organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o256-o257

5′′-(4-Meth­­oxy­benzyl­­idene)-1′-(4-meth­­oxy­phen­yl)-1′′-methyl-1′,2′,3′,5′,6′,7′,8′,8a′-octa­hydro­di­spiro­[ace­naphthyl­ene-1,3′-indolizine-2′,3′′-piperidine]-2,4′′(1H)-dione

aDepartment of Physics, The Madura College, Madurai 625 011, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: plakshmannilantha@ymail.com

(Received 28 December 2012; accepted 11 January 2013; online 19 January 2013)

In the title compound, C39H38N2O4, the pyridinone ring adopts a twisted half-chair conformation with the N atom deviating by 0.3304 (1) and with the methyl­ene C atom adjacent to the octa­hydro­indolizine unit deviating by 0.444 (3) Å from the mean plane defined by the other four atoms. In the octa­hydro­indolizine system, the pyrrolidine ring exhibits an envelope conformation, with the fused methyne C atom deviating by 0.6315 (1) Å from the mean plane defined by the other four atoms, and the piperidine ring exhibits a distorted chair conformation, as reflected in the puckering parameters Q = 0.568 (4) Å, θ = 1.5 (4) and φ = 161 (16)°. In the crystal pairs of weak C—H⋯O inter­actions form centrosymmetric dimers, which are further connected by C—H⋯π inter­actions. The crystal studied was a non-merohedral twin, with a domain ratio of 0.91:0.09.

Related literature

For general properties of indolizines, see: Weidner et al. (1989[Weidner, C. H., Wadsworth, D. H., Bender, S. L. & Beltman, D. J. (1989). J. Org. Chem. 54, 3660-3664.]); Katritzky et al. (1999[Katritzky, A. R., Qiu, G., Yang, B. & He, H.-Y. (1999). J. Org. Chem. 64, 7618-7621.]); Asano et al. (2000[Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645-1680.]); Gilchrist (2001[Gilchrist, T. L. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 2491-2515.]); Sarkunam & Nallu (2005[Sarkunam, K. & Nallu, M. (2005). J. Heterocycl. Chem. 42, 5-11.]); Tielmann & Hoenke (2006[Tielmann, P. & Hoenke, C. (2006). Tetrahedron Lett. 47, 261-265.]); Oslund et al. (2008[Oslund, R. C., Cermak, N. & Gelb, M. H. (2008). J. Med. Chem. 51, 4708-4714.]); Vemula et al. (2011[Vemula, V. R., Vurukonda, S. & Bairi, C. K. (2011). Int. J. Pharm. Sci. Rev. Res. 11, 159-163.]); Singh & Mmatli (2011[Singh, G. S. & Mmatli, E. E. (2011). Eur. J. Med. Chem. 46, 5237-5257.]). For bond lengths and angles in a related structure, see: Suresh et al. (2011[Suresh, J., Vishnupriya, R., Kumar, R. R., Sivakumar, S. & Lakshman, P. L. N. (2011). Acta Cryst. E67, o3210.]). For ring conformation analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C39H38N2O4

  • Mr = 598.71

  • Monoclinic, P 21 /n

  • a = 8.379 (5) Å

  • b = 16.958 (5) Å

  • c = 22.063 (5) Å

  • β = 96.605 (5)°

  • V = 3114 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.21 × 0.19 × 0.18 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.967, Tmax = 0.974

  • 5537 measured reflections

  • 5537 independent reflections

  • 3900 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.183

  • S = 1.05

  • 5537 reflections

  • 407 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the benzene ring (C52–C57) in the phenyl­methyl­idene group.

D—H⋯A D—H H⋯A DA D—H⋯A
C77—H77A⋯O2i 0.96 2.54 3.418 (5) 152
C58—H58CCg1ii 0.96 2.93 3.822 (5) 156
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Indolizines are used as dyes (Weidner et al., 1989), pharmaceuticals (Singh & Mmatli, 2011), and spectroscopic sensitizers (Katritzky et al., 1999; Sarkunam & Nallu, 2005; Gilchrist, 2001; Vemula et al., 2011). Indolizines, both synthetic and natural, have also been ascribed with a number of useful biological activities (Asano et al., 2000; Tielmann & Hoenke, 2006; Oslund et al., 2008) such as antibacterial, antiviral, CNS depressants, anti-HIV, anti-cancer, and have been used for treating cardiovascular ailments. In view of its medicinal importance we report the crystal structure of the title compound.

In the title compound (Fig. 1), the central pyridinone ring with the methyl substituent in an equatorial position, adopts twisted half chair conformation with atoms N2 and C2 deviating by 0.3304 (1) and -0.444 (3) Å respectively, from the mean plane defined by other atoms C3/C4/C5/C6. The O1 atom is deviating by -0.4117 (1) Å from the above mean plane. The sum of bond angles around N2, 332 (9)°, indicates a pyramidal geometry. In the fused system, the pyrrolidine ring adopts the twisted envelope conformation with C8 atom at the flap deviating by -0.6315 (1) Å from the mean plane defined by other atoms C7/C3/C13/N1, and this orientation may be due to the inter-molecular C7— H7A···O2 interaction. In the fused system, the piperidine ring adopts a slightly distorted chair conformation as evident from the puckering parameters Q = 0.568 (4) Å, θ = 1.5 (4)° and ϕ = 161 (16)° (Cremer & Pople, 1975). The twist of the 4-methoxy benzene ring (C52 to C57) with respect to the spiro junction is denoted by the torsion angle C5—C51—C52—C57 = -46.4 (5)°. The dihedral angles between the mean plane of the pyridinone ring, defined by atoms C3/C4/C5/C6 and 4-methoxy benzene rings are 85.58 (1) and 61.91 (1)°. The carbonyl bond lengths, C4O1 and C1402 [1.217 (4) Å for both], are somewhat long, due to C—H···O contacts. Although atoms C8, C12, C13 attached to the atom N1, are all sp3 hybridized, their different environments cause differences in bond lengths [N1—C12: 1.466 (4) Å, N1—C8: 1.453 (4) Å, and N1—C13: 1.466 (4) Å] and in the bond angles [C12—N1—C13: 116.9 (3)°, C13—N1—C8: 107.7 (2)° and C12—N1—C8: 114.3 (3)°]. The methoxy groups substituted at the phenyl rings are nearly coplanar, as it can be seen from the torsion angles C77—O3—C74—C73 = 2.5 (6)° and C58—O4—C55—C54 = -3.9 (6)°. The C—C bond lengths and C—C—C angles in the acenaphthylene group compare with those of related structures (Suresh et al., 2011).

The structure features weak intra-molecular interactions and inter-molecular interactions. A weak inter-molecular interaction, viz C77—H77A···O2, generates a ring motif R22(25), forming centrosymmetric dimers, and these dimers are interconnected by C—H···π interactions (Fig. 2), involving the benzene ring C52···C57.

Related literature top

For general properties of indolizines, see: Weidner et al. (1989); Katritzky et al. (1999); Asano et al. (2000); Gilchrist (2001); Sarkunam & Nallu (2005); Tielmann & Hoenke (2006); Oslund et al. (2008); Vemula et al. (2011); Singh & Mmatli (2011). For bond lengths and angles in a related structure, see: Suresh et al. (2011). For ring conformation analysis, see: Cremer & Pople (1975).

Experimental top

A mixture of 1-methyl-3,5-bis[(E)-4-methoxyphenyl-methylidene]tetrahydro-4(1H)-pyridinone (1 mmol), acenaphthenequinone (1 mmol) and piperidine-2-carboxylic acid (1 mmol) was dissolved in isopropyl alcohol (15 ml) and refluxed for 60 min. After completion of the reaction (TLC), the mixture was poured into water (50 ml), the precipitated solid was filtered and washed with water (100 ml) to obtain pure yellow solid. Melting point: 520 K, yield: 94%.

Refinement top

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98 Å; Uiso = 1.2Ueq(C) for CH2 and CH groups, and Uiso = 1.5Ueq(C) for CH3 groups. The investigated crystal was a non-merohedral twin, with a twin law [-1 0 0, 0 -1 0, 0.606 0 1] and with a ratio of twin components of 0.91:09, corresponding to a 2-fold rotation about (0 0 1), as determined with the TwinRotMat option of PLATON (Spek, 2009). The final refinement was carried out against a detwinned set. Three strongly deviated reflections were omitted in the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Partial packing diagram showing C—H···O and C—H···π interactions.
5''-(4-Methoxybenzylidene)-1'-(4-methoxyphenyl)-1''-methyl- 1',2',3',5',6',7',8',8a'-octahydrodispiro[acenaphthylene-1,3'-indolizine- 2',3''-piperidine]-2,4''(1H)-dione top
Crystal data top
C39H38N2O4F(000) = 1272
Mr = 598.71Dx = 1.277 Mg m3
Monoclinic, P21/nMelting point: 520 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.379 (5) ÅCell parameters from 2000 reflections
b = 16.958 (5) Åθ = 2–31°
c = 22.063 (5) ŵ = 0.08 mm1
β = 96.605 (5)°T = 293 K
V = 3114 (2) Å3Block, yellow
Z = 40.21 × 0.19 × 0.18 mm
Data collection top
Bruker Kappa APEXII
diffractometer
5537 independent reflections
Radiation source: fine-focus sealed tube3900 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
Detector resolution: 0 pixels mm-1θmax = 25.2°, θmin = 1.5°
ω and ϕ scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2020
Tmin = 0.967, Tmax = 0.974l = 1126
5537 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0636P)2 + 4.5987P]
where P = (Fo2 + 2Fc2)/3
5537 reflections(Δ/σ)max < 0.001
407 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.23 e Å3
0 constraints
Crystal data top
C39H38N2O4V = 3114 (2) Å3
Mr = 598.71Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.379 (5) ŵ = 0.08 mm1
b = 16.958 (5) ÅT = 293 K
c = 22.063 (5) Å0.21 × 0.19 × 0.18 mm
β = 96.605 (5)°
Data collection top
Bruker Kappa APEXII
diffractometer
5537 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3900 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.974Rint = 0.000
5537 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.183H-atom parameters constrained
S = 1.05Δρmax = 0.44 e Å3
5537 reflectionsΔρmin = 0.23 e Å3
407 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8861 (4)0.0366 (3)0.20452 (18)0.0536 (10)
H1A0.97290.03110.23660.080*
H1B0.91300.07620.17630.080*
H1C0.86810.01280.18360.080*
C20.6039 (4)0.06949 (18)0.18388 (14)0.0311 (7)
H2A0.56350.01810.17020.037*
H2B0.63760.09720.14900.037*
C30.4716 (4)0.11596 (16)0.20994 (13)0.0278 (7)
C40.4221 (4)0.06915 (17)0.26417 (14)0.0311 (7)
C50.5514 (4)0.02671 (17)0.30318 (14)0.0306 (7)
C60.7001 (4)0.00261 (19)0.27528 (15)0.0376 (8)
H6A0.78940.00240.30720.045*
H6B0.68250.04840.25580.045*
C70.3264 (4)0.13394 (17)0.16133 (14)0.0298 (7)
H70.22990.13190.18250.036*
C80.3503 (4)0.21966 (17)0.14482 (14)0.0317 (7)
H80.43560.22360.11810.038*
C90.2017 (4)0.26274 (19)0.11600 (17)0.0426 (9)
H9A0.11390.25460.14040.051*
H9B0.16970.24190.07550.051*
C100.2372 (5)0.3506 (2)0.11197 (19)0.0539 (10)
H10A0.14020.37840.09600.065*
H10B0.31740.35910.08430.065*
C110.2983 (5)0.3829 (2)0.17483 (19)0.0546 (10)
H11A0.32610.43810.17130.066*
H11B0.21390.37910.20130.066*
C120.4441 (5)0.33755 (18)0.20268 (18)0.0458 (9)
H12A0.53280.34590.17880.055*
H12B0.47620.35630.24380.055*
C130.5304 (4)0.20110 (17)0.23384 (14)0.0281 (7)
C140.7028 (4)0.22267 (18)0.21664 (16)0.0353 (8)
C150.8039 (4)0.24767 (19)0.27284 (16)0.0398 (8)
C160.7076 (4)0.24392 (19)0.32061 (15)0.0383 (8)
C170.5508 (4)0.21718 (17)0.30216 (14)0.0344 (8)
C180.4439 (5)0.2155 (2)0.34435 (16)0.0465 (9)
H180.33780.20050.33330.056*
C190.4977 (7)0.2370 (3)0.40524 (19)0.0670 (13)
H190.42630.23380.43450.080*
C200.6504 (7)0.2624 (3)0.42254 (19)0.0709 (14)
H200.68050.27600.46310.085*
C210.7631 (5)0.2684 (2)0.38039 (18)0.0554 (11)
C220.9208 (6)0.2975 (3)0.3887 (2)0.0740 (15)
H220.96310.31490.42720.089*
C231.0143 (6)0.3010 (3)0.3419 (3)0.0756 (15)
H231.11840.32060.34940.091*
C240.9574 (5)0.2758 (2)0.2829 (2)0.0583 (11)
H241.02220.27820.25140.070*
C510.5327 (4)0.01730 (18)0.36210 (15)0.0362 (8)
H510.43890.03820.37430.043*
C520.6398 (4)0.02137 (18)0.40965 (14)0.0341 (7)
C530.6721 (4)0.0136 (2)0.46697 (15)0.0427 (9)
H530.62440.06170.47410.051*
C540.7726 (4)0.0208 (2)0.51350 (16)0.0456 (9)
H540.79350.00450.55100.055*
C550.8418 (4)0.0929 (2)0.50414 (15)0.0399 (8)
C560.8081 (5)0.1299 (2)0.44809 (16)0.0469 (9)
H560.85260.17910.44180.056*
C570.7096 (4)0.0948 (2)0.40169 (15)0.0409 (8)
H570.68920.12040.36430.049*
C580.9814 (5)0.0940 (3)0.60414 (18)0.0623 (11)
H58A1.05080.12750.63050.093*
H58B0.88550.08330.62260.093*
H58C1.03570.04540.59770.093*
C710.2988 (4)0.07706 (18)0.10796 (14)0.0333 (7)
C720.2147 (4)0.0085 (2)0.11315 (17)0.0442 (9)
H720.17650.00320.15010.053*
C730.1844 (4)0.0451 (2)0.06395 (17)0.0473 (9)
H730.12770.09150.06840.057*
C740.2402 (5)0.0272 (2)0.00964 (16)0.0458 (9)
C750.3242 (5)0.0405 (2)0.00330 (17)0.0547 (10)
H750.36150.05220.03380.066*
C760.3539 (5)0.0915 (2)0.05173 (15)0.0474 (9)
H760.41250.13720.04680.057*
C770.1333 (6)0.1444 (3)0.0375 (2)0.0757 (14)
H77A0.12860.17200.07570.114*
H77B0.02640.13200.02900.114*
H77C0.18490.17700.00550.114*
N10.4057 (3)0.25330 (14)0.20408 (12)0.0333 (6)
N20.7402 (3)0.06004 (16)0.23053 (12)0.0338 (6)
O10.2835 (3)0.06822 (14)0.27573 (11)0.0433 (6)
O20.7389 (3)0.22681 (14)0.16484 (11)0.0443 (6)
O30.2198 (4)0.07557 (17)0.04099 (12)0.0668 (8)
O40.9405 (4)0.13225 (16)0.54736 (11)0.0606 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.037 (2)0.073 (3)0.052 (2)0.0131 (19)0.0120 (18)0.008 (2)
C20.0320 (17)0.0306 (16)0.0306 (17)0.0024 (13)0.0036 (14)0.0017 (13)
C30.0288 (16)0.0232 (15)0.0315 (17)0.0002 (12)0.0031 (13)0.0003 (12)
C40.0341 (19)0.0236 (15)0.0353 (18)0.0002 (13)0.0026 (14)0.0006 (13)
C50.0313 (17)0.0267 (16)0.0333 (18)0.0016 (13)0.0023 (14)0.0048 (13)
C60.0359 (18)0.0354 (18)0.0414 (19)0.0065 (14)0.0033 (15)0.0023 (15)
C70.0302 (17)0.0280 (16)0.0309 (17)0.0004 (13)0.0023 (13)0.0023 (13)
C80.0337 (17)0.0292 (16)0.0315 (17)0.0021 (13)0.0006 (14)0.0010 (13)
C90.044 (2)0.0373 (19)0.045 (2)0.0072 (15)0.0030 (17)0.0064 (16)
C100.055 (2)0.037 (2)0.069 (3)0.0105 (17)0.004 (2)0.0163 (19)
C110.062 (3)0.0266 (18)0.074 (3)0.0054 (17)0.001 (2)0.0048 (18)
C120.054 (2)0.0239 (17)0.058 (2)0.0002 (15)0.0003 (18)0.0017 (16)
C130.0309 (17)0.0245 (15)0.0288 (16)0.0019 (12)0.0037 (13)0.0003 (12)
C140.0384 (19)0.0261 (16)0.041 (2)0.0029 (13)0.0042 (16)0.0021 (14)
C150.039 (2)0.0330 (17)0.045 (2)0.0019 (15)0.0007 (16)0.0029 (15)
C160.050 (2)0.0287 (17)0.0345 (19)0.0069 (15)0.0043 (16)0.0051 (14)
C170.045 (2)0.0243 (15)0.0340 (18)0.0022 (14)0.0065 (15)0.0016 (13)
C180.058 (2)0.040 (2)0.044 (2)0.0043 (17)0.0172 (18)0.0053 (16)
C190.103 (4)0.060 (3)0.042 (2)0.009 (3)0.027 (3)0.012 (2)
C200.105 (4)0.069 (3)0.036 (2)0.015 (3)0.003 (3)0.021 (2)
C210.068 (3)0.047 (2)0.047 (2)0.014 (2)0.010 (2)0.0151 (18)
C220.071 (3)0.069 (3)0.072 (3)0.012 (2)0.033 (3)0.035 (3)
C230.048 (3)0.066 (3)0.106 (4)0.001 (2)0.022 (3)0.029 (3)
C240.041 (2)0.056 (2)0.075 (3)0.0083 (18)0.004 (2)0.012 (2)
C510.0338 (18)0.0321 (17)0.043 (2)0.0026 (14)0.0065 (15)0.0054 (15)
C520.0367 (18)0.0343 (17)0.0323 (18)0.0008 (14)0.0078 (14)0.0062 (14)
C530.056 (2)0.0338 (18)0.039 (2)0.0095 (16)0.0091 (17)0.0011 (15)
C540.059 (2)0.041 (2)0.036 (2)0.0049 (17)0.0020 (17)0.0025 (16)
C550.047 (2)0.0382 (18)0.0340 (19)0.0051 (16)0.0029 (16)0.0044 (15)
C560.063 (2)0.0333 (18)0.044 (2)0.0143 (17)0.0041 (18)0.0013 (16)
C570.052 (2)0.0372 (18)0.0331 (18)0.0032 (16)0.0031 (16)0.0021 (15)
C580.072 (3)0.064 (3)0.047 (2)0.010 (2)0.012 (2)0.002 (2)
C710.0312 (17)0.0299 (17)0.0378 (19)0.0024 (13)0.0006 (14)0.0020 (14)
C720.047 (2)0.0404 (19)0.047 (2)0.0053 (16)0.0103 (17)0.0066 (16)
C730.051 (2)0.0358 (19)0.056 (2)0.0126 (16)0.0071 (19)0.0051 (17)
C740.050 (2)0.049 (2)0.038 (2)0.0063 (17)0.0061 (17)0.0034 (17)
C750.074 (3)0.055 (2)0.036 (2)0.012 (2)0.010 (2)0.0026 (17)
C760.063 (2)0.044 (2)0.035 (2)0.0118 (18)0.0069 (18)0.0020 (16)
C770.105 (4)0.063 (3)0.062 (3)0.034 (3)0.018 (3)0.029 (2)
N10.0384 (15)0.0228 (13)0.0376 (15)0.0010 (11)0.0005 (12)0.0008 (11)
N20.0286 (14)0.0388 (15)0.0342 (15)0.0017 (11)0.0047 (12)0.0030 (12)
O10.0317 (14)0.0499 (15)0.0494 (15)0.0019 (11)0.0092 (11)0.0153 (11)
O20.0479 (15)0.0467 (14)0.0401 (15)0.0058 (11)0.0128 (12)0.0073 (11)
O30.092 (2)0.0649 (19)0.0465 (16)0.0261 (16)0.0200 (15)0.0175 (14)
O40.079 (2)0.0550 (16)0.0431 (15)0.0232 (14)0.0124 (14)0.0004 (13)
Geometric parameters (Å, º) top
C1—N21.464 (4)C17—C181.365 (5)
C1—H1A0.9600C18—C191.415 (6)
C1—H1B0.9600C18—H180.9300
C1—H1C0.9600C19—C201.362 (7)
C2—N21.456 (4)C19—H190.9300
C2—C31.526 (4)C20—C211.403 (7)
C2—H2A0.9700C20—H200.9300
C2—H2B0.9700C21—C221.403 (7)
C3—C41.533 (4)C22—C231.367 (7)
C3—C71.557 (4)C22—H220.9300
C3—C131.595 (4)C23—C241.401 (6)
C4—O11.217 (4)C23—H230.9300
C4—C51.489 (4)C24—H240.9300
C5—C511.337 (4)C51—C521.456 (4)
C5—C61.509 (5)C51—H510.9300
C6—N21.453 (4)C52—C531.395 (5)
C6—H6A0.9700C52—C571.396 (5)
C6—H6B0.9700C53—C541.380 (5)
C7—C81.517 (4)C53—H530.9300
C7—C711.519 (4)C54—C551.379 (5)
C7—H70.9800C54—H540.9300
C8—N11.453 (4)C55—O41.363 (4)
C8—C91.518 (4)C55—C561.386 (5)
C8—H80.9800C56—C571.375 (5)
C9—C101.524 (5)C56—H560.9300
C9—H9A0.9700C57—H570.9300
C9—H9B0.9700C58—O41.417 (4)
C10—C111.524 (5)C58—H58A0.9600
C10—H10A0.9700C58—H58B0.9600
C10—H10B0.9700C58—H58C0.9600
C11—C121.512 (5)C71—C721.372 (5)
C11—H11A0.9700C71—C761.394 (5)
C11—H11B0.9700C72—C731.415 (5)
C12—N11.466 (4)C72—H720.9300
C12—H12A0.9700C73—C741.370 (5)
C12—H12B0.9700C73—H730.9300
C13—N11.466 (4)C74—C751.362 (5)
C13—C171.522 (4)C74—O31.381 (4)
C13—C141.579 (5)C75—C761.375 (5)
C14—O21.217 (4)C75—H750.9300
C14—C151.481 (5)C76—H760.9300
C15—C241.366 (5)C77—O31.381 (5)
C15—C161.400 (5)C77—H77A0.9600
C16—C171.405 (5)C77—H77B0.9600
C16—C211.410 (5)C77—H77C0.9600
N2—C1—H1A109.5C18—C17—C13131.6 (3)
N2—C1—H1B109.5C16—C17—C13109.9 (3)
H1A—C1—H1B109.5C17—C18—C19118.7 (4)
N2—C1—H1C109.5C17—C18—H18120.7
H1A—C1—H1C109.5C19—C18—H18120.7
H1B—C1—H1C109.5C20—C19—C18122.3 (4)
N2—C2—C3109.6 (2)C20—C19—H19118.9
N2—C2—H2A109.8C18—C19—H19118.9
C3—C2—H2A109.8C19—C20—C21121.3 (4)
N2—C2—H2B109.8C19—C20—H20119.4
C3—C2—H2B109.8C21—C20—H20119.4
H2A—C2—H2B108.2C22—C21—C20129.4 (4)
C2—C3—C4107.5 (2)C22—C21—C16115.4 (4)
C2—C3—C7112.7 (2)C20—C21—C16115.1 (4)
C4—C3—C7112.3 (2)C23—C22—C21122.0 (4)
C2—C3—C13112.5 (2)C23—C22—H22119.0
C4—C3—C13108.2 (2)C21—C22—H22119.0
C7—C3—C13103.7 (2)C22—C23—C24121.7 (4)
O1—C4—C5121.4 (3)C22—C23—H23119.2
O1—C4—C3121.4 (3)C24—C23—H23119.2
C5—C4—C3117.2 (3)C15—C24—C23118.1 (4)
C51—C5—C4117.4 (3)C15—C24—H24121.0
C51—C5—C6124.0 (3)C23—C24—H24121.0
C4—C5—C6118.4 (3)C5—C51—C52128.6 (3)
N2—C6—C5111.2 (3)C5—C51—H51115.7
N2—C6—H6A109.4C52—C51—H51115.7
C5—C6—H6A109.4C53—C52—C57116.9 (3)
N2—C6—H6B109.4C53—C52—C51120.1 (3)
C5—C6—H6B109.4C57—C52—C51123.0 (3)
H6A—C6—H6B108.0C54—C53—C52122.2 (3)
C8—C7—C71115.8 (3)C54—C53—H53118.9
C8—C7—C3103.8 (2)C52—C53—H53118.9
C71—C7—C3116.5 (2)C55—C54—C53119.6 (3)
C8—C7—H7106.7C55—C54—H54120.2
C71—C7—H7106.7C53—C54—H54120.2
C3—C7—H7106.7O4—C55—C54124.1 (3)
N1—C8—C7101.4 (2)O4—C55—C56116.6 (3)
N1—C8—C9110.5 (3)C54—C55—C56119.3 (3)
C7—C8—C9115.9 (3)C57—C56—C55120.7 (3)
N1—C8—H8109.6C57—C56—H56119.6
C7—C8—H8109.6C55—C56—H56119.6
C9—C8—H8109.6C56—C57—C52121.2 (3)
C8—C9—C10109.8 (3)C56—C57—H57119.4
C8—C9—H9A109.7C52—C57—H57119.4
C10—C9—H9A109.7O4—C58—H58A109.5
C8—C9—H9B109.7O4—C58—H58B109.5
C10—C9—H9B109.7H58A—C58—H58B109.5
H9A—C9—H9B108.2O4—C58—H58C109.5
C9—C10—C11110.2 (3)H58A—C58—H58C109.5
C9—C10—H10A109.6H58B—C58—H58C109.5
C11—C10—H10A109.6C72—C71—C76116.7 (3)
C9—C10—H10B109.6C72—C71—C7120.5 (3)
C11—C10—H10B109.6C76—C71—C7122.8 (3)
H10A—C10—H10B108.1C71—C72—C73121.9 (3)
C12—C11—C10111.0 (3)C71—C72—H72119.0
C12—C11—H11A109.4C73—C72—H72119.0
C10—C11—H11A109.4C74—C73—C72118.6 (3)
C12—C11—H11B109.4C74—C73—H73120.7
C10—C11—H11B109.4C72—C73—H73120.7
H11A—C11—H11B108.0C75—C74—C73120.6 (3)
N1—C12—C11109.6 (3)C75—C74—O3115.8 (3)
N1—C12—H12A109.8C73—C74—O3123.6 (3)
C11—C12—H12A109.8C74—C75—C76120.0 (4)
N1—C12—H12B109.8C74—C75—H75120.0
C11—C12—H12B109.8C76—C75—H75120.0
H12A—C12—H12B108.2C75—C76—C71122.2 (3)
N1—C13—C17109.2 (2)C75—C76—H76118.9
N1—C13—C14112.2 (2)C71—C76—H76118.9
C17—C13—C14101.2 (2)O3—C77—H77A109.5
N1—C13—C3102.8 (2)O3—C77—H77B109.5
C17—C13—C3119.0 (2)H77A—C77—H77B109.5
C14—C13—C3112.7 (2)O3—C77—H77C109.5
O2—C14—C15126.1 (3)H77A—C77—H77C109.5
O2—C14—C13124.9 (3)H77B—C77—H77C109.5
C15—C14—C13108.4 (3)C8—N1—C13107.7 (2)
C24—C15—C16120.5 (3)C8—N1—C12114.3 (3)
C24—C15—C14132.3 (4)C13—N1—C12116.9 (3)
C16—C15—C14107.1 (3)C6—N2—C2109.3 (2)
C15—C16—C17113.4 (3)C6—N2—C1110.7 (3)
C15—C16—C21122.3 (3)C2—N2—C1112.0 (3)
C17—C16—C21124.2 (3)C77—O3—C74118.3 (3)
C18—C17—C16118.3 (3)C55—O4—C58117.4 (3)
N2—C2—C3—C460.0 (3)C13—C17—C18—C19177.2 (3)
N2—C2—C3—C7175.8 (2)C17—C18—C19—C202.8 (6)
N2—C2—C3—C1358.9 (3)C18—C19—C20—C210.1 (7)
C2—C3—C4—O1145.1 (3)C19—C20—C21—C22175.7 (4)
C7—C3—C4—O120.6 (4)C19—C20—C21—C162.1 (6)
C13—C3—C4—O193.2 (3)C15—C16—C21—C220.6 (5)
C2—C3—C4—C536.6 (3)C17—C16—C21—C22176.4 (3)
C7—C3—C4—C5161.1 (3)C15—C16—C21—C20178.6 (3)
C13—C3—C4—C585.1 (3)C17—C16—C21—C201.7 (5)
O1—C4—C5—C5128.4 (4)C20—C21—C22—C23178.3 (5)
C3—C4—C5—C51149.9 (3)C16—C21—C22—C230.6 (6)
O1—C4—C5—C6156.2 (3)C21—C22—C23—C240.1 (7)
C3—C4—C5—C625.5 (4)C16—C15—C24—C230.3 (6)
C51—C5—C6—N2141.0 (3)C14—C15—C24—C23174.5 (4)
C4—C5—C6—N234.1 (4)C22—C23—C24—C150.3 (7)
C2—C3—C7—C8102.3 (3)C4—C5—C51—C52179.9 (3)
C4—C3—C7—C8136.2 (3)C6—C5—C51—C524.8 (5)
C13—C3—C7—C819.6 (3)C5—C51—C52—C53136.0 (4)
C2—C3—C7—C7126.3 (4)C5—C51—C52—C5746.4 (5)
C4—C3—C7—C7195.3 (3)C57—C52—C53—C542.1 (5)
C13—C3—C7—C71148.2 (3)C51—C52—C53—C54179.9 (3)
C71—C7—C8—N1168.6 (3)C52—C53—C54—C551.3 (6)
C3—C7—C8—N139.6 (3)C53—C54—C55—O4179.0 (3)
C71—C7—C8—C971.8 (4)C53—C54—C55—C560.4 (6)
C3—C7—C8—C9159.2 (3)O4—C55—C56—C57180.0 (3)
N1—C8—C9—C1055.9 (4)C54—C55—C56—C571.3 (6)
C7—C8—C9—C10170.5 (3)C55—C56—C57—C520.5 (6)
C8—C9—C10—C1155.6 (4)C53—C52—C57—C561.2 (5)
C9—C10—C11—C1256.0 (4)C51—C52—C57—C56178.9 (3)
C10—C11—C12—N155.1 (4)C8—C7—C71—C72153.6 (3)
C2—C3—C13—N1129.2 (3)C3—C7—C71—C7283.9 (4)
C4—C3—C13—N1112.2 (3)C8—C7—C71—C7625.4 (4)
C7—C3—C13—N17.2 (3)C3—C7—C71—C7697.1 (4)
C2—C3—C13—C17110.0 (3)C76—C71—C72—C730.2 (5)
C4—C3—C13—C178.5 (4)C7—C71—C72—C73178.8 (3)
C7—C3—C13—C17127.9 (3)C71—C72—C73—C740.4 (6)
C2—C3—C13—C148.2 (3)C72—C73—C74—C750.5 (6)
C4—C3—C13—C14126.8 (3)C72—C73—C74—O3178.9 (4)
C7—C3—C13—C14113.8 (3)C73—C74—C75—C760.1 (6)
N1—C13—C14—O255.5 (4)O3—C74—C75—C76178.5 (4)
C17—C13—C14—O2171.8 (3)C74—C75—C76—C710.8 (6)
C3—C13—C14—O260.0 (4)C72—C71—C76—C750.8 (5)
N1—C13—C14—C15116.5 (3)C7—C71—C76—C75178.2 (3)
C17—C13—C14—C150.3 (3)C7—C8—N1—C1346.8 (3)
C3—C13—C14—C15128.0 (3)C9—C8—N1—C13170.2 (3)
O2—C14—C15—C244.2 (6)C7—C8—N1—C12178.5 (3)
C13—C14—C15—C24176.1 (4)C9—C8—N1—C1258.1 (4)
O2—C14—C15—C16171.1 (3)C17—C13—N1—C8160.8 (2)
C13—C14—C15—C160.8 (3)C14—C13—N1—C887.8 (3)
C24—C15—C16—C17177.1 (3)C3—C13—N1—C833.5 (3)
C14—C15—C16—C171.1 (4)C17—C13—N1—C1269.0 (3)
C24—C15—C16—C210.1 (5)C14—C13—N1—C1242.4 (4)
C14—C15—C16—C21176.1 (3)C3—C13—N1—C12163.8 (3)
C15—C16—C17—C18176.3 (3)C11—C12—N1—C857.3 (4)
C21—C16—C17—C180.8 (5)C11—C12—N1—C13175.7 (3)
C15—C16—C17—C131.0 (4)C5—C6—N2—C257.1 (3)
C21—C16—C17—C13176.2 (3)C5—C6—N2—C1179.1 (3)
N1—C13—C17—C1856.5 (4)C3—C2—N2—C673.3 (3)
C14—C13—C17—C18174.9 (3)C3—C2—N2—C1163.6 (3)
C3—C13—C17—C1861.0 (5)C75—C74—O3—C77179.0 (4)
N1—C13—C17—C16118.0 (3)C73—C74—O3—C772.5 (6)
C14—C13—C17—C160.4 (3)C54—C55—O4—C583.9 (6)
C3—C13—C17—C16124.5 (3)C56—C55—O4—C58177.6 (4)
C16—C17—C18—C193.0 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the benzene ring (C52–C57) in the phenylmethylidene group.
D—H···AD—HH···AD···AD—H···A
C77—H77A···O2i0.962.543.418 (5)152
C58—H58C···Cg1ii0.962.933.822 (5)156
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC39H38N2O4
Mr598.71
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.379 (5), 16.958 (5), 22.063 (5)
β (°) 96.605 (5)
V3)3114 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.21 × 0.19 × 0.18
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.967, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
5537, 5537, 3900
Rint0.000
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.183, 1.05
No. of reflections5537
No. of parameters407
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.23

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the benzene ring (C52–C57) in the phenylmethylidene group.
D—H···AD—HH···AD···AD—H···A
C77—H77A···O2i0.962.543.418 (5)152
C58—H58C···Cg1ii0.962.933.822 (5)156
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z+1.
 

Acknowledgements

JS and RAN thank the management of Madura College for their encouragement and support. RRK thanks the DST, New Delhi, for funds under the fast-track scheme (grant No. SR/FT/CS-073/2009).

References

First citationAsano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645–1680.  Web of Science CrossRef CAS
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science
First citationGilchrist, T. L. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 2491–2515.  Web of Science CrossRef
First citationKatritzky, A. R., Qiu, G., Yang, B. & He, H.-Y. (1999). J. Org. Chem. 64, 7618–7621.  Web of Science CrossRef CAS
First citationOslund, R. C., Cermak, N. & Gelb, M. H. (2008). J. Med. Chem. 51, 4708–4714.  Web of Science CrossRef PubMed CAS
First citationSarkunam, K. & Nallu, M. (2005). J. Heterocycl. Chem. 42, 5–11.  CrossRef CAS
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSingh, G. S. & Mmatli, E. E. (2011). Eur. J. Med. Chem. 46, 5237–5257.  Web of Science CrossRef CAS PubMed
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationSuresh, J., Vishnupriya, R., Kumar, R. R., Sivakumar, S. & Lakshman, P. L. N. (2011). Acta Cryst. E67, o3210.  Web of Science CSD CrossRef IUCr Journals
First citationTielmann, P. & Hoenke, C. (2006). Tetrahedron Lett. 47, 261–265.  Web of Science CrossRef CAS
First citationVemula, V. R., Vurukonda, S. & Bairi, C. K. (2011). Int. J. Pharm. Sci. Rev. Res. 11, 159–163.  CAS
First citationWeidner, C. H., Wadsworth, D. H., Bender, S. L. & Beltman, D. J. (1989). J. Org. Chem. 54, 3660–3664.  CrossRef CAS Web of Science

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o256-o257
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds