supplementary materials


xu5628 scheme

Acta Cryst. (2012). E68, o3097    [ doi:10.1107/S1600536812041669 ]

4-Hydroxyindan-1-one

C.-W. Chang, S.-K. Fang, M.-H. Luo, H.-Y. Tsai and K.-Y. Chen

Abstract top

The molecule of the title compound, C9H8O2, is essentially planar except for the methylene H atoms [maximum deviation = 0.028 (1) Å]. In the crystal, the molecules are linked by classical O-H...O hydrogen bonds and weak C-H...O interactions into chains along [110] and [1-10].

Comment top

Indanone derivatives are some of the most widely used organic compounds (Tang et al., 2011). Indanone derivatives are used as dyes and pigments (Cui et al., 2009; Li et al., 2009), intermediates in organic synthesis (Borbone et al., 2011; Borge et al., 2010; Fu & Wang, 2008; Yu et al., 2011), and exhibit a wide variety of biological activities (Sousa et al., 2011). In addition, 1-indanones were important precursors in the regiospecific synthesis of 2-fluoro-1-naphthols (Cai et al., 2005).

The molecular structure of the title compound is shown in Figure 1. The molecule is essentially planar (the maximum deviation = 0.028 (1) Å), which is consistent with previous studies (Ali et al., 2010; Chen et al., 2011a,b). In the crystal (Fig. 2), molecules are linked by intermolecular O—H···O and C—H···O hydrogen bonds (Table 1) to form an infinite one-dimensional chain along and [1 1 0 and ][1 -1 0], generating two different kinds of C(7) motifs (Bernstein et al., 1995).

Related literature top

For the preparation of the title compound, see: Gerasov et al. (2011). For applications of indanone derivatives, see: Tang et al. (2011); Borbone et al. (2011); Borge et al. (2010); Cai et al. (2005); Cui et al. (2009); Fu & Wang (2008); Li et al. (2009); Sousa et al. (2011); Yu et al. (2011). For related structures, see: Ali et al. (2010); Chen et al. (2011a,b). For graph-set theory, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized by the hydrolation of 4-benzoyloxy-1-indanone with sodium hydroxide (Gerasov et al., 2011). Colorless parallelepiped -shaped crystals suitable for the crystallographic studies reported here were isolated over a period of five weeks by slow evaporation from a ethyl acetate solution.

Refinement top

H atoms bonded to O and C atoms were located in a difference electron density map. The hydroxy H atom and the Csp3 H atoms were freely refined, and the Csp2 H atoms repositioned geometrically and refined using a riding model, [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A section of the crystal packing of the title compound, viewed along the c axis. Green and blue dashed lines denote the intermolecular O1—H1A···O2 and C2—H2A···O2 hydrogen bonds, respectively. For clarity, hydrogen atoms not involved in hydrogen bonding have been omitted.
4-Hydroxyindan-1-one top
Crystal data top
C9H8O2F(000) = 624
Mr = 148.15Dx = 1.350 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3232 reflections
a = 13.5890 (6) Åθ = 2.8–29.2°
b = 8.6160 (3) ŵ = 0.10 mm1
c = 13.9435 (6) ÅT = 297 K
β = 116.738 (6)°Parallelepiped, colorless
V = 1457.98 (13) Å30.63 × 0.60 × 0.38 mm
Z = 8
Data collection top
Bruker SMART CCD detector
diffractometer
1289 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 29.2°, θmin = 2.9°
ω scansh = 1818
6305 measured reflectionsk = 1111
1794 independent reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0704P)2]
where P = (Fo2 + 2Fc2)/3
1794 reflections(Δ/σ)max = 0.001
104 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C9H8O2V = 1457.98 (13) Å3
Mr = 148.15Z = 8
Monoclinic, C2/cMo Kα radiation
a = 13.5890 (6) ŵ = 0.10 mm1
b = 8.6160 (3) ÅT = 297 K
c = 13.9435 (6) Å0.63 × 0.60 × 0.38 mm
β = 116.738 (6)°
Data collection top
Bruker SMART CCD detector
diffractometer
1289 reflections with I > 2σ(I)
6305 measured reflectionsRint = 0.018
1794 independent reflectionsθmax = 29.2°
Refinement top
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115Δρmax = 0.21 e Å3
S = 1.06Δρmin = 0.15 e Å3
1794 reflectionsAbsolute structure: ?
104 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.21183 (9)0.05958 (13)0.03489 (8)0.0607 (3)
H1A0.1454 (17)0.116 (3)0.0012 (17)0.101 (6)*
O20.51759 (9)0.29276 (13)0.06930 (10)0.0714 (4)
C10.24288 (9)0.01208 (14)0.04004 (9)0.0373 (3)
C20.18722 (10)0.05169 (14)0.14805 (10)0.0405 (3)
H2A0.12520.11470.17160.049*
C30.22258 (10)0.00108 (14)0.22117 (9)0.0414 (3)
H3A0.18390.02730.29300.050*
C40.31337 (10)0.09427 (14)0.18965 (10)0.0404 (3)
H4A0.33720.13000.23860.049*
C50.36864 (9)0.13348 (13)0.08148 (9)0.0350 (3)
C60.33542 (9)0.08162 (13)0.00686 (9)0.0341 (3)
C70.40960 (11)0.13665 (16)0.10481 (10)0.0470 (3)
H7A0.36860.19520.13430.056*
H7B0.44570.04990.15190.056*
C80.49369 (11)0.24025 (16)0.09019 (12)0.0499 (4)
H8A0.56810.20360.13460.060*
H8B0.48790.34650.11000.060*
C90.46657 (10)0.23041 (14)0.02658 (11)0.0445 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0637 (7)0.0832 (8)0.0452 (6)0.0363 (6)0.0333 (5)0.0071 (5)
O20.0529 (6)0.0864 (8)0.0794 (8)0.0316 (6)0.0337 (6)0.0066 (6)
C10.0363 (6)0.0424 (6)0.0357 (6)0.0098 (5)0.0186 (5)0.0002 (5)
C20.0350 (6)0.0421 (7)0.0416 (7)0.0121 (5)0.0149 (5)0.0066 (5)
C30.0460 (7)0.0437 (7)0.0305 (6)0.0028 (5)0.0135 (5)0.0024 (5)
C40.0442 (7)0.0446 (7)0.0373 (6)0.0016 (5)0.0226 (6)0.0067 (5)
C50.0305 (6)0.0354 (6)0.0398 (6)0.0029 (5)0.0162 (5)0.0040 (4)
C60.0315 (6)0.0365 (6)0.0327 (6)0.0047 (5)0.0130 (5)0.0003 (4)
C70.0428 (7)0.0557 (8)0.0357 (7)0.0110 (6)0.0118 (6)0.0040 (5)
C80.0353 (7)0.0491 (7)0.0532 (8)0.0116 (6)0.0091 (6)0.0054 (6)
C90.0329 (6)0.0425 (7)0.0559 (8)0.0069 (5)0.0181 (6)0.0051 (6)
Geometric parameters (Å, º) top
O1—C11.3542 (13)C4—H4A0.9300
O1—H1A0.94 (2)C5—C61.3814 (15)
O2—C91.2229 (14)C5—C91.4622 (16)
C1—C61.3869 (15)C6—C71.5011 (16)
C1—C21.3899 (17)C7—C81.5341 (18)
C2—C31.3848 (16)C7—H7A0.9700
C2—H2A0.9300C7—H7B0.9700
C3—C41.3683 (16)C8—C91.501 (2)
C3—H3A0.9300C8—H8A0.9700
C4—C51.3906 (16)C8—H8B0.9700
C1—O1—H1A109.4 (12)C1—C6—C7127.94 (10)
O1—C1—C6117.97 (10)C5—C6—C7112.62 (10)
O1—C1—C2123.73 (11)C6—C7—C8103.81 (10)
C6—C1—C2118.30 (10)C6—C7—H7A111.0
C1—C2—C3121.15 (11)C8—C7—H7A111.0
C1—C2—H2A119.4C6—C7—H7B111.0
C3—C2—H2A119.4C8—C7—H7B111.0
C4—C3—C2121.17 (11)H7A—C7—H7B109.0
C4—C3—H3A119.4C9—C8—C7106.09 (10)
C2—C3—H3A119.4C9—C8—H8A110.5
C3—C4—C5117.38 (10)C7—C8—H8A110.5
C3—C4—H4A121.3C9—C8—H8B110.5
C5—C4—H4A121.3C7—C8—H8B110.5
C4—C5—C6122.57 (10)H8A—C8—H8B108.7
C4—C5—C9128.81 (10)O2—C9—C5125.30 (13)
C6—C5—C9108.63 (10)O2—C9—C8125.95 (12)
C1—C6—C5119.44 (10)C5—C9—C8108.75 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.94 (2)1.75 (2)2.6918 (18)175 (2)
C2—H2A···O2i0.932.593.255 (2)129
Symmetry code: (i) x1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.94 (2)1.75 (2)2.6918 (18)175 (2)
C2—H2A···O2i0.932.593.255 (2)129
Symmetry code: (i) x1/2, y+1/2, z.
Acknowledgements top

This work was supported by the National Science Council (grant No. NSC 101–2113-M-035–001-MY2) and Feng Chia University in Taiwan. The authors appreciate the Precision Instrument Support Center of Feng Chia University in providing fabrication and measurement facilities.

references
References top

Ali, M. A., Ismail, R., Tan, S. C., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o2864.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Borbone, F., Carella, A., Ricciotti, L., Tuzi, A., Roviello, A. & Barsella, A. (2011). Dyes Pigm. 88, 290–295.

Borge, J., Cadierno, V., Díez, J., García-Garrido, S. E. & Gimeno, J. (2010). Dyes Pigm. 87, 209–217.

Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Cai, X., Wu, K. & Dolbier, W. R. Jr (2005). J. Fluor. Chem. 126, 479–482.

Chen, K.-Y., Fang, T.-C. & Chang, M.-J. (2011a). Acta Cryst. E67, o992.

Chen, K.-Y., Wen, Y.-S., Fang, T.-C., Chang, Y.-J. & Chang, M.-J. (2011b). Acta Cryst. E67, o927.

Cui, Y., Ren, H., Yu, J., Wang, Z. & Qian, G. (2009). Dyes Pigm. 81, 53–57.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Fu, T.-L. & Wang, I.-J. (2008). Dyes Pigm. 76, 590–595.

Gerasov, A. O., Zyabrev, K. V., Shandura, M. P. & Kovtun, Y. P. (2011). Dyes Pigm. 89, 76–85.

Li, X., Kim, S. H. & Son, Y. A. (2009). Dyes Pigm. 82, 293–298.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sousa, C. M., Berthet, J., Delbaere, S. & Coelho, P. J. (2011). Dyes Pigm. 92, 537–541.

Tang, K.-C., Chang, M.-J., Lin, T.-Y., Pan, H.-A., Fang, T.-C., Chen, K.-Y., Hung, W.-Y., Hsu, Y.-H. & Chou, P.-T. (2011). J. Am. Chem. Soc. 133, 17738–17745.

Yu, S.-B., Liu, H.-M., Luo, Y. & Lu, W. (2011). Chin. Chem. Lett. 22, 264–267.