supplementary materials


hb7001 scheme

Acta Cryst. (2012). E68, m1562    [ doi:10.1107/S1600536812048295 ]

cis-Dichloridobis(N,N,N',N'-tetramethylethane-1,2-diamine)platinum(II)

A. M. Asiri, M. N. Arshad, M. Ishaq, K. A. Alamry and T. H. Bokhari

Abstract top

In the title complex, [PtCl2(C6H16N2)], the PtII atom adopts a distorted cis-PtN2Cl2 square-planar coordination geometry. The five-membered chelate ring adopts a twisted conformation. In the crystal, weak C-H...Cl hydrogen bonds link the molecules into (001) sheets.

Comment top

The title compound is structurally related with already reported structures of complexes of the type of [MX2(N–N)] (N–N = chelating nitrongen donor ligand) like cis-diiodido(N,N,N',N' -tetramethylethylenediamine-k2N,N')palladium(II) (Abellán-López, et al. 2012) (II) and cis-dichloro(N,N,N'N'-tetramethyl-1,2-diaminoethane) palladium(II) (Boyle et al. 2004) (III).

In the structure of molecule I shown in Fig. 1, geometry around the Platinum atom is distorted square planer as N1-Pt1-N2 angle is 84.95 (3)° and Pt to its four co-ordinated atoms distances are [Pt-N = 2.071 (7) Å] and [Pt-Cl = 2.30 (5) Å]. The coordinated ligand atoms and Pt(II) are coplanar with r.m.s. deviation of 0.0119 Å. The planes of the two N(CH3)2 fragments are twisted at an angle of 12.53(1.05)°. The five membered ring formed by coordination of ligand atoms and metal is nonplaner with r.m.s. deviation of 0.1947 (4)Å and both the halogen atoms (Cl1 & Cl2) are displaced from the least square plane defined by (Pt1/N1/C3/C4/N2) by -0.2216 (1) Å & 0.0425 (1) Å respectively. In the crystal, C—H···Cl interactions link the molecules into (001) sheets (Table 2, Fig. 2).

Related literature top

For related structures, see: Abellán-López, et al. (2012); Boyle et al. (2004).

Experimental top

In a round bottom flask took 50 ml of distilled water, 0.5 ml conc. HCL, 0.036 ml of tetramethylethylenediamine (tmeda) (0.24 mmol) and K2PtCl4 (0.24 mmol). Refluxed the mixture for about 2 hrs. The solution was changed to pale yellow, it was allowed to cool to room temperature then kept in refrigerator overnight. Pale yellow needles were formed which were filtered, washed with ethanol then with diethylether and dried on vacuum line.

Refinement top

All the C—H H-atoms were positioned with idealized geometry with C—H = 0.97 Å for methylene, & C—H = 0.96 Å for methyl groups. H-atoms were refined as riding with Uiso(H) = kUeq(C, N), where k = 1.2 for methylene and k = 1.5 for methyl H-atoms.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and X-SEED (Barbour, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of title complex with 50% probability thermal ellipsoids.
[Figure 2] Fig. 2. The packing diagram showing hydrogen bonds, drawn using dashed lines. Hydrogen atoms not involved in bonding have been omitted for clarity.
cis-Dichloridobis(N,N,N',N'- tetramethylethane-1,2-diamine)platinum(II) top
Crystal data top
[PtCl2(C6H16N2)]F(000) = 712
Mr = 382.20Dx = 2.397 Mg m3
Monoclinic, IaCu Kα radiation, λ = 1.54184 Å
Hall symbol: I -2yaCell parameters from 6609 reflections
a = 11.8893 (2) Åθ = 4.0–74.3°
b = 6.0207 (1) ŵ = 28.99 mm1
c = 15.8036 (3) ÅT = 296 K
β = 110.549 (2)°Cut needle, yellow
V = 1059.27 (3) Å30.22 × 0.21 × 0.07 mm
Z = 4
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas, CCD)
diffractometer
2091 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2067 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.047
ω scansθmax = 74.5°, θmin = 8.0°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
h = 1414
Tmin = 0.149, Tmax = 1.000k = 67
6899 measured reflectionsl = 1919
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.1007P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.116(Δ/σ)max < 0.001
S = 1.03Δρmax = 1.83 e Å3
2091 reflectionsΔρmin = 2.02 e Å3
105 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.00105 (13)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1005 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.02 (2)
Crystal data top
[PtCl2(C6H16N2)]V = 1059.27 (3) Å3
Mr = 382.20Z = 4
Monoclinic, IaCu Kα radiation
a = 11.8893 (2) ŵ = 28.99 mm1
b = 6.0207 (1) ÅT = 296 K
c = 15.8036 (3) Å0.22 × 0.21 × 0.07 mm
β = 110.549 (2)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas, CCD)
diffractometer
2091 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2067 reflections with I > 2σ(I)
Tmin = 0.149, Tmax = 1.000Rint = 0.047
6899 measured reflectionsθmax = 74.5°
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.116Δρmax = 1.83 e Å3
S = 1.03Δρmin = 2.02 e Å3
2091 reflectionsAbsolute structure: Flack (1983), 1005 Friedel pairs
105 parametersFlack parameter: 0.02 (2)
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.5018 (3)0.74348 (4)0.3050 (2)0.0267 (2)
Cl10.4170 (2)0.9830 (3)0.37829 (16)0.0534 (5)
Cl20.3628 (2)0.8443 (5)0.16737 (16)0.0595 (6)
N10.6301 (5)0.6421 (11)0.4255 (3)0.0315 (11)
N20.5876 (5)0.5269 (10)0.2453 (3)0.0354 (12)
C10.5722 (6)0.5088 (14)0.4782 (4)0.0471 (19)
H1A0.63270.45230.53180.071*
H1B0.52910.38700.44200.071*
H1C0.51740.60090.49490.071*
C20.6976 (8)0.828 (2)0.4835 (5)0.0472 (18)
H2A0.64380.91470.50340.071*
H2B0.73200.92030.44940.071*
H2C0.76040.76870.53510.071*
C30.7209 (7)0.5022 (14)0.4027 (4)0.0481 (18)
H3A0.78200.59700.39410.058*
H3B0.75990.40070.45190.058*
C40.6581 (7)0.3734 (14)0.3176 (5)0.0483 (16)
H4A0.71680.29570.29880.058*
H4B0.60510.26400.32880.058*
C50.6643 (9)0.6529 (18)0.2053 (6)0.058 (2)
H5A0.72530.73150.25220.087*
H5B0.61570.75700.16180.087*
H5C0.70140.55160.17620.087*
C60.5055 (10)0.3861 (19)0.1728 (7)0.073 (3)
H6A0.55130.27640.15490.109*
H6B0.46270.47710.12180.109*
H6C0.44930.31360.19480.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.0225 (3)0.0267 (3)0.0262 (3)0.0006 (2)0.00272 (17)0.00193 (19)
Cl10.0403 (8)0.0435 (11)0.0769 (11)0.0024 (7)0.0214 (8)0.0180 (9)
Cl20.0491 (9)0.0623 (17)0.0450 (8)0.0031 (10)0.0111 (6)0.0197 (10)
N10.027 (2)0.042 (4)0.020 (2)0.002 (2)0.001 (2)0.002 (2)
N20.036 (2)0.039 (3)0.033 (2)0.005 (2)0.014 (2)0.001 (2)
C10.045 (4)0.056 (5)0.033 (3)0.009 (3)0.005 (3)0.013 (3)
C20.044 (4)0.056 (6)0.033 (4)0.025 (4)0.003 (3)0.013 (4)
C30.038 (3)0.061 (5)0.036 (3)0.019 (3)0.002 (3)0.003 (3)
C40.046 (4)0.046 (4)0.050 (4)0.018 (3)0.014 (3)0.005 (3)
C50.068 (5)0.064 (7)0.057 (4)0.005 (5)0.040 (4)0.010 (4)
C60.079 (6)0.069 (7)0.065 (5)0.000 (5)0.019 (4)0.037 (5)
Geometric parameters (Å, º) top
Pt1—N12.071 (7)C2—H2B0.9600
Pt1—N22.076 (6)C2—H2C0.9600
Pt1—Cl12.292 (4)C3—C41.504 (11)
Pt1—Cl22.304 (5)C3—H3A0.9700
N1—C11.488 (7)C3—H3B0.9700
N1—C21.490 (10)C4—H4A0.9700
N1—C31.510 (8)C4—H4B0.9700
N2—C41.480 (9)C5—H5A0.9600
N2—C51.486 (9)C5—H5B0.9600
N2—C61.483 (10)C5—H5C0.9600
C1—H1A0.9600C6—H6A0.9600
C1—H1B0.9600C6—H6B0.9600
C1—H1C0.9600C6—H6C0.9600
C2—H2A0.9600
N1—Pt1—N284.9 (3)N1—C2—H2C109.5
N1—Pt1—Cl191.9 (2)H2A—C2—H2C109.5
N2—Pt1—Cl1176.7 (3)H2B—C2—H2C109.5
N1—Pt1—Cl2177.2 (2)C4—C3—N1109.2 (5)
N2—Pt1—Cl292.3 (2)C4—C3—H3A109.8
Cl1—Pt1—Cl290.83 (16)N1—C3—H3A109.8
C1—N1—C2108.4 (5)C4—C3—H3B109.8
C1—N1—C3110.1 (6)N1—C3—H3B109.8
C2—N1—C3106.9 (6)H3A—C3—H3B108.3
C1—N1—Pt1109.7 (4)N2—C4—C3109.7 (6)
C2—N1—Pt1114.1 (6)N2—C4—H4A109.7
C3—N1—Pt1107.6 (3)C3—C4—H4A109.7
C4—N2—C5112.4 (6)N2—C4—H4B109.7
C4—N2—C6106.3 (7)C3—C4—H4B109.7
C5—N2—C6107.4 (6)H4A—C4—H4B108.2
C4—N2—Pt1106.0 (4)N2—C5—H5A109.5
C5—N2—Pt1110.2 (5)N2—C5—H5B109.5
C6—N2—Pt1114.5 (5)H5A—C5—H5B109.5
N1—C1—H1A109.5N2—C5—H5C109.5
N1—C1—H1B109.5H5A—C5—H5C109.5
H1A—C1—H1B109.5H5B—C5—H5C109.5
N1—C1—H1C109.5N2—C6—H6A109.5
H1A—C1—H1C109.5N2—C6—H6B109.5
H1B—C1—H1C109.5H6A—C6—H6B109.5
N1—C2—H2A109.5N2—C6—H6C109.5
N1—C2—H2B109.5H6A—C6—H6C109.5
H2A—C2—H2B109.5H6B—C6—H6C109.5
N2—Pt1—N1—C1111.5 (5)Cl1—Pt1—N2—C582 (4)
Cl1—Pt1—N1—C169.7 (5)Cl2—Pt1—N2—C577.3 (5)
Cl2—Pt1—N1—C1108 (5)N1—Pt1—N2—C6135.9 (7)
N2—Pt1—N1—C2126.6 (4)Cl1—Pt1—N2—C6157 (4)
Cl1—Pt1—N1—C252.2 (4)Cl2—Pt1—N2—C643.9 (7)
Cl2—Pt1—N1—C2130 (5)C1—N1—C3—C485.3 (7)
N2—Pt1—N1—C38.3 (5)C2—N1—C3—C4157.2 (7)
Cl1—Pt1—N1—C3170.5 (5)Pt1—N1—C3—C434.3 (8)
Cl2—Pt1—N1—C311 (5)C5—N2—C4—C376.8 (8)
N1—Pt1—N2—C419.1 (5)C6—N2—C4—C3165.9 (6)
Cl1—Pt1—N2—C440 (4)Pt1—N2—C4—C343.7 (7)
Cl2—Pt1—N2—C4160.7 (5)N1—C3—C4—N253.2 (8)
N1—Pt1—N2—C5102.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···Cl1i0.962.793.724 (8)166
C4—H4A···Cl1ii0.972.823.596 (7)137
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+1, z.
Selected bond lengths (Å) top
Pt1—N12.071 (7)Pt1—Cl12.292 (4)
Pt1—N22.076 (6)Pt1—Cl22.304 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···Cl1i0.962.793.724 (8)166
C4—H4A···Cl1ii0.972.823.596 (7)137
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+1, z.
Acknowledgements top

The authors thank the deanship of scientific research at King Abdulaziz University for the support of this research via Research Group Track of grant No. ( 3-102/428).

references
References top

Abellán-López, A., Chicote-Olalla, M. T. & Bautista-Cerezo, D. (2012). Acta Cryst. E68, m1129.

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.

Boyle, R. C., Mague, J. T. & Fink, M. J. (2004). Acta Cryst. E60, m40–m41.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.