organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[4-(Bromo­methyl)­benz­yl]tri­phenyl­phospho­nium bromide aceto­nitrile monosolvate

aDepartment of Chemistry, University of Hull, Hull, HU6 7RX, UK
*Correspondence e-mail: s.j.archibald@hull.ac.uk

(Received 4 October 2012; accepted 9 October 2012; online 24 October 2012)

In the title compound, C26H23BrP+·Br·C2H3N, the dihedral angles between the plane of the benzylic phenyl ring attached to the P atom and the planes of the three directly attached phenyl rings are 34.04 (12), 45.48 (13) and 87.18 (9)°. In the crystal, centrosymmetric pairs of cations and anions are linked into dimeric aggregates via C—H⋯Br hydrogen bonds. There is also a C—H⋯N hydrogen bond to the acetonitrile solvent mol­ecule.

Related literature

For background to the biological activity of alkyl­triphenyl­phospho­nium derivatives, see: Modica-Napolitano & Aprille (2001[Modica-Napolitano, J. S. & Aprille, J. R. (2001). Adv. Drug. Del. Rev. 49, 63-70.]); Modica-Napolitano & Singh (2002[Modica-Napolitano, J. S. & Singh, K. K. (2002). Exp. Rev. Mol. Med. 4, 1-19.]); Wang et al. (2007[Wang, J., Yang, C.-T., Kim, Y.-S., Sreerama, S. G., Cao, Q., Li, Z.-B., He, Z., Chen, X. & Liu, S. (2007). J. Med. Chem. 50, 5057-5059.]); Kim et al. (2008[Kim, Y.-S., Yang, C.-T., Wang, J., Wang, L., Li, Z.-B., Chen, X. & Liu, S. (2008). J. Med. Chem. 51, 2971-2984.], 2012[Kim, D.-Y., Kim, H.-J., Yu, K.-H. & Min, J.-J. (2012). Bioconj. Chem. 23, 431-437.]); Madar et al. (2007[Madar, I., Ravert, H., DiPaula, A., Du, Y., Dannals, R. F. & Becker, L. (2007). J. Nucl. Med. 48, 1021-1030.]). For the synthesis of triphenyl­phospho­nium salts, see: Wang et al. (2007[Wang, J., Yang, C.-T., Kim, Y.-S., Sreerama, S. G., Cao, Q., Li, Z.-B., He, Z., Chen, X. & Liu, S. (2007). J. Med. Chem. 50, 5057-5059.]).

[Scheme 1]

Experimental

Crystal data
  • C26H23BrP·Br·C2H3N

  • Mr = 567.29

  • Triclinic, [P \overline 1]

  • a = 9.588 (2) Å

  • b = 12.333 (3) Å

  • c = 12.393 (3) Å

  • α = 74.961 (19)°

  • β = 70.051 (18)°

  • γ = 69.293 (19)°

  • V = 1272.4 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.26 mm−1

  • T = 150 K

  • 0.2 × 0.2 × 0.1 mm

Data collection
  • Stoe IPDSII diffractometer

  • Absorption correction: integration (X-AREA; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]) Tmin = 0.336, Tmax = 0.661

  • 9761 measured reflections

  • 4473 independent reflections

  • 2659 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.051

  • S = 0.68

  • 4473 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯N1i 0.99 2.60 3.488 (6) 150
C8—H8A⋯Br2ii 0.99 2.64 3.625 (4) 172
C8—H8B⋯Br2iii 0.99 2.79 3.753 (3) 166
C20—H20⋯Br2iii 0.95 2.81 3.746 (4) 169
C28—H28C⋯Br2 0.98 2.69 3.673 (5) 176
Symmetry codes: (i) -x, -y+2, -z; (ii) -x, -y+1, -z+1; (iii) x, y+1, z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Triphenylphosphonium cations are known to accumulate in cancer cell mitochondria due to a significant increase in mitochondrial transmembrane potential between normal epithelial cells and carcinoma cells, causing a potential tenfold higher accumulation of cationic compounds in carcinoma cells (Modica-Napolitano et al., 2001; Modica-Napolitano et al., 2002). Increase in uptake in myocardial cells also gives the potential for use as heart targeting agents (Kim et al., 2012). (4-Bromomethylbenzyl)triphenylphosphonium bromide has been used as a precursor to synthesize a 64Cu radiolabelled molecule for potential cancer detection by positron emission tomography (Wang et al., 2007). Related compounds have also been radiolabelled with the 18F isotope (Kim et al., 2012; Madar et al., 2007).

In the cation of the title compound (Fig. 1), the dihedral angles formed by the C2–C7 benzene ring with the C9–C14, C15–C20 and C21–C26 phenyl rings are 34.04 (12), 45.48 (13) and 87.18 (9)°, respectively. In the crystal (Fig. 2), centrosymmetric pairs of ions are linked through C—H···Br hydrogen bonds (Table 1). The dimeric aggregates interact with the acetonitrile solvent molecules by C—H···N hydrogen bonds.

Related literature top

For background to the biological activity of alkyltriphenylphosphonium derivatives, see: Modica-Napolitano & Aprille (2001); Modica-Napolitano & Singh (2002); Wang et al. (2007); Kim et al. (2008, 2012); Madar et al. (2007). For the synthesis of triphenylphosphonium salts, see: Wang et al. (2007). Scheme must show acetonitrile solvate

Experimental top

The synthetic procedure was completed following literature methods (Wang et al., 2007). Triphenylphosphine (2 g, 7.73 mmol) in toluene (25 ml) was added dropwise to a stirred solution of α,α-dibromo-p-xylene (2.01 g, 7.73 mmol) in toluene (25 ml). The mixture was heated under reflux for 18 h. The reaction was cooled to room temperature, filtered and washed with toluene (20 ml) and diethyl ether (20 ml) to as a white solid (3.35 g, 82%). 1H-NMR (CDCl3): δ 4.39 (s, 2H, CH2—Br), 5.48 (d, 2H, CH2—P, J = 14.7 Hz), 7.10 (s, 4H, CH—Ar), 7.61 (m, 6H, CH—Ar), 7.76 (m, 9H, CH—Ar). 13C-NMR (CDCl3): δ 30.22 (CH2—P), 30.68 (CH2—P), 32.98 (CH2—P), 117.35 (CH—Ar), 118.21 (CH—Ar), 127.75 (C—Ar), 127.83 (C—Ar), 129.48 (CH—Ar), 130.18 (CH—Ar), 130.30 (CH—Ar), 132.10 (CH—Ar), 134.56 (CH—Ar), 135.09 (CH—Ar), 138.17 (C—Ar). 31P-NMR (CDCl3): δ 24.09 (s, PPh3). The crystals were grown by vapour diffusion of diethyl ether into an acetonitrile solution of the title compound at room temperature.

Refinement top

All H atoms were positioned geometrically and treated as riding, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, with C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for methylene H atoms and with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP plot of the title compound using 50% probability ellipsoids with all non-H atoms labelled.
[Figure 2] Fig. 2. The packing in the unit cell with displacement ellipsoids drawn at the 50% probability level. Intermolecular hydrogen bonds are shown as dashed lines.
[4-(Bromomethyl)benzyl]triphenylphosphonium bromide acetonitrile monosolvate top
Crystal data top
C26H23BrP·Br·C2H3NZ = 2
Mr = 567.29F(000) = 572
Triclinic, P1Dx = 1.481 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.588 (2) ÅCell parameters from 8439 reflections
b = 12.333 (3) Åθ = 2.5–31.3°
c = 12.393 (3) ŵ = 3.26 mm1
α = 74.961 (19)°T = 150 K
β = 70.051 (18)°Block, colourless
γ = 69.293 (19)°0.2 × 0.2 × 0.1 mm
V = 1272.4 (5) Å3
Data collection top
Stoe IPDSII
diffractometer
4473 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2659 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.069
Detector resolution: 6.67 pixels mm-1θmax = 25.0°, θmin = 2.5°
rotation method scansh = 1111
Absorption correction: integration
(X-AREA; Stoe & Cie, 2002)
k = 1414
Tmin = 0.336, Tmax = 0.661l = 1414
9761 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H-atom parameters constrained
S = 0.68 w = 1/[σ2(Fo2) + (0.006P)2]
where P = (Fo2 + 2Fc2)/3
4473 reflections(Δ/σ)max = 0.001
290 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C26H23BrP·Br·C2H3Nγ = 69.293 (19)°
Mr = 567.29V = 1272.4 (5) Å3
Triclinic, P1Z = 2
a = 9.588 (2) ÅMo Kα radiation
b = 12.333 (3) ŵ = 3.26 mm1
c = 12.393 (3) ÅT = 150 K
α = 74.961 (19)°0.2 × 0.2 × 0.1 mm
β = 70.051 (18)°
Data collection top
Stoe IPDSII
diffractometer
4473 independent reflections
Absorption correction: integration
(X-AREA; Stoe & Cie, 2002)
2659 reflections with I > 2σ(I)
Tmin = 0.336, Tmax = 0.661Rint = 0.069
9761 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.051H-atom parameters constrained
S = 0.68Δρmax = 0.41 e Å3
4473 reflectionsΔρmin = 0.36 e Å3
290 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.52982 (5)1.49983 (4)0.20248 (4)0.04070 (13)
P10.06715 (11)0.85342 (8)0.29654 (7)0.0195 (2)
C10.3828 (5)1.3828 (3)0.1005 (3)0.0329 (9)
H1A0.44121.35550.06610.04*
H1B0.31081.42010.03630.04*
C20.2931 (4)1.2814 (3)0.1680 (3)0.0236 (8)
C30.1400 (5)1.2690 (3)0.1579 (3)0.0294 (9)
H30.09331.32720.10850.035*
C40.0535 (4)1.1727 (3)0.2190 (3)0.0241 (8)
H40.05231.16430.20910.029*
C50.1216 (4)1.0885 (3)0.2945 (3)0.0218 (8)
C60.2768 (4)1.1031 (3)0.3071 (3)0.0217 (8)
H60.32521.04690.35930.026*
C70.3611 (4)1.1972 (3)0.2453 (3)0.0251 (8)
H70.46681.20530.25520.03*
C80.0296 (4)0.9850 (3)0.3620 (3)0.0227 (8)
H8A0.10040.96520.43870.027*
H8B0.04981.00930.37620.027*
C90.2092 (4)0.8782 (3)0.1619 (3)0.0204 (8)
C100.3660 (4)0.8213 (3)0.1497 (3)0.0244 (8)
H100.39890.76970.21380.029*
C110.4742 (5)0.8391 (3)0.0450 (3)0.0318 (9)
H110.58120.79880.03620.038*
C120.4249 (5)0.9165 (3)0.0472 (3)0.0302 (9)
H120.49890.92960.11940.036*
C130.2709 (5)0.9743 (3)0.0353 (3)0.0309 (9)
H130.23871.02750.0990.037*
C140.1624 (4)0.9557 (3)0.0685 (3)0.0244 (8)
H140.05550.99570.07630.029*
C150.1567 (4)0.7414 (3)0.3975 (3)0.0198 (8)
C160.1466 (4)0.6276 (3)0.4163 (3)0.0264 (9)
H160.08990.61020.37670.032*
C170.2181 (5)0.5399 (3)0.4921 (3)0.0320 (9)
H170.21020.46270.50470.038*
C180.3018 (4)0.5651 (3)0.5497 (3)0.0290 (9)
H180.35190.50490.60140.035*
C190.3122 (5)0.6764 (3)0.5322 (3)0.0269 (9)
H190.36840.69310.57280.032*
C200.2417 (4)0.7656 (3)0.4559 (3)0.0251 (8)
H200.2510.84230.44350.03*
C210.0684 (4)0.8008 (3)0.2692 (3)0.0225 (8)
C220.0205 (4)0.7420 (3)0.1738 (3)0.0287 (9)
H220.07920.7360.12020.034*
C230.1217 (5)0.6925 (3)0.1590 (3)0.0352 (10)
H230.09030.65150.09550.042*
C240.2656 (5)0.7026 (3)0.2355 (3)0.0351 (10)
H240.33410.66950.22390.042*
C250.3130 (5)0.7606 (3)0.3295 (3)0.0348 (10)
H250.41370.76760.38170.042*
C260.2129 (4)0.8083 (3)0.3474 (3)0.0269 (9)
H260.24380.8460.41310.032*
N10.1911 (5)0.4067 (4)0.0535 (4)0.0620 (12)
C270.1653 (5)0.3903 (4)0.1509 (4)0.0397 (11)
C280.1253 (6)0.3696 (4)0.2764 (4)0.0597 (14)
H28A0.01230.38880.30790.089*
H28B0.16380.4190.30280.089*
H28C0.17260.28680.30370.089*
Br20.31729 (5)0.05853 (4)0.36399 (3)0.03526 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0414 (3)0.0292 (3)0.0486 (3)0.0017 (2)0.0175 (2)0.0113 (2)
P10.0172 (5)0.0218 (5)0.0185 (5)0.0050 (4)0.0032 (4)0.0050 (4)
C10.039 (3)0.031 (2)0.024 (2)0.006 (2)0.0057 (18)0.0067 (17)
C20.025 (2)0.022 (2)0.0220 (18)0.0026 (18)0.0049 (16)0.0094 (16)
C30.038 (3)0.027 (2)0.025 (2)0.017 (2)0.0027 (18)0.0034 (17)
C40.017 (2)0.030 (2)0.0236 (19)0.0083 (18)0.0004 (15)0.0063 (17)
C50.023 (2)0.018 (2)0.0249 (19)0.0045 (17)0.0050 (16)0.0086 (15)
C60.024 (2)0.019 (2)0.0227 (18)0.0099 (17)0.0035 (16)0.0041 (15)
C70.022 (2)0.021 (2)0.032 (2)0.0027 (18)0.0074 (17)0.0092 (17)
C80.025 (2)0.021 (2)0.0215 (18)0.0082 (18)0.0031 (16)0.0049 (16)
C90.018 (2)0.023 (2)0.0218 (18)0.0050 (17)0.0056 (15)0.0085 (15)
C100.021 (2)0.027 (2)0.0236 (19)0.0053 (17)0.0071 (16)0.0015 (16)
C110.022 (2)0.038 (3)0.033 (2)0.0071 (19)0.0012 (17)0.0119 (19)
C120.035 (3)0.036 (2)0.0193 (19)0.017 (2)0.0005 (17)0.0064 (17)
C130.042 (3)0.030 (2)0.0192 (19)0.010 (2)0.0091 (18)0.0004 (17)
C140.020 (2)0.030 (2)0.0204 (18)0.0045 (18)0.0034 (16)0.0068 (16)
C150.017 (2)0.021 (2)0.0167 (17)0.0030 (16)0.0007 (14)0.0062 (14)
C160.027 (2)0.030 (2)0.0215 (19)0.0077 (19)0.0064 (17)0.0056 (16)
C170.037 (3)0.021 (2)0.035 (2)0.007 (2)0.0100 (19)0.0015 (18)
C180.022 (2)0.028 (2)0.0245 (19)0.0061 (18)0.0072 (17)0.0014 (17)
C190.022 (2)0.032 (2)0.024 (2)0.0021 (18)0.0066 (17)0.0071 (17)
C200.026 (2)0.023 (2)0.0250 (19)0.0064 (18)0.0065 (16)0.0043 (16)
C210.023 (2)0.023 (2)0.0210 (18)0.0058 (17)0.0085 (16)0.0008 (15)
C220.029 (2)0.034 (2)0.0248 (19)0.0103 (19)0.0040 (17)0.0099 (17)
C230.046 (3)0.037 (3)0.032 (2)0.017 (2)0.016 (2)0.0062 (19)
C240.034 (3)0.031 (3)0.046 (3)0.013 (2)0.021 (2)0.002 (2)
C250.025 (2)0.033 (2)0.046 (2)0.013 (2)0.0068 (19)0.004 (2)
C260.024 (2)0.022 (2)0.031 (2)0.0029 (18)0.0049 (17)0.0075 (17)
N10.060 (3)0.072 (3)0.065 (3)0.033 (3)0.010 (2)0.020 (2)
C270.033 (3)0.039 (3)0.051 (3)0.016 (2)0.002 (2)0.020 (2)
C280.065 (4)0.063 (4)0.053 (3)0.026 (3)0.003 (3)0.021 (3)
Br20.0345 (3)0.0474 (3)0.0261 (2)0.0247 (2)0.00201 (18)0.0056 (2)
Geometric parameters (Å, º) top
Br1—C11.990 (4)C13—H130.95
P1—C151.791 (3)C14—H140.95
P1—C91.792 (3)C15—C161.394 (4)
P1—C211.800 (3)C15—C201.401 (4)
P1—C81.805 (3)C16—C171.382 (5)
C1—C21.480 (5)C16—H160.95
C1—H1A0.99C17—C181.391 (5)
C1—H1B0.99C17—H170.95
C2—C31.386 (5)C18—C191.367 (5)
C2—C71.400 (5)C18—H180.95
C3—C41.392 (5)C19—C201.390 (5)
C3—H30.95C19—H190.95
C4—C51.392 (5)C20—H200.95
C4—H40.95C21—C261.381 (5)
C5—C61.393 (5)C21—C221.405 (4)
C5—C81.504 (5)C22—C231.394 (5)
C6—C71.373 (5)C22—H220.95
C6—H60.95C23—C241.366 (5)
C7—H70.95C23—H230.95
C8—H8A0.99C24—C251.384 (5)
C8—H8B0.99C24—H240.95
C9—C101.389 (5)C25—C261.388 (5)
C9—C141.390 (4)C25—H250.95
C10—C111.379 (5)C26—H260.95
C10—H100.95N1—C271.123 (5)
C11—C121.387 (5)C27—C281.446 (6)
C11—H110.95C28—H28A0.98
C12—C131.369 (5)C28—H28B0.98
C12—H120.95C28—H28C0.98
C13—C141.375 (5)
C15—P1—C9110.46 (16)C12—C13—H13119.9
C15—P1—C21107.13 (16)C14—C13—H13119.9
C9—P1—C21108.45 (15)C13—C14—C9120.0 (4)
C15—P1—C8108.01 (14)C13—C14—H14120
C9—P1—C8111.25 (16)C9—C14—H14120
C21—P1—C8111.47 (17)C16—C15—C20119.0 (3)
C2—C1—Br1110.4 (2)C16—C15—P1120.2 (2)
C2—C1—H1A109.6C20—C15—P1120.7 (3)
Br1—C1—H1A109.6C17—C16—C15120.7 (3)
C2—C1—H1B109.6C17—C16—H16119.6
Br1—C1—H1B109.6C15—C16—H16119.6
H1A—C1—H1B108.1C16—C17—C18119.7 (3)
C3—C2—C7118.2 (3)C16—C17—H17120.2
C3—C2—C1120.6 (3)C18—C17—H17120.2
C7—C2—C1121.2 (3)C19—C18—C17120.1 (3)
C2—C3—C4121.1 (3)C19—C18—H18119.9
C2—C3—H3119.5C17—C18—H18119.9
C4—C3—H3119.5C18—C19—C20121.0 (3)
C3—C4—C5120.2 (3)C18—C19—H19119.5
C3—C4—H4119.9C20—C19—H19119.5
C5—C4—H4119.9C19—C20—C15119.5 (3)
C4—C5—C6118.6 (3)C19—C20—H20120.3
C4—C5—C8120.5 (3)C15—C20—H20120.3
C6—C5—C8120.9 (3)C26—C21—C22120.3 (3)
C7—C6—C5121.0 (3)C26—C21—P1120.1 (3)
C7—C6—H6119.5C22—C21—P1119.3 (3)
C5—C6—H6119.5C23—C22—C21118.9 (3)
C6—C7—C2120.8 (3)C23—C22—H22120.5
C6—C7—H7119.6C21—C22—H22120.5
C2—C7—H7119.6C24—C23—C22120.3 (3)
C5—C8—P1116.8 (2)C24—C23—H23119.9
C5—C8—H8A108.1C22—C23—H23119.9
P1—C8—H8A108.1C23—C24—C25120.9 (3)
C5—C8—H8B108.1C23—C24—H24119.6
P1—C8—H8B108.1C25—C24—H24119.6
H8A—C8—H8B107.3C24—C25—C26119.9 (4)
C10—C9—C14119.4 (3)C24—C25—H25120.1
C10—C9—P1120.8 (3)C26—C25—H25120.1
C14—C9—P1119.8 (3)C21—C26—C25119.7 (3)
C11—C10—C9120.4 (3)C21—C26—H26120.1
C11—C10—H10119.8C25—C26—H26120.1
C9—C10—H10119.8N1—C27—C28177.5 (5)
C10—C11—C12119.2 (4)C27—C28—H28A109.5
C10—C11—H11120.4C27—C28—H28B109.5
C12—C11—H11120.4H28A—C28—H28B109.5
C13—C12—C11120.7 (4)C27—C28—H28C109.5
C13—C12—H12119.6H28A—C28—H28C109.5
C11—C12—H12119.6H28B—C28—H28C109.5
C12—C13—C14120.3 (3)
Br1—C1—C2—C3104.0 (3)P1—C9—C14—C13179.5 (2)
Br1—C1—C2—C774.5 (3)C9—P1—C15—C16101.6 (3)
C7—C2—C3—C42.8 (5)C21—P1—C15—C1616.3 (3)
C1—C2—C3—C4178.6 (3)C8—P1—C15—C16136.5 (3)
C2—C3—C4—C52.0 (5)C9—P1—C15—C2076.4 (3)
C3—C4—C5—C60.1 (5)C21—P1—C15—C20165.6 (3)
C3—C4—C5—C8179.2 (3)C8—P1—C15—C2045.4 (3)
C4—C5—C6—C71.0 (5)C20—C15—C16—C170.5 (5)
C8—C5—C6—C7179.7 (3)P1—C15—C16—C17178.6 (3)
C5—C6—C7—C20.1 (5)C15—C16—C17—C180.3 (6)
C3—C2—C7—C61.8 (5)C16—C17—C18—C190.5 (6)
C1—C2—C7—C6179.7 (3)C17—C18—C19—C200.9 (6)
C4—C5—C8—P192.4 (3)C18—C19—C20—C151.0 (6)
C6—C5—C8—P188.4 (4)C16—C15—C20—C190.8 (5)
C15—P1—C8—C5176.2 (3)P1—C15—C20—C19178.9 (3)
C9—P1—C8—C562.4 (3)C15—P1—C21—C2680.5 (3)
C21—P1—C8—C558.8 (3)C9—P1—C21—C26160.3 (3)
C15—P1—C9—C105.0 (3)C8—P1—C21—C2637.5 (3)
C21—P1—C9—C10122.1 (3)C15—P1—C21—C2293.5 (3)
C8—P1—C9—C10114.9 (3)C9—P1—C21—C2225.8 (3)
C15—P1—C9—C14175.2 (3)C8—P1—C21—C22148.6 (3)
C21—P1—C9—C1458.1 (3)C26—C21—C22—C230.6 (5)
C8—P1—C9—C1464.9 (3)P1—C21—C22—C23174.5 (3)
C14—C9—C10—C111.5 (5)C21—C22—C23—C240.9 (6)
P1—C9—C10—C11178.7 (2)C22—C23—C24—C250.9 (6)
C9—C10—C11—C121.4 (5)C23—C24—C25—C260.5 (6)
C10—C11—C12—C130.4 (5)C22—C21—C26—C251.9 (6)
C11—C12—C13—C140.4 (5)P1—C21—C26—C25175.8 (3)
C12—C13—C14—C90.3 (5)C24—C25—C26—C211.9 (6)
C10—C9—C14—C130.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···N1i0.992.603.488 (6)150
C8—H8A···Br2ii0.992.643.625 (4)172
C8—H8B···Br2iii0.992.793.753 (3)166
C20—H20···Br2iii0.952.813.746 (4)169
C28—H28C···Br20.982.693.673 (5)176
Symmetry codes: (i) x, y+2, z; (ii) x, y+1, z+1; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC26H23BrP·Br·C2H3N
Mr567.29
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)9.588 (2), 12.333 (3), 12.393 (3)
α, β, γ (°)74.961 (19), 70.051 (18), 69.293 (19)
V3)1272.4 (5)
Z2
Radiation typeMo Kα
µ (mm1)3.26
Crystal size (mm)0.2 × 0.2 × 0.1
Data collection
DiffractometerStoe IPDSII
diffractometer
Absorption correctionIntegration
(X-AREA; Stoe & Cie, 2002)
Tmin, Tmax0.336, 0.661
No. of measured, independent and
observed [I > 2σ(I)] reflections
9761, 4473, 2659
Rint0.069
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.051, 0.68
No. of reflections4473
No. of parameters290
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.36

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···N1i0.992.603.488 (6)149.6
C8—H8A···Br2ii0.992.643.625 (4)171.9
C8—H8B···Br2iii0.992.793.753 (3)165.8
C20—H20···Br2iii0.952.813.746 (4)168.7
C28—H28C···Br20.982.693.673 (5)176.0
Symmetry codes: (i) x, y+2, z; (ii) x, y+1, z+1; (iii) x, y+1, z.
 

Acknowledgements

We acknowledge the EPSRC for funds which enabled the purchase of the Stoe IPDSII diffractometer. We thank the University of Hull for the provision of a scholarship for BPB and the Nuffield Foundation for sponsorship of PG via the CREST programme. We acknowledge the use of the EPSRC's Chemical Database Service at Daresbury (Fletcher et al., 1996[Fletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.]).

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals
First citationFletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746–749.  CrossRef CAS Web of Science
First citationKim, D.-Y., Kim, H.-J., Yu, K.-H. & Min, J.-J. (2012). Bioconj. Chem. 23, 431–437.  Web of Science CrossRef CAS
First citationKim, Y.-S., Yang, C.-T., Wang, J., Wang, L., Li, Z.-B., Chen, X. & Liu, S. (2008). J. Med. Chem. 51, 2971–2984.  Web of Science CrossRef PubMed CAS
First citationMadar, I., Ravert, H., DiPaula, A., Du, Y., Dannals, R. F. & Becker, L. (2007). J. Nucl. Med. 48, 1021–1030.  Web of Science CrossRef PubMed CAS
First citationModica-Napolitano, J. S. & Aprille, J. R. (2001). Adv. Drug. Del. Rev. 49, 63–70.  CAS
First citationModica-Napolitano, J. S. & Singh, K. K. (2002). Exp. Rev. Mol. Med. 4, 1–19.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationStoe & Cie (2002). X-AREA and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.
First citationWang, J., Yang, C.-T., Kim, Y.-S., Sreerama, S. G., Cao, Q., Li, Z.-B., He, Z., Chen, X. & Liu, S. (2007). J. Med. Chem. 50, 5057–5059.  Web of Science CrossRef PubMed CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds