn-Br bond lengths range from 2.3901 (19) to 2.449 (2) Å and the Br-Zn-Br angles range from 107.09 (8) to 112.48 (8)°. In the crystal, each [ZnBr4]2- anion is connected to four cations through two N-H...Br and two C-H...Br hydrogen bonds, forming two-dimensional ...(cation)2...anion...(cation2)... sheets parallel to the bc plane. Within each sheet, the anions are arranged in stacks with no significant inter-anion Br...Br interactions [the shortest being > 4.3 Å], while the cations are in chains, with weak [pi]-[pi] stacking interactions [centroid-centroid distance = 3.991 Å] between cations interacting with the same anion.

Comment top

In connection with ongoing studies of the structural aspects of halo-metal anion salts (Ali & Al-Far, 2009), we herein report the crystal structure of the title compound. The asymmetric unit contains an anion and two independent cations (Fig. 1). The geometry of ZnBr42- anion is approximately tetrahedral. In the anion, the bond distances and angles fall in the range of those reported previously (Peng & Li, 2011). In the cations, the bond lengths and angles are within normal ranges compared to the salt containing 2,4,6-trimethylpyridinium cation (Abbasi et al., 2011). The packing of the structure can be regarded as alternating stacks of anions and chains of cations. The anion stacks are parallel to the cation chains, with no significant Br···Br interactions [shortest Br···Br interactions being greater than 4.3 Å]. The anions and cations are interacting significantly through two N—H···Br—Zn and two pyC—H···Br—Zn hydrogen bonding (Table 1). These interactions link anions and cations into two-dimensional sheets of etc ···(cation)2···anion···(cation)2···etc parallel to bc plane (Fig. 2).

Related literature top

For background information, see: Ali & Al-Far (2009). For bond lengths and angles in the [ZnBr4]2- anion, see: Ali & Al-Far (2009); Peng & Li (2011). For another structure containing the 2,4,6-trimethylpyridinium cation, see: Abbasi et al. (2011).

Experimental top

To a hot solution of 2,4,6-trimethylpyridine (0.122 g, 1 mmol) and 1 ml of 60% HBr dissolved in 95% EtOH (15 ml), a hot solution of ZnCl2 (0.136 g, 1 mmol) dissolved in 95% EtOH (10 ml) was added. The resulting mixture was then treated with liquid Br2 (2 ml) and refluxed for 2 h. The resulting mixture was left undisturbed to evaporate at room temperature whereupon colorless plate crystals were formed after two days.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with N—H = 0.86 Å and C—H = 0.93 and 0.96 Å, for aryl and methyl H atoms, respectively. The Uiso(H) were allowed at 1.5Ueq(C methyl) or 1.2Ueq(N/C nonmethyl). An absolute structure was determined by using 797 Friedel pairs.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound showing alternating stacks of anions and cations. C/N—H···Br interactions are shown as dashed lines.
Bis(2,4,6-trimethylpyridinium) tetrabromidozincate top
Crystal data top
(C8H12N)2[ZnBr4]Z = 1
Mr = 629.36F(000) = 304
Triclinic, P1Dx = 1.908 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3627 (8) ÅCell parameters from 1674 reflections
b = 9.0310 (8) Åθ = 2.9–29.1°
c = 9.1854 (9) ŵ = 8.41 mm1
α = 101.741 (8)°T = 293 K
β = 110.778 (10)°Chunk, colourless
γ = 96.321 (8)°0.35 × 0.25 × 0.2 mm
V = 547.89 (9) Å3
Data collection top
Oxford Xcalibur Eos
diffractometer
2730 independent reflections
Radiation source: Enhance (Mo) X-ray Source2399 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 16.0534 pixels mm-1θmax = 25.0°, θmin = 2.9°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 107
Tmin = 0.413, Tmax = 1.000l = 1010
3637 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0933P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2730 reflectionsΔρmax = 0.75 e Å3
214 parametersΔρmin = 0.77 e Å3
3 restraintsAbsolute structure: Flack (1983), 797 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.02 (2)
Crystal data top
(C8H12N)2[ZnBr4]γ = 96.321 (8)°
Mr = 629.36V = 547.89 (9) Å3
Triclinic, P1Z = 1
a = 7.3627 (8) ÅMo Kα radiation
b = 9.0310 (8) ŵ = 8.41 mm1
c = 9.1854 (9) ÅT = 293 K
α = 101.741 (8)°0.35 × 0.25 × 0.2 mm
β = 110.778 (10)°
Data collection top
Oxford Xcalibur Eos
diffractometer
2730 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2399 reflections with I > 2σ(I)
Tmin = 0.413, Tmax = 1.000Rint = 0.021
3637 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.140Δρmax = 0.75 e Å3
S = 1.02Δρmin = 0.77 e Å3
2730 reflectionsAbsolute structure: Flack (1983), 797 Friedel pairs
214 parametersFlack parameter: 0.02 (2)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.9260 (2)0.39402 (17)0.49611 (17)0.0439 (3)
Br40.9532 (2)0.27784 (15)0.24750 (16)0.0629 (4)
Br30.59389 (18)0.45209 (17)0.43497 (16)0.0576 (4)
Br20.9650 (2)0.22617 (15)0.67076 (16)0.0609 (4)
Br11.16750 (19)0.63427 (15)0.62829 (16)0.0617 (4)
N20.6828 (15)0.6293 (11)0.8284 (12)0.046 (2)
H2A0.65880.58390.72980.055*
C100.7852 (19)0.8528 (16)1.0355 (17)0.053 (3)
H10A0.82710.95951.07190.063*
C130.6550 (18)0.5429 (14)0.9227 (15)0.047 (3)
C90.7459 (19)0.7828 (15)0.8773 (18)0.052 (3)
C120.7024 (18)0.6132 (16)1.0853 (15)0.053 (3)
H12A0.69170.55381.15460.064*
C110.7654 (18)0.7721 (14)1.1426 (16)0.045 (3)
N10.2717 (18)0.1748 (16)0.0480 (15)0.065 (3)
H1A0.25180.21480.05110.078*
C40.2765 (16)0.1995 (15)0.3001 (15)0.046 (3)
H4A0.26190.26190.36580.056*
C20.3449 (17)0.0429 (13)0.2619 (15)0.045 (3)
H2B0.37820.14970.30190.054*
C50.2520 (17)0.2679 (15)0.1393 (14)0.045 (3)
C30.3220 (18)0.0405 (15)0.3603 (15)0.047 (3)
C10.323 (2)0.0168 (17)0.1074 (18)0.058 (3)
C150.804 (2)0.848 (2)1.3147 (17)0.067 (4)
H15A0.91210.81301.38480.100*
H15B0.68760.82211.33560.100*
H15C0.83810.95801.33380.100*
C70.350 (2)0.038 (2)0.5270 (19)0.062 (4)
H7A0.48140.09960.58230.093*
H7B0.33210.03780.58300.093*
H7C0.25470.10300.52390.093*
C140.774 (3)0.864 (2)0.758 (2)0.083 (5)
H14A0.86540.82050.71710.125*
H14B0.82530.97150.80910.125*
H14C0.64870.85040.67000.125*
C80.202 (2)0.4391 (14)0.0714 (18)0.057 (3)
H8A0.17900.46310.04110.086*
H8B0.08410.48060.08420.086*
H8C0.30940.48350.12770.086*
C160.585 (3)0.3720 (16)0.851 (2)0.064 (4)
H16A0.62200.34140.76040.097*
H16B0.44320.34670.81500.097*
H16C0.64440.31880.93030.097*
C60.353 (4)0.090 (3)0.010 (3)0.120 (9)
H6A0.25490.15310.00430.179*
H6B0.34050.03040.09410.179*
H6C0.48280.15400.06410.179*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0515 (8)0.0429 (7)0.0372 (7)0.0055 (6)0.0178 (6)0.0109 (5)
Br40.0890 (11)0.0564 (9)0.0506 (8)0.0112 (7)0.0382 (8)0.0105 (6)
Br30.0525 (8)0.0733 (9)0.0461 (7)0.0155 (7)0.0172 (6)0.0155 (6)
Br20.0802 (10)0.0601 (8)0.0521 (8)0.0160 (7)0.0292 (7)0.0279 (7)
Br10.0650 (9)0.0521 (8)0.0573 (9)0.0076 (6)0.0207 (7)0.0073 (6)
N20.055 (6)0.047 (6)0.029 (5)0.006 (5)0.012 (4)0.012 (4)
C100.042 (6)0.048 (7)0.061 (9)0.009 (5)0.013 (6)0.009 (6)
C130.047 (7)0.037 (6)0.053 (7)0.002 (5)0.019 (6)0.007 (6)
C90.051 (7)0.047 (8)0.059 (8)0.007 (6)0.020 (6)0.018 (6)
C120.049 (7)0.070 (9)0.041 (7)0.016 (7)0.017 (6)0.015 (6)
C110.036 (6)0.051 (8)0.047 (7)0.009 (5)0.016 (5)0.008 (6)
N10.059 (7)0.094 (10)0.044 (6)0.012 (6)0.020 (5)0.021 (6)
C40.041 (6)0.062 (8)0.040 (6)0.017 (6)0.016 (5)0.018 (6)
C20.047 (7)0.029 (6)0.051 (8)0.003 (5)0.011 (6)0.010 (5)
C50.035 (6)0.069 (8)0.030 (6)0.011 (5)0.010 (5)0.013 (6)
C30.045 (7)0.058 (8)0.037 (6)0.015 (6)0.014 (5)0.007 (6)
C10.051 (8)0.064 (9)0.058 (9)0.007 (6)0.014 (6)0.031 (7)
C150.064 (9)0.082 (11)0.037 (8)0.007 (8)0.018 (7)0.014 (7)
C70.066 (10)0.074 (10)0.048 (8)0.020 (8)0.027 (7)0.009 (7)
C140.109 (14)0.086 (12)0.073 (12)0.029 (10)0.035 (10)0.057 (10)
C80.070 (9)0.037 (7)0.061 (9)0.006 (6)0.024 (7)0.009 (6)
C160.087 (11)0.049 (8)0.065 (10)0.000 (7)0.039 (8)0.021 (7)
C60.120 (17)0.15 (2)0.119 (19)0.027 (15)0.047 (15)0.101 (17)
Geometric parameters (Å, º) top
Zn1—Br22.3901 (19)C2—C11.356 (19)
Zn1—Br42.398 (2)C2—H2B0.9300
Zn1—Br12.4270 (19)C5—C81.494 (18)
Zn1—Br32.449 (2)C3—C71.480 (19)
N2—C131.329 (16)C1—C61.49 (2)
N2—C91.340 (16)C15—H15A0.9600
N2—H2A0.8600C15—H15B0.9600
C10—C91.37 (2)C15—H15C0.9600
C10—C111.38 (2)C7—H7A0.9600
C10—H10A0.9300C7—H7B0.9600
C13—C121.397 (18)C7—H7C0.9600
C13—C161.501 (18)C14—H14A0.9600
C9—C141.50 (2)C14—H14B0.9600
C12—C111.387 (18)C14—H14C0.9600
C12—H12A0.9300C8—H8A0.9600
C11—C151.498 (18)C8—H8B0.9600
N1—C51.333 (18)C8—H8C0.9600
N1—C11.377 (19)C16—H16A0.9600
N1—H1A0.8600C16—H16B0.9600
C4—C31.385 (17)C16—H16C0.9600
C4—C51.418 (17)C6—H6A0.9600
C4—H4A0.9300C6—H6B0.9600
C2—C31.331 (18)C6—H6C0.9600
Br2—Zn1—Br4112.48 (8)C2—C1—N1117.5 (12)
Br2—Zn1—Br1110.92 (8)C2—C1—C6119.3 (16)
Br4—Zn1—Br1109.19 (7)N1—C1—C6123.1 (16)
Br2—Zn1—Br3107.09 (8)C11—C15—H15A109.5
Br4—Zn1—Br3108.55 (8)C11—C15—H15B109.5
Br1—Zn1—Br3108.49 (8)H15A—C15—H15B109.5
C13—N2—C9124.2 (11)C11—C15—H15C109.5
C13—N2—H2A117.9H15A—C15—H15C109.5
C9—N2—H2A117.9H15B—C15—H15C109.5
C9—C10—C11122.8 (12)C3—C7—H7A109.5
C9—C10—H10A118.6C3—C7—H7B109.5
C11—C10—H10A118.6H7A—C7—H7B109.5
N2—C13—C12118.9 (11)C3—C7—H7C109.5
N2—C13—C16118.0 (11)H7A—C7—H7C109.5
C12—C13—C16123.1 (12)H7B—C7—H7C109.5
N2—C9—C10116.9 (12)C9—C14—H14A109.5
N2—C9—C14117.8 (13)C9—C14—H14B109.5
C10—C9—C14125.2 (14)H14A—C14—H14B109.5
C11—C12—C13119.6 (12)C9—C14—H14C109.5
C11—C12—H12A120.2H14A—C14—H14C109.5
C13—C12—H12A120.2H14B—C14—H14C109.5
C10—C11—C12117.4 (12)C5—C8—H8A109.5
C10—C11—C15123.1 (12)C5—C8—H8B109.5
C12—C11—C15119.5 (13)H8A—C8—H8B109.5
C5—N1—C1122.0 (12)C5—C8—H8C109.5
C5—N1—H1A119.0H8A—C8—H8C109.5
C1—N1—H1A119.0H8B—C8—H8C109.5
C3—C4—C5120.7 (12)C13—C16—H16A109.5
C3—C4—H4A119.7C13—C16—H16B109.5
C5—C4—H4A119.7H16A—C16—H16B109.5
C3—C2—C1124.6 (12)C13—C16—H16C109.5
C3—C2—H2B117.7H16A—C16—H16C109.5
C1—C2—H2B117.7H16B—C16—H16C109.5
N1—C5—C4118.0 (12)C1—C6—H6A109.5
N1—C5—C8120.4 (12)C1—C6—H6B109.5
C4—C5—C8121.6 (12)H6A—C6—H6B109.5
C2—C3—C4117.0 (11)C1—C6—H6C109.5
C2—C3—C7119.7 (12)H6A—C6—H6C109.5
C4—C3—C7123.3 (13)H6B—C6—H6C109.5
C9—N2—C13—C123.1 (18)C1—N1—C5—C42.9 (19)
C9—N2—C13—C16179.7 (13)C1—N1—C5—C8178.3 (13)
C13—N2—C9—C100.6 (19)C3—C4—C5—N10.8 (17)
C13—N2—C9—C14178.8 (13)C3—C4—C5—C8179.6 (12)
C11—C10—C9—N21 (2)C1—C2—C3—C41.3 (19)
C11—C10—C9—C14177.0 (14)C1—C2—C3—C7179.9 (13)
N2—C13—C12—C113.9 (18)C5—C4—C3—C21.3 (17)
C16—C13—C12—C11179.7 (13)C5—C4—C3—C7179.8 (12)
C9—C10—C11—C120.1 (19)C3—C2—C1—N11 (2)
C9—C10—C11—C15178.8 (13)C3—C2—C1—C6180.0 (15)
C13—C12—C11—C102.4 (17)C5—N1—C1—C23 (2)
C13—C12—C11—C15176.3 (12)C5—N1—C1—C6177.8 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br1i0.862.793.647 (13)175
N2—H2A···Br30.862.573.433 (10)179
C2—H2B···Br30.932.793.685 (11)162
C10—H10A···Br4ii0.932.863.776 (13)168
Symmetry codes: (i) x1, y1, z1; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br1i0.862.793.647 (13)175.4
N2—H2A···Br30.862.573.433 (10)178.7
C2—H2B···Br30.932.793.685 (11)162.2
C10—H10A···Br4ii0.932.863.776 (13)167.7
Symmetry codes: (i) x1, y1, z1; (ii) x, y+1, z+1.
Acknowledgements top

This structure was determined at the Hamdi Mango Center for Scientific Research at the University of Jordan, Amman. RA-F is grateful for financial support from Al-Balqa'a Applied University (Salt, Jordan).

references
References top

Abbasi, M. A., Nazir, K., Akkurt, M., Aziz-ur-Rehman,, Khan, I. U. & Mustafa, G. (2011). Acta Cryst. E67, o2375.

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Ali, B. F. & Al-Far, R. (2009). Acta Cryst. E65, m581–m582.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Peng, C. & Li, Y. (2011). Acta Cryst. E67, m1056.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.