supplementary materials


xu5630 scheme

Acta Cryst. (2012). E68, m1363    [ doi:10.1107/S1600536812041980 ]

Dibromido(6,6'-dimethyl-2,2'-bipyridine-[kappa]2N,N')cobalt(II)

S. A. Shirvan, S. Haydari Dezfuli, F. Khazali, M. Aghajeri and A. Borsalani

Abstract top

In the title compound, [CoBr2(C12H12N2)], the CoII atom is four-coordinated in a distorted tetrahedral geometry by two N atoms from a 6,6'-dimethyl-2,2'-bipyridine ligand and by two terminal Br atoms. Intermolecular C-H...Br hydrogen bonds and [pi]-[pi] stacking between the pyridine rings in the bc plane [centroid-centroid distance = 3.725 (3) Å] are present in the crystal structure.

Comment top

6,6'-Dimethyl-2,2'-bipyridine (6,6'-dmbipy), is a good bidentate ligand, and numerous complexes with 6,6'-dmbipy have been prepared, such as that of zinc (Alizadeh et al., 2009), copper (Itoh et al., 2005), cadmium (Shirvan & Haydari Dezfuli, 2012), cobalt (Akbarzadeh Torbati et al., 2010), nickel (Kou et al., 2008), ruthenium (Onggo et al., 2005) and mercury (Alizadeh et al., 2011). We report herein the synthesis and crystal structure of the title compound.

In the title compound, (Fig. 1), the CoII atom is four-coordinated in a distorted tetrahedral geometry by two N atoms from a 6,6'-dimethyl-2,2'-bipyridine and two terminal Br atoms. The Co—Br and Co—N bond lengths and angles are collected in Table 1.

In the crystal structure, intermolecular C—H···Br hydrogen bonds (Table 2) and π-π contacts (Fig. 2) between the pyridine rings, Cg2—Cg3i [symmetry cods: (i) -x, 1 - y, -z, where Cg2 and Cg3 are centroids of the rings (N1/C2–C6) and (N2/C7–C11), respectively] may stabilize the structure, with centroid–centroid distance of 3.725 (3) Å.

Related literature top

For related structures, see: Akbarzadeh Torbati et al. (2010); Alizadeh et al. (2011, 2009); Itoh et al. (2005); Kou et al. (2008); Onggo et al. (2005); Shirvan & Haydari Dezfuli (2012).

Experimental top

For the preparation of the title compound, a solution of 6,6'-dimethyl-2,2'-bipyridine (0.25 g, 1.33 mmol) in methanol (10 ml) was added to a solution of CoBr2 (0.29 g, 1.33 mmol) in acetonitrile (15 ml) and the resulting blue solution was stirred for 15 min at 313 K. This solution was left to evaporate slowly at room temperature. After one week, blue block crystals of the title compound were isolated (yield 0.41 g, 76.5%).

Refinement top

H atoms were positioned geometrically with C—H = 0.93 and 0.96 Å and constrained to ride on their parent atoms, Uiso(H) = 1.2Ueq(C) for methyl H atoms and 1.2Ueq(C) for aromatic H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Unit-cell packing diagram for title molecule. Hydrogen bonds are shown as dashed lines.
Dibromido(6,6'-dimethyl-2,2'-bipyridine-κ2N,N')cobalt(II) top
Crystal data top
[CoBr2(C12H12N2)]F(000) = 780
Mr = 402.97Dx = 1.903 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7259 reflections
a = 7.6550 (6) Åθ = 2.3–26.0°
b = 10.2577 (9) ŵ = 6.88 mm1
c = 18.0030 (16) ÅT = 298 K
β = 95.779 (7)°Block, blue
V = 1406.5 (2) Å30.30 × 0.24 × 0.18 mm
Z = 4
Data collection top
Bruker APEXII CCD area detector
diffractometer
2766 independent reflections
Radiation source: fine-focus sealed tube1753 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 89
Tmin = 0.149, Tmax = 0.302k = 1211
7259 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0371P)2]
where P = (Fo2 + 2Fc2)/3
2766 reflections(Δ/σ)max = 0.005
154 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
[CoBr2(C12H12N2)]V = 1406.5 (2) Å3
Mr = 402.97Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.6550 (6) ŵ = 6.88 mm1
b = 10.2577 (9) ÅT = 298 K
c = 18.0030 (16) Å0.30 × 0.24 × 0.18 mm
β = 95.779 (7)°
Data collection top
Bruker APEXII CCD area detector
diffractometer
2766 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1753 reflections with I > 2σ(I)
Tmin = 0.149, Tmax = 0.302Rint = 0.068
7259 measured reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.089Δρmax = 0.51 e Å3
S = 0.95Δρmin = 0.56 e Å3
2766 reflectionsAbsolute structure: ?
154 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3959 (11)0.8727 (6)0.0503 (3)0.074 (2)
H1A0.48720.88030.00980.089*
H1B0.29210.91590.03720.089*
H1C0.43380.91220.09420.089*
C20.3572 (8)0.7343 (6)0.0648 (3)0.0494 (14)
C30.3757 (8)0.6766 (7)0.1338 (3)0.0566 (16)
H30.41560.72520.17230.068*
C40.3342 (9)0.5468 (7)0.1441 (3)0.0651 (18)
H40.34350.50770.19010.078*
C50.2791 (8)0.4753 (6)0.0865 (3)0.0550 (15)
H50.25060.38760.09300.066*
C60.2665 (7)0.5352 (5)0.0188 (3)0.0397 (12)
C70.2137 (7)0.4644 (5)0.0477 (3)0.0421 (12)
C80.1766 (8)0.3330 (5)0.0476 (3)0.0570 (16)
H80.18210.28380.00450.068*
C90.1312 (9)0.2751 (6)0.1121 (4)0.0687 (19)
H90.10560.18650.11310.082*
C100.1245 (8)0.3503 (6)0.1744 (4)0.0592 (16)
H100.09600.31200.21850.071*
C110.1592 (8)0.4813 (6)0.1731 (3)0.0504 (14)
C120.1535 (10)0.5666 (7)0.2391 (3)0.077 (2)
H12A0.07040.63550.22750.092*
H12B0.26770.60330.25250.092*
H12C0.11870.51640.28010.092*
N10.3039 (6)0.6627 (4)0.0087 (2)0.0385 (10)
N20.2047 (6)0.5381 (4)0.1095 (2)0.0387 (10)
Co10.26905 (10)0.72871 (7)0.09589 (3)0.0414 (2)
Br10.03425 (10)0.87570 (7)0.10302 (4)0.0703 (2)
Br20.52149 (9)0.80174 (6)0.17019 (3)0.0598 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.109 (6)0.062 (4)0.054 (3)0.021 (4)0.019 (4)0.010 (3)
C20.053 (4)0.056 (3)0.039 (3)0.008 (3)0.002 (3)0.006 (2)
C30.057 (4)0.082 (5)0.032 (3)0.006 (3)0.009 (3)0.003 (3)
C40.067 (5)0.085 (5)0.043 (3)0.013 (4)0.007 (3)0.025 (3)
C50.056 (4)0.058 (4)0.051 (3)0.002 (3)0.005 (3)0.019 (3)
C60.034 (3)0.043 (3)0.040 (3)0.003 (2)0.001 (2)0.011 (2)
C70.035 (3)0.037 (3)0.051 (3)0.002 (2)0.007 (2)0.003 (2)
C80.056 (4)0.041 (3)0.070 (4)0.008 (3)0.012 (3)0.012 (3)
C90.066 (5)0.038 (3)0.099 (5)0.010 (3)0.010 (4)0.012 (3)
C100.054 (4)0.051 (4)0.072 (4)0.013 (3)0.001 (3)0.018 (3)
C110.046 (4)0.053 (4)0.052 (3)0.005 (3)0.006 (3)0.011 (3)
C120.112 (6)0.076 (5)0.047 (3)0.018 (4)0.027 (4)0.006 (3)
N10.042 (3)0.039 (2)0.035 (2)0.002 (2)0.0043 (19)0.0038 (17)
N20.038 (3)0.034 (2)0.043 (2)0.005 (2)0.0007 (19)0.0013 (18)
Co10.0525 (5)0.0357 (4)0.0369 (3)0.0046 (3)0.0083 (3)0.0058 (3)
Br10.0725 (5)0.0601 (4)0.0781 (4)0.0177 (4)0.0062 (3)0.0207 (3)
Br20.0619 (4)0.0660 (4)0.0508 (3)0.0135 (3)0.0023 (3)0.0131 (3)
Geometric parameters (Å, º) top
C1—C21.468 (8)C8—C91.379 (8)
C1—H1A0.9600C8—H80.9300
C1—H1B0.9600C9—C101.367 (9)
C1—H1C0.9600C9—H90.9300
C2—N11.345 (6)C10—C111.370 (8)
C2—C31.396 (7)C10—H100.9300
C3—C41.377 (9)C11—N21.360 (6)
C3—H30.9300C11—C121.481 (8)
C4—C51.371 (9)C12—H12A0.9600
C4—H40.9300C12—H12B0.9600
C5—C61.378 (7)C12—H12C0.9600
C5—H50.9300Co1—N12.044 (4)
C6—N11.347 (6)Co1—N22.037 (4)
C6—C71.490 (7)Co1—Br12.3594 (10)
C7—N21.354 (6)Co1—Br22.3588 (10)
C7—C81.377 (7)
C2—C1—H1A109.5C10—C9—C8118.8 (6)
C2—C1—H1B109.5C10—C9—H9120.6
H1A—C1—H1B109.5C8—C9—H9120.6
C2—C1—H1C109.5C9—C10—C11121.0 (6)
H1A—C1—H1C109.5C9—C10—H10119.5
H1B—C1—H1C109.5C11—C10—H10119.5
N1—C2—C3120.1 (5)N2—C11—C10120.1 (5)
N1—C2—C1117.7 (5)N2—C11—C12116.9 (5)
C3—C2—C1122.1 (5)C10—C11—C12122.9 (5)
C4—C3—C2119.2 (5)C11—C12—H12A109.5
C4—C3—H3120.4C11—C12—H12B109.5
C2—C3—H3120.4H12A—C12—H12B109.5
C5—C4—C3120.0 (5)C11—C12—H12C109.5
C5—C4—H4120.0H12A—C12—H12C109.5
C3—C4—H4120.0H12B—C12—H12C109.5
C4—C5—C6119.0 (6)C2—N1—C6120.4 (4)
C4—C5—H5120.5C2—N1—Co1126.0 (3)
C6—C5—H5120.5C6—N1—Co1113.5 (3)
N1—C6—C5121.3 (5)C7—N2—C11119.4 (4)
N1—C6—C7115.9 (4)C7—N2—Co1113.8 (3)
C5—C6—C7122.8 (5)C11—N2—Co1126.8 (3)
N2—C7—C8121.3 (5)N2—Co1—N181.30 (15)
N2—C7—C6115.4 (4)N2—Co1—Br2115.50 (12)
C8—C7—C6123.3 (5)N1—Co1—Br2116.88 (13)
C7—C8—C9119.4 (6)N2—Co1—Br1114.33 (13)
C7—C8—H8120.3N1—Co1—Br1115.65 (12)
C9—C8—H8120.3Br2—Co1—Br1110.57 (4)
N1—C2—C3—C41.8 (9)C5—C6—N1—Co1178.5 (4)
C1—C2—C3—C4178.9 (6)C7—C6—N1—Co12.2 (6)
C2—C3—C4—C51.4 (10)C8—C7—N2—C110.4 (8)
C3—C4—C5—C60.1 (10)C6—C7—N2—C11179.4 (5)
C4—C5—C6—N11.3 (9)C8—C7—N2—Co1179.1 (5)
C4—C5—C6—C7177.9 (5)C6—C7—N2—Co10.6 (6)
N1—C6—C7—N21.9 (7)C10—C11—N2—C70.6 (8)
C5—C6—C7—N2178.8 (5)C12—C11—N2—C7179.4 (5)
N1—C6—C7—C8177.9 (5)C10—C11—N2—Co1177.9 (4)
C5—C6—C7—C81.4 (9)C12—C11—N2—Co10.8 (8)
N2—C7—C8—C90.7 (9)C7—N2—Co1—N10.4 (4)
C6—C7—C8—C9179.0 (5)C11—N2—Co1—N1178.2 (5)
C7—C8—C9—C100.0 (10)C7—N2—Co1—Br2116.1 (3)
C8—C9—C10—C111.1 (10)C11—N2—Co1—Br262.5 (5)
C9—C10—C11—N21.4 (10)C7—N2—Co1—Br1113.9 (3)
C9—C10—C11—C12180.0 (6)C11—N2—Co1—Br167.5 (5)
C3—C2—N1—C60.6 (8)C2—N1—Co1—N2179.1 (5)
C1—C2—N1—C6180.0 (6)C6—N1—Co1—N21.5 (4)
C3—C2—N1—Co1180.0 (4)C2—N1—Co1—Br264.8 (5)
C1—C2—N1—Co10.6 (8)C6—N1—Co1—Br2115.7 (3)
C5—C6—N1—C20.9 (8)C2—N1—Co1—Br168.0 (5)
C7—C6—N1—C2178.3 (5)C6—N1—Co1—Br1111.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···Br1i0.932.923.696 (5)142
C12—H12C···Br1ii0.962.893.847 (6)172
Symmetry codes: (i) x, y+1, z; (ii) x, y1/2, z+1/2.
Selected bond lengths (Å) top
Co1—N12.044 (4)Co1—Br12.3594 (10)
Co1—N22.037 (4)Co1—Br22.3588 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···Br1i0.932.923.696 (5)142
C12—H12C···Br1ii0.962.893.847 (6)172
Symmetry codes: (i) x, y+1, z; (ii) x, y1/2, z+1/2.
Acknowledgements top

We are grateful to the Islamic Azad University, Omidieh Branch for financial support.

references
References top

Akbarzadeh Torbati, N., Rezvani, A. R., Safari, N., Saravani, H. & Amani, V. (2010). Acta Cryst. E66, m1284.

Alizadeh, R., Kalateh, K., Khoshtarkib, Z., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m1439–m1440.

Alizadeh, R., Seifi, S. & Amani, V. (2011). Acta Cryst. E67, m305.

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Itoh, S., Kishikawa, N., Suzuki, T. & Takagi, H. D. (2005). Dalton Trans. pp. 1066–1078.

Kou, H. Z., Hishiya, S. & Sato, O. (2008). Inorg. Chim. Acta, 361, 2396–2406.

Onggo, D., Scudder, M. L., Craig, D. C. & Goodwin, H. A. (2005). J. Mol. Struct. 738, 129–136.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Shirvan, S. A. & Haydari Dezfuli, S. (2012). Acta Cryst. E68, m1143.