organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3235-o3236

2-Ethyl-3-hy­dr­oxy-1-iso­propyl-4-pyridone

aDepartment of Chemistry, University of Free State, Bloemfontein, 9301, PO Box 339, South Africa
*Correspondence e-mail: schuttem@ufs.ac.za

(Received 2 October 2012; accepted 24 October 2012; online 27 October 2012)

The title compound, C10H15NO2, crystallized with three mol­ecules in the asymmetric unit. These three mol­ecules are quite similar except for slight differences in the torsion angles of the substituents on the ring. The isopropyl C—C—N—C torsion angles (towards the carbon next to the ethyl bound carbon), for example, are −150.63 (11), −126.77 (13) and −138.76 (11)° for mol­ecules A, B and C, respectively, and the C—C—C—N torsion angles involving the ethyl C atoms are 102.90 (13), 87.81 (14) and 86.47 (13)°. The main difference between the three mol­ecules lies in the way they are arranged in the solid-state structure. All three mol­ecules form dimers that are connected through strong O—H⋯O hydrogen bonds with R22(10) graph-set motifs. The symmetry of the dimers formed does however differ between mol­ecules. Mol­ecules B connect with each other to form inversion dimers. Mol­ecules A and C, on the other hand, form dimers with local twofold symmetry, but the two mol­ecules are crystallographically distinct. The B and C molecules are linked to themselves and to each other via C—H⋯O hydrogen bonds. This results in the formation of a three-dimensional network structure.

Related literature

For background on this type of ligand system, see: Fassihi et al. (2009[Fassihi, A., Abedi, D., Saghaie, L., Sabet, R., Fazeli, H., Bostaki, G., Deilami, O. & Sadinpour, H. (2009). Eur. J. Med. Chem. 44, 2145-2157.]); Weinberg (1994[Weinberg, G. A. (1994). Antimicrob. Agents Chemother. 38, 997-1003.]); Galanello, 2007[Galanello, R. (2007). Ther. Clin. Risk Manage. 3, 795-805.]); Scott et al. (2008[Scott, L. E., Page, B. D. G., Patrick, B. O. & Orvig, C. (2008). Dalton Trans. pp. 6364-6367.]). For similar structures, see: Xiao et al. (1992[Xiao, G., van der Helm, D., Hider, R. C. & Dobbin, P. S. (1992). J. Chem. Soc. Dalton Trans. pp. 3265-3271.]); Burgess et al. (1993[Burgess, J., Fawcett, J., Patel, M. S. & Russell, D. R. (1993). J. Chem. Res. (S). pp. 50-51.]); Hider et al. (1990[Hider, R. C., Taylor, P. D., Walkinshaw, M., Wang, J. L. & van der Helm, D. (1990). J. Chem. Res. (S), pp. 316-317.]); Dobbin et al. (1993[Dobbin, P. S., Hider, R. C., Hall, A. D., Taylor, P. D., Sarpong, P., Porter, J. B., Xiao, G., Xiao, G. & van der Helm, D. (1993). J. Med. Chem. 36, 2448-2458.]); Brown et al. (1995[Brown, S. D., Burgess, J., Fawcett, J., Parsons, S. A., Russell, D. R. & Waltham, E. (1995). Acta Cryst. C51, 1335-1338.]).

[Scheme 1]

Experimental

Crystal data
  • C10H15NO2

  • Mr = 181.23

  • Orthorhombic, P b c a

  • a = 11.7408 (2) Å

  • b = 13.3554 (2) Å

  • c = 37.5523 (8) Å

  • V = 5888.32 (18) Å3

  • Z = 24

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.43 × 0.32 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.986

  • 66795 measured reflections

  • 7343 independent reflections

  • 5939 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.111

  • S = 1.01

  • 7343 reflections

  • 373 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2A—H2A⋯O1Ci 0.89 (2) 1.85 (2) 2.6503 (13) 149.9 (17)
O2B—H2B⋯O1Bii 0.882 (19) 1.859 (18) 2.6480 (13) 147.8 (17)
O2C—H2C⋯O1Aiii 0.869 (18) 1.796 (18) 2.5868 (12) 150.3 (17)
C5B—H5B⋯O1Cii 0.95 2.43 3.3237 (16) 156
C6C—H6C⋯O2Civ 1.00 2.59 3.4623 (15) 146
C9B—H9B1⋯O1Bv 0.99 2.44 3.3548 (16) 153
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y, -z+1; (iii) x-1, y, z; (iv) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (v) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

3-Hydroxypyridinones, which are derivatives of 3-hydroxypyranones, are known to have antimicrobial and antimalarial activity (Fassihi et al., 2009 and Weinberg, 1994). In addition to this, these compounds are non-toxic and they are approved for therapeutic use in some parts of the world (Galanello, 2007). Furthermore these organic compounds are metal ion chelators and they are used to prepare prodrugs with antioxidant characteristics and have brain targeting capabilities. These drugs have been suggested for the treatment of Alzheimer's disease and might possibly be more effective than treatments that just isolate metals (Scott et al., 2008).

As part of an ongoing study, O,O'-donor bidentate ligands are obtained by functionalizing commercially available 3-hydroxy-2-methylpyran-4-one (maltol) and 3-hydroxy-2-ethylpyran-4-one (ethyl maltol) to the respective 3-hydroxy-2-methylpyrid-4-one and 3-hydroxy-2-ethylpyrid-4-one derivatives. The funtionalizations are performed in order to obtain an array of different electronic and steric properties imparted on the respective starting materials in order to study these effects. Coordination to copper(II) and designing a catalyst with a suitable support for oxidation and the kinetic study thereof are part of this study.

2-Ethyl-3-hydroxy-1-isopropylpyridinone crystallized in the orthorhombic Pbca space group with three molecules in the asymmetric unit. The average carbonyl distances (C=O) in the three molecules of 1.265 (4) Å are comparable to those of similar molecules that have been reported in the literature (Dobbin et al., 1993, Xiao et al., 1992, Burgess et al., 1993, Hider et al., 1990). These four structures differ only by the substituents on the N1 and C1 atoms and are reported as combinations of methyl and ethyl groups compared to ethyl (C1) and isopropyl (N1) for this structure. A distance of 1.265 (1) Å by Xiao et al. (1992), 1.275 (5) Å by Burgess et al. (1993), 1.271 (1) Å by Hider et al. (1990) and 1.264 (2) Å by Dobbin et al. (1993) have been reported. The three crystallograophically distinct molecules are quite similar, for instance the carbonyl distances for molecules A, B and C are 1.264 (1) Å, 1.261 (2) Å and 1.269 (1) Å respectively with r.m.s. values of 0.6447 Å (for an overlay of the complete molecule A and B), 0.6257 Å (for an overlay of the complete molecule B and C) and 0.1476 Å (for an overlay of the complete molecule A and C). Illustrated in Figure 3 is an overlay of all three molecules. As can be seen, the molecules are distinct by small variations in their torsion angles, C1—N1—C6—C7 and C10—C9—C1—N1. For molecule A, B and C respectively, C1—N1—C6—C7 and C10—C9—C1—N1 are -150.62 (11) °, -126.77 (13) ° and -138.76 (11) ° for the first and 102.90 (13) °, 87.81(154 ° and 86.47 (13) ° for the latter torsion angle. The main difference between the three molecules lies however in the way they are arranged in the solid state structure. All three molecules are forming dimers that are connected through strong O—H···O hydrogen bonds with graph set motifs of R22(10). The symmetry of the dimers formed does however differ between molecules. Molecules B connect with each other to form dimers with exact crystallographic inversion symmetry. Molecules A and C, on the other hand form dimers with local two fold symmetry, but the two molecules are crystallographically distinct within the crystal lattice. Two weaker C—H···O intramolecular hydrogen interactions are formed between the ethyl carbon (C9) and the hydroxyl oxygen (O2) in molecule B and C. Another intramolecular C—H···O interactions is formed between the aromatic carbon C5B and a neighboring molecule's ketone oxygen (O1C). Finally, an intermolecular hydrogen interaction is observed between ethyl carbon C9B and a ketone oxygen (O1B).

Related literature top

For background on this type of ligand system, see: Fassihi et al. (2009); Weinberg (1994); Galanello, 2007); Scott et al. (2008). For similar structures, see: Xiao et al. (1992); Burgess et al. (1993); Hider et al. (1990); Dobbin et al. (1993); Brown et al. (1995).

Experimental top

2-Ethyl-3-hydroxy-1-isopropyl-4-pyridinone was prepared from the reflux of 2-ethyl-3-hydroxypyran-4-one (ethyl maltol) (5 g, 0,03568 mol) with 6 equivalents of aqueous isopropylamine (12.65 ml, 0,2141 mol, 99%) in 100 ml of water overnight. The mixture turned dark brown. Decolourizing charcoal was added after refluxing and the mixture was left to stand for 30 min. This was then filtered and the dark brown filtrate was evaporated in vacuo to yield a dark brown solid. Crystallization from cold acetone gave pink crystals of 2-ethyl-3-hydroxy-1-isopropyl-4-pyridinone (Yield - 2.5 g, 0.0138 mol, 50%). NMR (300 MHz)13C: 13.3, 18.5, 23.1, 51.5, 111.9, 133.4, 134.3, 145.2, 169.2. NMR (300 MHz) 1H: 1.11(t), 1.38(d), 2.77(q), 4.48(m), 6.18(d), 7.70(d).

Refinement top

Aromatic H atoms were positioned geometrically and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(parent) of the parent atom with a C—H distance of 0.93 Å. The methyl and methene H atoms were placed in geometrically idealized positions and constrained to ride on its parent atoms with Uiso(H) = 1.5Ueq(C) and Uiso(H) = 1.2Ueq(C) and at a distance of 0.96 Å and 0.97 Å respectively. The methine hydrogen atoms were placed in geometrically idealized positions and constrained to ride on its parent atoms with Uiso(H) = 1.2 Ueq(C) and at a distance of 0.98 Å. Hydroxyl H atoms were placed from the electron density map and refined freely. Uiso(H) = 0.04216Ueq(C) for molecule A, Uiso(H) = 0.03874Ueq(C) for molecule B and Uiso(H) = 0.03682Ueq(C) for molecule C.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Representation of the title compound, showing the numbering scheme and displacement ellipsoids (50% probability). Hydrogen atoms were omitted for clarity.
[Figure 2] Fig. 2. Hydrogen interactions (O—H···O) of the title compound in the crystal structure. (Molecule A in blue, molecule B in red and molecule C in purple).
[Figure 3] Fig. 3. Least square overlay of all the atoms in the three independent molecules (Molecule A in blue, molecule B in red and molecule C in purple).
2-Ethyl-3-hydroxy-1-isopropyl-4-pyridone top
Crystal data top
C10H15NO2F(000) = 2352
Mr = 181.23Dx = 1.227 Mg m3
Dm = 1.227 Mg m3
Dm measured by not measured
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9920 reflections
a = 11.7408 (2) Åθ = 2.4–28.3°
b = 13.3554 (2) ŵ = 0.09 mm1
c = 37.5523 (8) ÅT = 100 K
V = 5888.32 (18) Å3Cuboid, pink
Z = 240.43 × 0.32 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
5939 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 28.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1515
Tmin = 0.968, Tmax = 0.986k = 1714
66795 measured reflectionsl = 5049
7343 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0549P)2 + 2.2867P]
where P = (Fo2 + 2Fc2)/3
7343 reflections(Δ/σ)max = 0.001
373 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C10H15NO2V = 5888.32 (18) Å3
Mr = 181.23Z = 24
Orthorhombic, PbcaMo Kα radiation
a = 11.7408 (2) ŵ = 0.09 mm1
b = 13.3554 (2) ÅT = 100 K
c = 37.5523 (8) Å0.43 × 0.32 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
7343 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5939 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.986Rint = 0.041
66795 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.31 e Å3
7343 reflectionsΔρmin = 0.28 e Å3
373 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.91293 (7)0.19653 (6)0.67343 (2)0.01841 (18)
O2A0.82821 (8)0.01809 (6)0.64712 (3)0.0239 (2)
N1A0.59980 (8)0.18817 (7)0.62554 (3)0.0163 (2)
C1A0.66341 (10)0.10117 (8)0.62811 (3)0.0172 (2)
C2A0.76777 (10)0.10457 (8)0.64456 (3)0.0169 (2)
C3A0.81506 (10)0.19473 (9)0.65940 (3)0.0154 (2)
C4A0.74207 (10)0.27933 (9)0.65694 (3)0.0180 (2)
H4A0.76580.34110.6670.022*
C5A0.63923 (10)0.27388 (9)0.64048 (3)0.0185 (2)
H5A0.59320.33230.63940.022*
C6A0.48310 (10)0.18759 (9)0.60952 (3)0.0199 (3)
H6A0.48140.13480.59060.024*
C7A0.45372 (11)0.28715 (10)0.59208 (4)0.0229 (3)
H7A10.51540.30680.57590.034*
H7A20.44420.33850.61050.034*
H7A30.38270.28030.57860.034*
C8A0.39681 (11)0.15899 (10)0.63795 (4)0.0275 (3)
H8A10.41590.09290.64760.041*
H8A20.32050.1570.62740.041*
H8A30.39850.20860.65720.041*
C9A0.62142 (11)0.00365 (9)0.61273 (4)0.0227 (3)
H9A10.53820.00830.60880.027*
H9A20.63510.05060.63020.027*
C10A0.67925 (13)0.02331 (11)0.57770 (4)0.0336 (3)
H10G0.65210.08890.56960.05*
H10H0.76190.02580.58120.05*
H10I0.6610.02740.55970.05*
O1B0.56596 (7)0.03944 (7)0.46383 (3)0.0233 (2)
O2B0.59291 (8)0.13800 (7)0.50044 (3)0.0222 (2)
N1B0.84051 (9)0.14085 (8)0.44368 (3)0.0189 (2)
C1B0.76037 (10)0.16947 (9)0.46869 (3)0.0175 (2)
C2B0.66930 (10)0.10833 (9)0.47560 (3)0.0165 (2)
C3B0.65095 (10)0.01527 (9)0.45722 (3)0.0181 (2)
C4B0.73506 (12)0.00685 (10)0.43113 (4)0.0240 (3)
H4B0.72780.06620.41740.029*
C5B0.82553 (11)0.05457 (10)0.42527 (4)0.0233 (3)
H5B0.880.03640.40770.028*
C6B0.94331 (11)0.20294 (10)0.43529 (4)0.0232 (3)
H6B0.94740.25870.4530.028*
C7B1.05136 (12)0.14100 (13)0.43862 (5)0.0384 (4)
H7B11.05220.1070.46170.058*
H7B21.05370.09110.41950.058*
H7B31.11790.1850.43670.058*
C8B0.93117 (13)0.24888 (10)0.39849 (4)0.0284 (3)
H8B10.85960.28640.39720.043*
H8B20.99520.29420.3940.043*
H8B30.93090.19560.38050.043*
C9B0.77378 (11)0.26520 (9)0.48918 (3)0.0232 (3)
H9B10.81150.31580.47390.028*
H9B20.69760.29120.49570.028*
C10B0.84408 (13)0.24934 (12)0.52279 (4)0.0330 (3)
H10D0.8480.31210.53620.05*
H10E0.80830.19760.53750.05*
H10F0.92120.22810.51630.05*
O1C0.05201 (7)0.00440 (6)0.65172 (2)0.01955 (19)
O2C0.08600 (7)0.12707 (7)0.70817 (2)0.02100 (19)
N1C0.33901 (8)0.02479 (7)0.71342 (3)0.0154 (2)
C1C0.25752 (10)0.04654 (8)0.72127 (3)0.0152 (2)
C2C0.16221 (10)0.05441 (8)0.70010 (3)0.0156 (2)
C3C0.14118 (10)0.01157 (8)0.67065 (3)0.0154 (2)
C4C0.22771 (10)0.08416 (9)0.66494 (3)0.0174 (2)
H4C0.21960.13060.64590.021*
C5C0.32200 (10)0.08894 (8)0.68600 (3)0.0176 (2)
H5C0.37760.13890.68130.021*
C6C0.44322 (10)0.03673 (9)0.73602 (3)0.0176 (2)
H6C0.45450.02720.74940.021*
C7C0.54870 (10)0.05396 (10)0.71333 (4)0.0223 (3)
H7C10.55420.00130.69520.033*
H7C20.54330.11940.70160.033*
H7C30.61660.05230.72850.033*
C8C0.42321 (11)0.11941 (10)0.76313 (4)0.0242 (3)
H8C10.35550.10360.77730.036*
H8C20.48960.12480.77880.036*
H8C30.41160.18310.75070.036*
C9C0.27357 (10)0.11713 (8)0.75202 (3)0.0179 (2)
H9C10.31380.08190.77150.021*
H9C20.1980.1380.76110.021*
C10C0.34170 (12)0.21007 (9)0.74141 (4)0.0240 (3)
H10A0.350.25420.76210.036*
H10B0.30150.24580.72240.036*
H10C0.41720.18980.73290.036*
H2A0.9000 (17)0.0306 (14)0.6530 (5)0.042 (5)*
H2B0.5443 (15)0.0896 (14)0.5054 (5)0.039 (5)*
H2C0.0328 (15)0.1317 (13)0.6922 (5)0.038 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0164 (4)0.0183 (4)0.0205 (4)0.0008 (3)0.0029 (3)0.0013 (3)
O2A0.0166 (5)0.0134 (4)0.0417 (6)0.0027 (3)0.0069 (4)0.0028 (4)
N1A0.0144 (5)0.0142 (4)0.0204 (5)0.0015 (4)0.0019 (4)0.0017 (4)
C1A0.0169 (6)0.0130 (5)0.0217 (6)0.0007 (4)0.0008 (5)0.0010 (4)
C2A0.0166 (6)0.0126 (5)0.0213 (6)0.0012 (4)0.0015 (4)0.0001 (4)
C3A0.0161 (5)0.0161 (5)0.0139 (5)0.0009 (4)0.0021 (4)0.0011 (4)
C4A0.0196 (6)0.0134 (5)0.0211 (6)0.0005 (4)0.0010 (5)0.0026 (4)
C5A0.0201 (6)0.0132 (5)0.0222 (6)0.0019 (4)0.0010 (5)0.0016 (4)
C6A0.0159 (6)0.0187 (5)0.0252 (6)0.0016 (4)0.0053 (5)0.0033 (5)
C7A0.0227 (6)0.0247 (6)0.0213 (6)0.0043 (5)0.0039 (5)0.0004 (5)
C8A0.0183 (6)0.0253 (6)0.0388 (8)0.0002 (5)0.0000 (5)0.0039 (6)
C9A0.0179 (6)0.0147 (5)0.0355 (8)0.0000 (5)0.0037 (5)0.0048 (5)
C10A0.0332 (8)0.0286 (7)0.0391 (8)0.0024 (6)0.0033 (6)0.0161 (6)
O1B0.0207 (4)0.0217 (4)0.0277 (5)0.0048 (4)0.0034 (4)0.0038 (4)
O2B0.0214 (5)0.0177 (4)0.0274 (5)0.0010 (4)0.0071 (4)0.0033 (4)
N1B0.0201 (5)0.0194 (5)0.0173 (5)0.0037 (4)0.0016 (4)0.0005 (4)
C1B0.0196 (6)0.0173 (5)0.0155 (6)0.0006 (4)0.0025 (4)0.0012 (4)
C2B0.0174 (6)0.0170 (5)0.0149 (5)0.0022 (4)0.0014 (4)0.0013 (4)
C3B0.0179 (6)0.0177 (5)0.0188 (6)0.0001 (4)0.0023 (4)0.0011 (5)
C4B0.0273 (7)0.0211 (6)0.0237 (6)0.0041 (5)0.0042 (5)0.0058 (5)
C5B0.0241 (6)0.0243 (6)0.0214 (6)0.0027 (5)0.0053 (5)0.0048 (5)
C6B0.0213 (6)0.0252 (6)0.0232 (6)0.0080 (5)0.0031 (5)0.0017 (5)
C7B0.0227 (7)0.0444 (9)0.0481 (10)0.0044 (6)0.0057 (7)0.0040 (8)
C8B0.0338 (7)0.0235 (6)0.0279 (7)0.0047 (6)0.0084 (6)0.0018 (5)
C9B0.0277 (7)0.0188 (6)0.0232 (6)0.0048 (5)0.0043 (5)0.0032 (5)
C10B0.0335 (8)0.0424 (8)0.0232 (7)0.0129 (7)0.0007 (6)0.0075 (6)
O1C0.0160 (4)0.0235 (4)0.0192 (4)0.0011 (3)0.0028 (3)0.0035 (4)
O2C0.0180 (4)0.0236 (4)0.0214 (5)0.0069 (3)0.0048 (4)0.0068 (4)
N1C0.0144 (5)0.0148 (4)0.0170 (5)0.0002 (4)0.0019 (4)0.0004 (4)
C1C0.0159 (5)0.0139 (5)0.0158 (5)0.0011 (4)0.0010 (4)0.0000 (4)
C2C0.0158 (5)0.0146 (5)0.0164 (6)0.0003 (4)0.0019 (4)0.0004 (4)
C3C0.0154 (5)0.0157 (5)0.0150 (5)0.0025 (4)0.0014 (4)0.0014 (4)
C4C0.0176 (6)0.0161 (5)0.0184 (6)0.0017 (4)0.0004 (4)0.0033 (4)
C5C0.0181 (6)0.0131 (5)0.0217 (6)0.0005 (4)0.0005 (5)0.0023 (4)
C6C0.0152 (6)0.0170 (5)0.0207 (6)0.0007 (4)0.0049 (4)0.0013 (5)
C7C0.0161 (6)0.0259 (6)0.0249 (7)0.0006 (5)0.0023 (5)0.0010 (5)
C8C0.0226 (6)0.0268 (6)0.0231 (7)0.0018 (5)0.0030 (5)0.0051 (5)
C9C0.0192 (6)0.0170 (5)0.0174 (6)0.0009 (4)0.0027 (4)0.0035 (5)
C10C0.0298 (7)0.0171 (6)0.0251 (7)0.0029 (5)0.0051 (5)0.0021 (5)
Geometric parameters (Å, º) top
O1A—C3A1.2643 (14)C6B—C7B1.520 (2)
O2A—C2A1.3589 (14)C6B—H6B1
O2A—H2A0.89 (2)C7B—H7B10.98
N1A—C5A1.3563 (15)C7B—H7B20.98
N1A—C1A1.3846 (15)C7B—H7B30.98
N1A—C6A1.4965 (15)C8B—H8B10.98
C1A—C2A1.3729 (17)C8B—H8B20.98
C1A—C9A1.5077 (16)C8B—H8B30.98
C2A—C3A1.4383 (16)C9B—C10B1.523 (2)
C3A—C4A1.4211 (16)C9B—H9B10.99
C4A—C5A1.3583 (17)C9B—H9B20.99
C4A—H4A0.95C10B—H10D0.98
C5A—H5A0.95C10B—H10E0.98
C6A—C8A1.5206 (19)C10B—H10F0.98
C6A—C7A1.5218 (17)O1C—C3C1.2690 (14)
C6A—H6A1O2C—C2C1.3543 (14)
C7A—H7A10.98O2C—H2C0.869 (18)
C7A—H7A20.98N1C—C5C1.3541 (15)
C7A—H7A30.98N1C—C1C1.3819 (15)
C8A—H8A10.98N1C—C6C1.4977 (14)
C8A—H8A20.98C1C—C2C1.3766 (16)
C8A—H8A30.98C1C—C9C1.5028 (16)
C9A—C10A1.523 (2)C2C—C3C1.4356 (16)
C9A—H9A10.99C3C—C4C1.4205 (16)
C9A—H9A20.99C4C—C5C1.3619 (17)
C10A—H10G0.98C4C—H4C0.95
C10A—H10H0.98C5C—H5C0.95
C10A—H10I0.98C6C—C8C1.5203 (18)
O1B—C3B1.2614 (15)C6C—C7C1.5208 (17)
O2B—C2B1.3533 (15)C6C—H6C1
O2B—H2B0.882 (19)C7C—H7C10.98
N1B—C5B1.3552 (16)C7C—H7C20.98
N1B—C1B1.3834 (16)C7C—H7C30.98
N1B—C6B1.4978 (15)C8C—H8C10.98
C1B—C2B1.3702 (17)C8C—H8C20.98
C1B—C9B1.5003 (17)C8C—H8C30.98
C2B—C3B1.4378 (16)C9C—C10C1.5295 (17)
C3B—C4B1.4221 (18)C9C—H9C10.99
C4B—C5B1.3600 (18)C9C—H9C20.99
C4B—H4B0.95C10C—H10A0.98
C5B—H5B0.95C10C—H10B0.98
C6B—C8B1.5188 (19)C10C—H10C0.98
C2A—O2A—H2A110.7 (12)C6B—C7B—H7B1109.5
C5A—N1A—C1A119.69 (10)C6B—C7B—H7B2109.5
C5A—N1A—C6A118.90 (10)H7B1—C7B—H7B2109.5
C1A—N1A—C6A121.16 (10)C6B—C7B—H7B3109.5
C2A—C1A—N1A119.01 (10)H7B1—C7B—H7B3109.5
C2A—C1A—C9A119.53 (10)H7B2—C7B—H7B3109.5
N1A—C1A—C9A121.46 (10)C6B—C8B—H8B1109.5
O2A—C2A—C1A118.02 (10)C6B—C8B—H8B2109.5
O2A—C2A—C3A118.85 (10)H8B1—C8B—H8B2109.5
C1A—C2A—C3A123.13 (10)C6B—C8B—H8B3109.5
O1A—C3A—C4A124.05 (11)H8B1—C8B—H8B3109.5
O1A—C3A—C2A121.89 (11)H8B2—C8B—H8B3109.5
C4A—C3A—C2A114.06 (10)C1B—C9B—C10B111.30 (11)
C5A—C4A—C3A121.53 (11)C1B—C9B—H9B1109.4
C5A—C4A—H4A119.2C10B—C9B—H9B1109.4
C3A—C4A—H4A119.2C1B—C9B—H9B2109.4
N1A—C5A—C4A122.47 (11)C10B—C9B—H9B2109.4
N1A—C5A—H5A118.8H9B1—C9B—H9B2108
C4A—C5A—H5A118.8C9B—C10B—H10D109.5
N1A—C6A—C8A109.20 (10)C9B—C10B—H10E109.5
N1A—C6A—C7A112.09 (10)H10D—C10B—H10E109.5
C8A—C6A—C7A111.75 (10)C9B—C10B—H10F109.5
N1A—C6A—H6A107.9H10D—C10B—H10F109.5
C8A—C6A—H6A107.9H10E—C10B—H10F109.5
C7A—C6A—H6A107.9C2C—O2C—H2C111.8 (12)
C6A—C7A—H7A1109.5C5C—N1C—C1C119.75 (10)
C6A—C7A—H7A2109.5C5C—N1C—C6C118.95 (10)
H7A1—C7A—H7A2109.5C1C—N1C—C6C121.20 (9)
C6A—C7A—H7A3109.5C2C—C1C—N1C119.49 (10)
H7A1—C7A—H7A3109.5C2C—C1C—C9C119.85 (10)
H7A2—C7A—H7A3109.5N1C—C1C—C9C120.64 (10)
C6A—C8A—H8A1109.5O2C—C2C—C1C117.56 (10)
C6A—C8A—H8A2109.5O2C—C2C—C3C119.91 (10)
H8A1—C8A—H8A2109.5C1C—C2C—C3C122.53 (10)
C6A—C8A—H8A3109.5O1C—C3C—C4C123.85 (11)
H8A1—C8A—H8A3109.5O1C—C3C—C2C121.81 (10)
H8A2—C8A—H8A3109.5C4C—C3C—C2C114.33 (10)
C1A—C9A—C10A112.91 (11)C5C—C4C—C3C121.72 (11)
C1A—C9A—H9A1109C5C—C4C—H4C119.1
C10A—C9A—H9A1109C3C—C4C—H4C119.1
C1A—C9A—H9A2109N1C—C5C—C4C122.11 (11)
C10A—C9A—H9A2109N1C—C5C—H5C118.9
H9A1—C9A—H9A2107.8C4C—C5C—H5C118.9
C9A—C10A—H10G109.5N1C—C6C—C8C109.31 (10)
C9A—C10A—H10H109.5N1C—C6C—C7C111.33 (10)
H10G—C10A—H10H109.5C8C—C6C—C7C113.03 (10)
C9A—C10A—H10I109.5N1C—C6C—H6C107.6
H10G—C10A—H10I109.5C8C—C6C—H6C107.6
H10H—C10A—H10I109.5C7C—C6C—H6C107.6
C2B—O2B—H2B111.2 (12)C6C—C7C—H7C1109.5
C5B—N1B—C1B119.54 (10)C6C—C7C—H7C2109.5
C5B—N1B—C6B117.91 (10)H7C1—C7C—H7C2109.5
C1B—N1B—C6B122.53 (10)C6C—C7C—H7C3109.5
C2B—C1B—N1B119.65 (11)H7C1—C7C—H7C3109.5
C2B—C1B—C9B119.51 (11)H7C2—C7C—H7C3109.5
N1B—C1B—C9B120.81 (11)C6C—C8C—H8C1109.5
O2B—C2B—C1B118.24 (11)C6C—C8C—H8C2109.5
O2B—C2B—C3B118.99 (10)H8C1—C8C—H8C2109.5
C1B—C2B—C3B122.76 (11)C6C—C8C—H8C3109.5
O1B—C3B—C4B124.36 (11)H8C1—C8C—H8C3109.5
O1B—C3B—C2B121.66 (11)H8C2—C8C—H8C3109.5
C4B—C3B—C2B113.97 (11)C1C—C9C—C10C111.99 (10)
C5B—C4B—C3B121.90 (12)C1C—C9C—H9C1109.2
C5B—C4B—H4B119C10C—C9C—H9C1109.2
C3B—C4B—H4B119C1C—C9C—H9C2109.2
N1B—C5B—C4B122.12 (12)C10C—C9C—H9C2109.2
N1B—C5B—H5B118.9H9C1—C9C—H9C2107.9
C4B—C5B—H5B118.9C9C—C10C—H10A109.5
N1B—C6B—C8B109.83 (11)C9C—C10C—H10B109.5
N1B—C6B—C7B110.73 (11)H10A—C10C—H10B109.5
C8B—C6B—C7B111.90 (12)C9C—C10C—H10C109.5
N1B—C6B—H6B108.1H10A—C10C—H10C109.5
C8B—C6B—H6B108.1H10B—C10C—H10C109.5
C7B—C6B—H6B108.1
C5A—N1A—C1A—C2A2.65 (17)O1B—C3B—C4B—C5B179.55 (13)
C6A—N1A—C1A—C2A176.91 (11)C2B—C3B—C4B—C5B1.61 (19)
C5A—N1A—C1A—C9A178.40 (12)C1B—N1B—C5B—C4B1.62 (19)
C6A—N1A—C1A—C9A4.14 (18)C6B—N1B—C5B—C4B179.73 (12)
N1A—C1A—C2A—O2A179.30 (11)C3B—C4B—C5B—N1B0.6 (2)
C9A—C1A—C2A—O2A1.73 (18)C5B—N1B—C6B—C8B69.46 (15)
N1A—C1A—C2A—C3A0.05 (18)C1B—N1B—C6B—C8B109.15 (13)
C9A—C1A—C2A—C3A178.92 (11)C5B—N1B—C6B—C7B54.63 (16)
O2A—C2A—C3A—O1A2.90 (18)C1B—N1B—C6B—C7B126.77 (13)
C1A—C2A—C3A—O1A177.75 (11)C2B—C1B—C9B—C10B90.30 (14)
O2A—C2A—C3A—C4A176.74 (11)N1B—C1B—C9B—C10B87.84 (14)
C1A—C2A—C3A—C4A2.61 (17)C5C—N1C—C1C—C2C2.87 (16)
O1A—C3A—C4A—C5A177.72 (12)C6C—N1C—C1C—C2C179.21 (10)
C2A—C3A—C4A—C5A2.65 (17)C5C—N1C—C1C—C9C178.76 (11)
C1A—N1A—C5A—C4A2.66 (18)C6C—N1C—C1C—C9C2.42 (16)
C6A—N1A—C5A—C4A177.05 (11)N1C—C1C—C2C—O2C178.26 (10)
C3A—C4A—C5A—N1A0.14 (19)C9C—C1C—C2C—O2C0.12 (16)
C5A—N1A—C6A—C8A89.31 (13)N1C—C1C—C2C—C3C2.50 (17)
C1A—N1A—C6A—C8A84.99 (13)C9C—C1C—C2C—C3C179.13 (11)
C5A—N1A—C6A—C7A35.08 (15)O2C—C2C—C3C—O1C0.37 (17)
C1A—N1A—C6A—C7A150.61 (11)C1C—C2C—C3C—O1C178.86 (11)
C2A—C1A—C9A—C10A76.04 (16)O2C—C2C—C3C—C4C179.80 (10)
N1A—C1A—C9A—C10A102.90 (14)C1C—C2C—C3C—C4C0.97 (16)
C5B—N1B—C1B—C2B2.64 (17)O1C—C3C—C4C—C5C179.98 (11)
C6B—N1B—C1B—C2B178.78 (11)C2C—C3C—C4C—C5C0.15 (17)
C5B—N1B—C1B—C9B179.23 (12)C1C—N1C—C5C—C4C1.82 (17)
C6B—N1B—C1B—C9B0.65 (17)C6C—N1C—C5C—C4C178.24 (11)
N1B—C1B—C2B—O2B179.43 (10)C3C—C4C—C5C—N1C0.29 (18)
C9B—C1B—C2B—O2B1.27 (17)C5C—N1C—C6C—C8C80.72 (13)
N1B—C1B—C2B—C3B1.54 (18)C1C—N1C—C6C—C8C95.65 (12)
C9B—C1B—C2B—C3B179.70 (11)C5C—N1C—C6C—C7C44.86 (14)
O2B—C2B—C3B—O1B0.40 (18)C1C—N1C—C6C—C7C138.77 (11)
C1B—C2B—C3B—O1B179.42 (12)C2C—C1C—C9C—C10C91.88 (13)
O2B—C2B—C3B—C4B178.47 (11)N1C—C1C—C9C—C10C86.48 (13)
C1B—C2B—C3B—C4B0.55 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2A—H2A···O1Ci0.89 (2)1.85 (2)2.6503 (13)149.9 (17)
O2B—H2B···O1Bii0.882 (19)1.859 (18)2.6480 (13)147.8 (17)
O2C—H2C···O1Aiii0.869 (18)1.796 (18)2.5868 (12)150.3 (17)
C5B—H5B···O1Cii0.952.433.3237 (16)156
C6C—H6C···O2Civ12.593.4623 (15)146
C9B—H9B1···O1Bv0.992.443.3548 (16)153
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x1, y, z; (iv) x+1/2, y, z+3/2; (v) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC10H15NO2
Mr181.23
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)11.7408 (2), 13.3554 (2), 37.5523 (8)
V3)5888.32 (18)
Z24
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.43 × 0.32 × 0.16
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.968, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
66795, 7343, 5939
Rint0.041
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.111, 1.01
No. of reflections7343
No. of parameters373
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.28

Computer programs: APEX2 (Bruker, 2008), SAINT-Plus (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2A—H2A···O1Ci0.89 (2)1.85 (2)2.6503 (13)149.9 (17)
O2B—H2B···O1Bii0.882 (19)1.859 (18)2.6480 (13)147.8 (17)
O2C—H2C···O1Aiii0.869 (18)1.796 (18)2.5868 (12)150.3 (17)
C5B—H5B···O1Cii0.952.433.3237 (16)156.2
C6C—H6C···O2Civ12.593.4623 (15)146
C9B—H9B1···O1Bv0.992.443.3548 (16)153.4
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x1, y, z; (iv) x+1/2, y, z+3/2; (v) x+3/2, y1/2, z.
 

Acknowledgements

The University of the Free State, the Chemistry Department, the NRF and Sasol Ltd and Inkaba yeAfrica are greatly acknowledged for funding.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationBrown, S. D., Burgess, J., Fawcett, J., Parsons, S. A., Russell, D. R. & Waltham, E. (1995). Acta Cryst. C51, 1335–1338.  CSD CrossRef CAS Web of Science IUCr Journals
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBurgess, J., Fawcett, J., Patel, M. S. & Russell, D. R. (1993). J. Chem. Res. (S). pp. 50–51.
First citationDobbin, P. S., Hider, R. C., Hall, A. D., Taylor, P. D., Sarpong, P., Porter, J. B., Xiao, G., Xiao, G. & van der Helm, D. (1993). J. Med. Chem. 36, 2448–2458.  CSD CrossRef CAS PubMed Web of Science
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals
First citationFassihi, A., Abedi, D., Saghaie, L., Sabet, R., Fazeli, H., Bostaki, G., Deilami, O. & Sadinpour, H. (2009). Eur. J. Med. Chem. 44, 2145–2157.  Web of Science CrossRef PubMed CAS
First citationGalanello, R. (2007). Ther. Clin. Risk Manage. 3, 795–805.  CAS
First citationHider, R. C., Taylor, P. D., Walkinshaw, M., Wang, J. L. & van der Helm, D. (1990). J. Chem. Res. (S), pp. 316–317.
First citationScott, L. E., Page, B. D. G., Patrick, B. O. & Orvig, C. (2008). Dalton Trans. pp. 6364–6367.  Web of Science CSD CrossRef
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationWeinberg, G. A. (1994). Antimicrob. Agents Chemother. 38, 997–1003.  CrossRef CAS PubMed
First citationXiao, G., van der Helm, D., Hider, R. C. & Dobbin, P. S. (1992). J. Chem. Soc. Dalton Trans. pp. 3265–3271.  CSD CrossRef Web of Science

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3235-o3236
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds