supplementary materials


wm2693 scheme

Acta Cryst. (2012). E68, m1398-m1399    [ doi:10.1107/S160053681204336X ]

trans-Bis[4-amino-N-(pyrimidin-2-yl-[kappa]N)benzenesulfonamidato-[kappa]N]bis(N,N-dimethylformamide-[kappa]O)cobalt(II)

J. J. Guo, W. Wang, Y. D. Zhang, L. Yang and S. H. Zhang

Abstract top

The title complex, [Co(C10H9N4O2S)2(C3H7NO)2], lies across an inversion center. The CoII atom is coordinated in a slightly distorted octahedral geometry by four N atoms from two bidentate 4-amino-N-(pyrimidin-2-yl)benzenesulfonamidate (sulfadiazine) anions and two O atoms from two dimethylformamide (DMF) ligands. The dihedral angle between the benzene and pyrimidine rings is 82.37 (13)°. A three-dimensional network is generated by N-H...O hydrogen bonds between the amino groups and of the sulfonamidate O atoms of neighbouring molecules. The DMF ligand is disordered over two sets of sites in a 0.559 (4):0.441 (4) ratio.

Comment top

Sulfonamides are among the most widely used antibacterial agents (Connor, 1998), because of their low cost, low toxicity, and excellent activity against bacterial diseases. Sulfadiazine, or 4-amino-N-pyrimidin-2-yl-benzenesulfonamide, is a sulfanilamide antibiotic and its metal complexes have been studied previously (Wang et al. 2009, 2010; Ajibade et al., 2006; Hossain et al., 2011; Tommasino et al., 2011; Ghosh et al., 2011). The crystal structure of the title compound, [Co(C10H9N4O2S)2(C3H7NO)2], a cobalt sulfadiazine complex with additional dimethylformamide ligands, (I), is presented herein.

The molecular structure of (I) is shown in Fig. 1. The CoII ion lies on a centre of inversion and is coordinated by four N atoms from two symmetry-related 4-amino-N-pyrimidin-2-yl-benzenesulfonamidate anions and two O atoms from two dimethylformamide ligands, forming a slightly distorted octahedral N4O2 geometry (Table 1). The dihedral angle between the phenyl and pyrimidine rings is 82.37 (13) °. A three-dimensional hydrogen-bonded network is generated by N—H···O interactions (Table 2; Fig.2).

Related literature top

For background to sulfonamides, see: Connor (1998). For background to metal complexes of sulfadiazine, see: Wang et al. (2009, 2010); Ajibade et al. (2006); Hossain et al. (2011); Tommasino et al. (2011); Ghosh et al. (2011).

Experimental top

Complex (I) was prepared from a mixture of sulfadiazine (1 mmol, 0.250 g), Co(NO3)2.6H2O (0.5 mmol, 0.145 g), triethylamine (0.5 ml) and N,N-dimethylformamid (8 ml) sealed in a 15 ml teflon-lined stainless steel bomb, and kept at 373 K for 96 h under autogenous pressure. After the reaction was slowly cooled to room temperature, red block-like crystals were obtained (yield: 72% based on cobalt). Anal./calc. for C26H32N10CoO6S2(%): C 44.38; H 4.58; N 19.90. Found(%): C 44.34; H 4.61; N 19.95.

Refinement top

H atoms were positioned geometrically and refined with a riding model, with distances 0.86 Å (N—H), 0.96 Å (CH3) or 0.93 Å (aromatic ring), and with Uiso(H) = 1.2 Ueq(aromatic ring, N—H) or Uiso(H) = 1.5 Ueq(CH3). The DMF ligand is positionally disordered over two sets of sites in a 0.559 (4):0.441 (4) ratio.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids. [Symmetry code (a); -x, 1 - y, -z.] Both parts of the disordered DMF ligand are shown.
[Figure 2] Fig. 2. Packing diagram of (I) viewed down [010]. Dashed lines denote N—H···O hydrogen bonds.
trans-Bis[4-amino-N-(pyrimidin-2-yl- κN)benzenesulfonamidato-κN]bis(N,N- dimethylformamide-κO)cobalt(II) top
Crystal data top
[Co(C10H9N4O2S)2(C3H7NO)2]F(000) = 730
Mr = 703.67Dx = 1.447 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4388 reflections
a = 8.9008 (6) Åθ = 3.0–28.7°
b = 11.2078 (6) ŵ = 0.72 mm1
c = 16.5565 (9) ÅT = 298 K
β = 102.147 (6)°Block, red
V = 1614.67 (16) Å30.28 × 0.25 × 0.20 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
3495 independent reflections
Radiation source: fine-focus sealed tube2989 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 0 pixels mm-1θmax = 27.0°, θmin = 3.0°
phi and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1413
Tmin = 0.815, Tmax = 0.869l = 2119
13220 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0311P)2 + 1.5416P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
3495 reflectionsΔρmax = 0.33 e Å3
222 parametersΔρmin = 0.35 e Å3
36 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0012 (1)
Crystal data top
[Co(C10H9N4O2S)2(C3H7NO)2]V = 1614.67 (16) Å3
Mr = 703.67Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.9008 (6) ŵ = 0.72 mm1
b = 11.2078 (6) ÅT = 298 K
c = 16.5565 (9) Å0.28 × 0.25 × 0.20 mm
β = 102.147 (6)°
Data collection top
Bruker SMART CCD
diffractometer
3495 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2989 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 0.869Rint = 0.028
13220 measured reflectionsθmax = 27.0°
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.095Δρmax = 0.33 e Å3
S = 0.99Δρmin = 0.35 e Å3
3495 reflectionsAbsolute structure: ?
222 parametersFlack parameter: ?
36 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4095 (3)0.9002 (2)0.13724 (16)0.0476 (6)
H1A0.44470.93440.09350.057*
C20.3251 (2)0.7957 (2)0.12498 (14)0.0363 (5)
C30.2761 (3)0.7454 (3)0.19139 (15)0.0507 (6)
H3A0.22120.67420.18430.061*
C40.3079 (3)0.7994 (3)0.26800 (16)0.0572 (7)
H4A0.27440.76400.31190.069*
C50.3892 (3)0.9061 (3)0.28047 (16)0.0508 (7)
C60.4421 (3)0.9543 (3)0.21390 (17)0.0568 (7)
H6A0.50021.02400.22130.068*
C70.0153 (2)0.73277 (19)0.00525 (13)0.0319 (5)
C80.1683 (3)0.8945 (2)0.00174 (16)0.0438 (6)
H8A0.18080.97670.00050.053*
C90.2982 (3)0.8242 (2)0.01745 (18)0.0513 (7)
H9A0.39610.85730.02600.062*
C100.2766 (3)0.7031 (2)0.01992 (17)0.0497 (6)
H10A0.36160.65280.02930.060*
Co10.00000.50000.00000.03466 (14)
N10.1368 (2)0.65637 (17)0.00916 (13)0.0402 (5)
N20.1174 (2)0.66834 (16)0.01562 (12)0.0350 (4)
N30.0252 (2)0.85105 (17)0.01044 (12)0.0372 (4)
N40.4124 (3)0.9634 (3)0.35511 (15)0.0724 (8)
H4B0.37650.93350.39500.087*
H4C0.46291.02940.36210.087*
O20.29575 (19)0.81638 (15)0.03312 (10)0.0437 (4)
O30.38724 (19)0.62601 (16)0.02969 (12)0.0519 (5)
S10.28414 (6)0.72636 (5)0.02742 (3)0.03470 (15)
O10.0274 (19)0.4809 (16)0.1263 (12)0.053 (2)0.559 (4)
C110.0332 (9)0.5365 (7)0.1739 (6)0.0563 (17)0.559 (4)
H11A0.12250.56300.13880.084*0.559 (4)
C130.1386 (10)0.6711 (8)0.2810 (5)0.107 (2)0.559 (4)
H13A0.11340.67640.34020.160*0.559 (4)
H13B0.12180.74710.25770.160*0.559 (4)
H13C0.24460.64890.26320.160*0.559 (4)
C120.0603 (12)0.5055 (8)0.3034 (5)0.098 (2)0.559 (4)
H12A0.12860.43970.32040.147*0.559 (4)
H12B0.10080.57580.33340.147*0.559 (4)
H12C0.03880.48760.31450.147*0.559 (4)
N50.0499 (7)0.5829 (5)0.2463 (3)0.0665 (13)0.559 (4)
O1'0.009 (3)0.501 (2)0.1318 (16)0.053 (2)0.441 (4)
C11'0.0812 (12)0.5748 (10)0.1647 (7)0.0563 (17)0.441 (4)
H11B0.17480.61280.13750.084*0.441 (4)
C13'0.1448 (14)0.4546 (11)0.2886 (6)0.107 (2)0.441 (4)
H13D0.17830.40350.24930.160*0.441 (4)
H13E0.22740.50650.31340.160*0.441 (4)
H13F0.11460.40680.33060.160*0.441 (4)
C12'0.0588 (13)0.5888 (10)0.3139 (5)0.098 (2)0.441 (4)
H12D0.03790.59330.37310.147*0.441 (4)
H12E0.03820.66480.29160.147*0.441 (4)
H12F0.16470.56810.29370.147*0.441 (4)
N5'0.0174 (10)0.5244 (7)0.2573 (5)0.0665 (13)0.441 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0493 (14)0.0501 (15)0.0422 (13)0.0135 (12)0.0066 (11)0.0020 (12)
C20.0331 (11)0.0383 (12)0.0342 (11)0.0024 (9)0.0004 (9)0.0011 (10)
C30.0565 (15)0.0515 (16)0.0409 (13)0.0211 (13)0.0031 (11)0.0010 (12)
C40.0653 (17)0.0698 (19)0.0340 (13)0.0220 (15)0.0047 (12)0.0016 (13)
C50.0473 (14)0.0605 (17)0.0386 (13)0.0069 (12)0.0049 (11)0.0041 (12)
C60.0605 (17)0.0523 (16)0.0527 (16)0.0222 (14)0.0006 (13)0.0068 (13)
C70.0351 (11)0.0280 (11)0.0313 (11)0.0031 (9)0.0038 (9)0.0032 (9)
C80.0448 (13)0.0333 (12)0.0533 (15)0.0049 (10)0.0103 (11)0.0007 (11)
C90.0366 (12)0.0485 (15)0.0697 (18)0.0047 (11)0.0130 (12)0.0027 (13)
C100.0359 (13)0.0469 (15)0.0657 (17)0.0097 (11)0.0095 (12)0.0025 (13)
Co10.0448 (3)0.0246 (2)0.0328 (2)0.00372 (17)0.00405 (18)0.00398 (17)
N10.0384 (10)0.0322 (10)0.0489 (12)0.0077 (8)0.0066 (9)0.0043 (9)
N20.0353 (9)0.0254 (9)0.0416 (10)0.0006 (7)0.0021 (8)0.0041 (8)
N30.0375 (10)0.0269 (9)0.0457 (11)0.0010 (8)0.0056 (8)0.0031 (8)
N40.0836 (18)0.0854 (19)0.0428 (13)0.0255 (16)0.0012 (13)0.0148 (13)
O20.0474 (9)0.0473 (10)0.0369 (9)0.0027 (8)0.0099 (7)0.0049 (8)
O30.0441 (9)0.0492 (11)0.0617 (11)0.0162 (8)0.0092 (8)0.0004 (9)
S10.0324 (3)0.0339 (3)0.0365 (3)0.0030 (2)0.0044 (2)0.0001 (2)
O10.078 (7)0.052 (5)0.033 (2)0.005 (4)0.020 (4)0.008 (3)
C110.062 (4)0.067 (4)0.041 (2)0.019 (3)0.014 (3)0.008 (3)
C130.140 (5)0.126 (5)0.068 (3)0.001 (4)0.051 (3)0.000 (3)
C120.128 (5)0.118 (5)0.049 (3)0.017 (4)0.020 (3)0.012 (3)
N50.089 (3)0.070 (3)0.0436 (18)0.019 (2)0.021 (2)0.007 (2)
O1'0.078 (7)0.052 (5)0.033 (2)0.005 (4)0.020 (4)0.008 (3)
C11'0.062 (4)0.067 (4)0.041 (2)0.019 (3)0.014 (3)0.008 (3)
C13'0.140 (5)0.126 (5)0.068 (3)0.001 (4)0.051 (3)0.000 (3)
C12'0.128 (5)0.118 (5)0.049 (3)0.017 (4)0.020 (3)0.012 (3)
N5'0.089 (3)0.070 (3)0.0436 (18)0.019 (2)0.021 (2)0.007 (2)
Geometric parameters (Å, º) top
C1—C61.381 (4)Co1—O1'2.20 (2)
C1—C21.383 (3)N2—S11.5941 (18)
C1—H1A0.9300N4—H4B0.8600
C2—C31.385 (3)N4—H4C0.8600
C2—S11.760 (2)O2—S11.4412 (17)
C3—C41.380 (4)O3—S11.4470 (17)
C3—H3A0.9300O1—C111.216 (13)
C4—C51.390 (4)C11—N51.342 (10)
C4—H4A0.9300C11—H11A0.9300
C5—N41.370 (3)C13—N51.457 (9)
C5—C61.396 (4)C13—H13A0.9602
C6—H6A0.9300C13—H13B0.9597
C7—N31.333 (3)C13—H13C0.9600
C7—N11.360 (3)C13—H12E0.8765
C7—N21.364 (3)C12—N51.489 (11)
C8—N31.339 (3)C12—H12A0.9599
C8—C91.378 (3)C12—H12B0.9600
C8—H8A0.9300C12—H12C0.9601
C9—C101.373 (4)O1'—C11'1.244 (17)
C9—H9A0.9300C11'—N5'1.694 (14)
C10—N11.327 (3)C11'—H11B0.9593
C10—H10A0.9300C13'—N5'1.386 (13)
Co1—O1i2.065 (19)C13'—H13D0.9600
Co1—O12.065 (19)C13'—H13E0.9600
Co1—N12.121 (2)C13'—H13F0.9600
Co1—N1i2.121 (2)C12'—N5'1.458 (13)
Co1—N22.1460 (18)C12'—H12D0.9597
Co1—N2i2.1460 (18)C12'—H12E0.9601
Co1—O1'i2.20 (2)C12'—H12F0.9601
C6—C1—C2120.6 (2)N5—C13—H13B107.4
C6—C1—H1A119.7H13A—C13—H13B109.5
C2—C1—H1A119.7N5—C13—H13C106.4
C1—C2—C3118.7 (2)H13A—C13—H13C109.4
C1—C2—S1120.66 (19)H13B—C13—H13C109.5
C3—C2—S1120.62 (18)N5—C13—H12E53.8
C4—C3—C2120.9 (2)H13A—C13—H12E77.9
C4—C3—H3A119.6H13B—C13—H12E85.1
C2—C3—H3A119.6H13C—C13—H12E159.2
C3—C4—C5120.9 (3)N5—C13—H12F63.8
C3—C4—H4A119.6H13A—C13—H12F83.9
C5—C4—H4A119.6H13B—C13—H12F166.5
N4—C5—C4120.8 (3)H13C—C13—H12F65.9
N4—C5—C6121.2 (3)H12E—C13—H12F96.5
C4—C5—C6117.9 (2)N5—C12—H12A157.8
C1—C6—C5121.0 (2)N5—C12—H12B88.6
C1—C6—H6A119.5H12A—C12—H12B109.5
C5—C6—H6A119.5N5—C12—H12C74.6
N3—C7—N1125.2 (2)H12A—C12—H12C109.5
N3—C7—N2125.86 (19)H12B—C12—H12C109.5
N1—C7—N2108.91 (19)N5—C12—H13E125.9
N3—C8—C9123.7 (2)H12A—C12—H13E53.6
N3—C8—H8A118.2H12B—C12—H13E70.9
C9—C8—H8A118.2H12C—C12—H13E159.1
C10—C9—C8117.0 (2)N5—C12—H13F153.6
C10—C9—H9A121.5H12B—C12—H13F117.7
C8—C9—H9A121.5H12C—C12—H13F92.7
N1—C10—C9121.3 (2)H13E—C12—H13F70.1
N1—C10—H10A119.3C11—N5—C13141.8 (7)
C9—C10—H10A119.3C11—N5—C1299.2 (6)
O1i—Co1—O1180.0 (10)C13—N5—C12119.0 (6)
O1i—Co1—N184.2 (3)C11—N5—H12E149.4
O1—Co1—N195.8 (3)C12—N5—H12E95.2
O1i—Co1—N1i95.8 (3)C11—N5—H12F132.3
O1—Co1—N1i84.2 (3)C13—N5—H12F49.4
N1—Co1—N1i180.00 (11)C12—N5—H12F92.0
O1i—Co1—N289.0 (6)H12E—N5—H12F73.5
O1—Co1—N291.0 (6)C11'—O1'—Co1124.5 (17)
N1—Co1—N262.59 (7)O1'—C11'—N5'87.5 (14)
N1i—Co1—N2117.41 (7)O1'—C11'—H11B124.6
O1i—Co1—N2i91.0 (6)N5'—C11'—H11B143.7
O1—Co1—N2i89.0 (6)N5'—C13'—H12A99.0
N1—Co1—N2i117.41 (7)N5'—C13'—H13D115.4
N1i—Co1—N2i62.59 (7)H12A—C13'—H13D126.7
N2—Co1—N2i180.0N5'—C13'—H13E108.1
O1i—Co1—O1'i10.6 (8)H12A—C13'—H13E95.5
O1—Co1—O1'i169.4 (8)H13D—C13'—H13E109.5
N1—Co1—O1'i94.1 (5)N5'—C13'—H13F104.7
N1i—Co1—O1'i85.9 (5)H13D—C13'—H13F109.5
N2—Co1—O1'i90.2 (7)H13E—C13'—H13F109.5
N2i—Co1—O1'i89.8 (7)N5'—C12'—H13A154.8
O1i—Co1—O1'169.4 (8)N5'—C12'—H12B60.6
O1—Co1—O1'10.6 (8)H13A—C12'—H12B117.7
N1—Co1—O1'85.9 (5)N5'—C12'—H12C54.9
N1i—Co1—O1'94.1 (5)H13A—C12'—H12C150.1
N2—Co1—O1'89.8 (7)H12B—C12'—H12C75.3
N2i—Co1—O1'90.2 (7)N5'—C12'—H12D131.7
O1'i—Co1—O1'180.000 (3)H13A—C12'—H12D66.3
C10—N1—C7117.6 (2)H12B—C12'—H12D78.5
C10—N1—Co1147.50 (17)H12C—C12'—H12D92.6
C7—N1—Co194.85 (14)N5'—C12'—H12E92.3
C7—N2—S1123.96 (15)H13A—C12'—H12E62.9
C7—N2—Co193.64 (13)H12B—C12'—H12E85.1
S1—N2—Co1142.24 (11)H12C—C12'—H12E146.9
C7—N3—C8115.21 (19)H12D—C12'—H12E109.5
C5—N4—H4B120.0N5'—C12'—H12F102.2
C5—N4—H4C120.0H13A—C12'—H12F83.3
H4B—N4—H4C120.0H12B—C12'—H12F158.7
O2—S1—O3115.11 (11)H12C—C12'—H12F84.4
O2—S1—N2113.67 (10)H12D—C12'—H12F109.5
O3—S1—N2104.78 (10)H12E—C12'—H12F109.5
O2—S1—C2107.31 (11)C13'—N5'—C12'119.6 (8)
O3—S1—C2108.17 (11)C13'—N5'—C11'138.9 (8)
N2—S1—C2107.48 (10)C12'—N5'—C11'101.2 (8)
C11—O1—Co1129.0 (12)C13'—N5'—H12B70.6
O1—C11—N5157.5 (12)C12'—N5'—H12B57.6
O1—C11—H11A101.2C11'—N5'—H12B137.0
N5—C11—H11A101.2C13'—N5'—H12C87.5
O1—C11—H11B118.0C12'—N5'—H12C49.6
N5—C11—H11B84.2C11'—N5'—H12C126.1
N5—C13—H13A114.5H12B—N5'—H12C71.3
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O3ii0.862.313.112 (3)155
N4—H4C···O3iii0.862.272.951 (3)136
Symmetry codes: (ii) x, y+3/2, z+1/2; (iii) x+1, y+1/2, z+1/2.
Selected bond lengths (Å) top
Co1—O12.065 (19)Co1—N22.1460 (18)
Co1—N12.121 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O3i0.862.313.112 (3)155.1
N4—H4C···O3ii0.862.272.951 (3)136.0
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
Acknowledgements top

This work was supported financially by the National Natural Science Foundation of China (No. 21161006), the Innovation Project of Guangxi Graduate Education (2010105960817M03) and by the doctoral start-up research fund of Guilin University of Technology (to SHZ).

references
References top

Ajibade, P. A., Kolawole, G. A., O'Brien, P., Helliwell, M. & Raftery, J. (2006). Inorg. Chim. Acta, 359, 3111–3116.

Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Connor, E. E. (1998). Prim. Care Update Ob Gyns, 5, 32–35.

Ghosh, S., Bag, P. P. & Reddy, C. M. (2011). Cryst. Growth Des. 11, 3489–3503.

Hossain, G. M. G. (2011). Acta Cryst. E67, m805–m806.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Tommasino, J. B., Renaud, F. N. R., Luneau, D. & Pilet, G. (2011). Polyhedron, 30, 1663–1670.

Wang, Y.-F., Li, F.-X., Peng, Y., Chen, Z.-F. & Liang, H. (2009). Acta Cryst. E65, m1584.

Wang, Y.-F., Zou, H.-L., Luo, X.-J., Chen, Z.-F. & Liang, H. (2010). Acta Cryst. E66, m548.