organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Orphenadrinium di­hydrogen citrate

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cDepartment of Chemistry, G. Madegowda Institute of Technology, Bharathinagara 571 442, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 11 January 2013; accepted 12 January 2013; online 19 January 2013)

In the title salt, C18H24NO+·C6H7O7, the dihedral angle between the benzene rings in the cation is 74.2 (5)°. In the crystal, anion–anion O—H⋯O hydrogen bonds and weak O—H⋯O inter­actions form infinite chains along [100]. Between these chains, cation–anion N—H—O hydrogen bonds are observed, forming an alternate pattern of cation and anion layers and leading to a two-dimensional network parallel to (100).

Related literature

For a clinical and pharmacological review of the efficacy of orphenadrine, see: Hunskaar & Donnel (1991[Hunskaar, S. & Donnel, D. (1991). J. Int. Med. Res. 19, 71-87.]). For related structures, see: Fun et al. (2010[Fun, H.-K., Hemamalini, M., Siddaraju, B. P., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o682-o683.]); Glaser et al. (1992[Glaser, R., Donnel, D. & Maartmann-Moe, K. (1992). J. Pharm. Sci. 81, 858-862.]); Jasinski et al. (2011[Jasinski, J. P., Butcher, R. J., Siddaraju, B. P., Yathirajan, H. S. & Narayana, B. (2011). Acta Cryst. E67, o190-o191.]). For standard bond lengths, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H24NO+·C6H7O7

  • Mr = 461.50

  • Triclinic, [P \overline 1]

  • a = 9.9515 (8) Å

  • b = 10.7382 (9) Å

  • c = 12.625 (1) Å

  • α = 98.863 (7)°

  • β = 104.391 (7)°

  • γ = 111.498 (8)°

  • V = 1170.0 (2) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.82 mm−1

  • T = 173 K

  • 0.32 × 0.28 × 0.14 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.854, Tmax = 1.000

  • 7161 measured reflections

  • 4471 independent reflections

  • 3795 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.161

  • S = 1.03

  • 4471 reflections

  • 305 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O6i 0.91 1.83 2.725 (2) 167
O4—H4A⋯O8ii 0.82 2.30 3.067 (2) 156
O7—H7A⋯O5ii 0.82 1.81 2.634 (2) 178
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Orphenadrine (systematic IUPAC name: N,N-dimethyl-2-[(2-methylphenyl) phenyl-methoxy]ethanamine) is an anticholinergic drug of the ethanolamine antihistamine class with prominent CNS and peripheral actions used to treat painful muscle spasm and other symptoms and conditions as well as some aspects of Parkinson's disease. It is closely related to diphenhydramine and therefore related to other drugs used for Parkinson's disease like benztropine and trihexyphenidyl and is also structurally related to nefopam, a centrally acting yet non-opioid analgesic. Clinical and pharmacological review of the efficacy of orphenadrine and its combination with paracetamol has been described (Hunskaar & Donnel, 1991). Orphenadrine citrate is a skeletal muscle relaxant. It acts in the central nervous system to produce its muscle relaxant effects. The orphenadrine salt used for Parkinsonism is the hydrochloride, whereas the muscle relaxant tablet is the citrate. The solid-state structure of orphenadrine hydrochloride and conformational comparisons with diphenhydramine hydrochloride and nefopam hydrochloride is reported (Glaser et al., 1992). The crystal structure of orphenadrinium picrate picric acid (Fun et al., 2010) and orphenadrinium picrate (Jasinski et al., 2011) is recently reported. In view of the importance of orphenadrine, this paper reports the crystal structure of the title salt, (I), C18H24NO+. C6H7O7-.

In the title salt, C18H24NO+. C6H7O7-, one cation-anion pair crystallizes in the asymmetric unit (Fig. 1). The cation contains a positively charged N atom with quaternary character. The anion consists of a dihydrogen citrate counterion. The dihedral angle between the two benzene rings in the cation is 74.2 (5)°. Bond lengths are in normal ranges (Allen et al., 1987). In the crystal anion-anion O—H···O hydrogen bonds and weak O—H···O intermolecular interactions form infinite chains along [100] (Table 1). In between these chains cation-anion N—H—O hydrogen bonds are observed forming an alternate pattern of cation and anion layers forming a two-dimensional network providing additional crystal stability (Fig. 2).

Related literature top

For a clinical and pharmacological review of the efficacy of orphenadrine, see: Hunskaar & Donnel (1991). For related structures, see: Fun et al. (2010); Glaser et al. (1992); Jasinski et al. (2011). For standard bond lengths, see Allen et al. (1987).

Experimental top

The title compound was obtained as a gift sample from R. L. Fine Chem, Bengaluru. The compound was recrystallized from methanol by slow evaporation (m. p.: 410 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH), 0.97Å (CH2), 0.96Å (CH3) 0.82Å (OH) or 0.91Å (NH). Isotropic displacement parameters for these atoms were set to 1.18-1.21 (CH, CH2, NH), 1.50 (CH3) or 1.48-1.50 (OH) times Ueq of the parent atom. The highest peak (0.67 e/A3) is located 0.87 Å from H4.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title salt showing the atom labeling scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the c axis. Dashed lines indicate O—H···O anion-anion hydrogen bonds and weak O—H···O intemolecular interactions in concert with cation-anion N—H···O hydrogen bonds forming an infinite two-dimensional network long [100]. The hydrogen atoms not involved in hydrogen bonding have been removed for clarity.
N,N-Dimethyl-2-[(2-methylphenyl)(phenyl)methoxy]ethanaminium 2-carboxylatomethyl-2-hydroxybutanedioic acid top
Crystal data top
C18H24NO+·C6H7O7Z = 2
Mr = 461.50F(000) = 492
Triclinic, P1Dx = 1.310 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 9.9515 (8) ÅCell parameters from 3067 reflections
b = 10.7382 (9) Åθ = 5.1–72.4°
c = 12.625 (1) ŵ = 0.82 mm1
α = 98.863 (7)°T = 173 K
β = 104.391 (7)°Chunk, colorless
γ = 111.498 (8)°0.32 × 0.28 × 0.14 mm
V = 1170.0 (2) Å3
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
4471 independent reflections
Radiation source: Enhance (Cu) X-ray Source3795 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 16.0416 pixels mm-1θmax = 72.5°, θmin = 5.1°
ω scansh = 1112
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
k = 139
Tmin = 0.854, Tmax = 1.000l = 1115
7161 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0849P)2 + 0.4888P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4471 reflectionsΔρmax = 0.67 e Å3
305 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0019 (7)
Crystal data top
C18H24NO+·C6H7O7γ = 111.498 (8)°
Mr = 461.50V = 1170.0 (2) Å3
Triclinic, P1Z = 2
a = 9.9515 (8) ÅCu Kα radiation
b = 10.7382 (9) ŵ = 0.82 mm1
c = 12.625 (1) ÅT = 173 K
α = 98.863 (7)°0.32 × 0.28 × 0.14 mm
β = 104.391 (7)°
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
4471 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
3795 reflections with I > 2σ(I)
Tmin = 0.854, Tmax = 1.000Rint = 0.029
7161 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.03Δρmax = 0.67 e Å3
4471 reflectionsΔρmin = 0.27 e Å3
305 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.37357 (15)0.09276 (13)0.64965 (11)0.0291 (3)
N10.22933 (17)0.11367 (16)0.42955 (13)0.0264 (3)
H10.28510.13020.49020.032*
C10.3807 (2)0.16847 (19)0.75611 (16)0.0308 (4)
H1A0.38770.26040.75020.037*
C20.5265 (2)0.1874 (2)0.84411 (16)0.0332 (4)
C30.5437 (3)0.0782 (3)0.8789 (2)0.0501 (6)
H30.46370.01040.85030.060*
C40.6844 (3)0.1009 (3)0.9589 (2)0.0575 (7)
H40.69810.02740.98290.069*
C50.7998 (3)0.2326 (3)1.00022 (19)0.0528 (6)
H50.89140.24791.05380.063*
C60.7842 (3)0.3411 (3)0.9652 (2)0.0582 (7)
H60.86500.42920.99310.070*
C70.6485 (3)0.3199 (3)0.8885 (2)0.0491 (6)
H70.63710.39460.86540.059*
C80.2379 (2)0.0950 (2)0.78589 (16)0.0328 (4)
C90.1917 (3)0.1694 (3)0.85948 (19)0.0458 (6)
C100.0579 (3)0.0950 (4)0.8824 (2)0.0572 (7)
H100.02550.14280.93080.069*
C110.0264 (3)0.0451 (4)0.8358 (2)0.0590 (8)
H110.11470.09100.85240.071*
C120.0196 (3)0.1178 (3)0.7648 (2)0.0498 (6)
H120.03710.21310.73300.060*
C130.1520 (2)0.0476 (2)0.74054 (18)0.0366 (5)
H130.18360.09740.69290.044*
C140.2779 (4)0.3211 (3)0.9121 (3)0.0717 (9)
H14A0.27680.36890.85380.107*
H14B0.38170.34170.95410.107*
H14C0.23100.35110.96260.107*
C150.2805 (3)0.1145 (2)0.55634 (17)0.0366 (5)
H15A0.31630.21330.56250.044*
H15B0.17550.07900.55590.044*
C160.2882 (2)0.0405 (2)0.44869 (17)0.0345 (4)
H16A0.22930.05990.38500.041*
H16B0.39380.07740.45060.041*
C170.2536 (2)0.1766 (2)0.32629 (17)0.0358 (5)
H17A0.36040.13480.33480.054*
H17B0.19580.16070.26080.054*
H17C0.22030.27480.31670.054*
C180.0653 (2)0.1824 (2)0.41988 (19)0.0390 (5)
H18A0.00460.16060.36010.059*
H18B0.05290.14970.49040.059*
H18C0.03270.28130.40290.059*
O20.96502 (19)0.50720 (18)0.23817 (14)0.0532 (5)
O30.95333 (16)0.41174 (16)0.38238 (13)0.0393 (4)
H3A1.04440.46540.40970.059*
O40.71300 (17)0.54785 (13)0.37166 (12)0.0349 (3)
H4A0.71260.57070.43660.052*
O50.74662 (15)0.41508 (14)0.53041 (11)0.0331 (3)
O60.63438 (16)0.20588 (14)0.40442 (12)0.0346 (3)
O70.3624 (2)0.49402 (19)0.31971 (15)0.0492 (4)
H7A0.32660.52180.36520.074*
O80.37201 (18)0.34828 (16)0.42549 (14)0.0416 (4)
C190.3967 (2)0.3938 (2)0.34734 (17)0.0321 (4)
C200.4731 (2)0.3428 (2)0.27215 (17)0.0334 (4)
H20A0.45370.37120.20270.040*
H20B0.42920.24190.25180.040*
C210.6483 (2)0.40111 (19)0.33243 (16)0.0293 (4)
C220.6792 (2)0.33436 (19)0.43087 (16)0.0280 (4)
C230.7190 (2)0.3641 (2)0.24405 (17)0.0322 (4)
H23A0.68730.26430.22330.039*
H23B0.67990.38930.17620.039*
C240.8912 (2)0.4362 (2)0.28604 (17)0.0342 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0349 (7)0.0325 (7)0.0252 (7)0.0184 (6)0.0105 (5)0.0109 (5)
N10.0263 (8)0.0323 (8)0.0251 (7)0.0157 (6)0.0095 (6)0.0101 (6)
C10.0404 (11)0.0278 (9)0.0283 (9)0.0180 (8)0.0118 (8)0.0090 (7)
C20.0361 (10)0.0412 (11)0.0253 (9)0.0174 (9)0.0129 (8)0.0102 (8)
C30.0409 (12)0.0553 (14)0.0614 (15)0.0224 (11)0.0167 (11)0.0313 (12)
C40.0664 (17)0.0791 (19)0.0546 (15)0.0466 (16)0.0286 (13)0.0389 (14)
C50.0428 (13)0.0832 (19)0.0266 (10)0.0263 (13)0.0084 (9)0.0053 (11)
C60.0465 (14)0.0612 (16)0.0493 (14)0.0168 (12)0.0071 (11)0.0025 (12)
C70.0484 (13)0.0443 (12)0.0469 (13)0.0179 (11)0.0130 (11)0.0005 (10)
C80.0368 (10)0.0464 (11)0.0268 (9)0.0272 (9)0.0116 (8)0.0150 (8)
C90.0537 (14)0.0657 (15)0.0340 (11)0.0427 (12)0.0143 (10)0.0136 (10)
C100.0616 (16)0.104 (2)0.0393 (12)0.0599 (17)0.0272 (12)0.0284 (14)
C110.0410 (13)0.102 (2)0.0510 (15)0.0371 (15)0.0231 (12)0.0378 (16)
C120.0377 (12)0.0678 (16)0.0487 (13)0.0217 (11)0.0155 (10)0.0285 (12)
C130.0363 (10)0.0476 (12)0.0336 (10)0.0219 (9)0.0132 (8)0.0190 (9)
C140.096 (2)0.074 (2)0.0606 (17)0.0541 (19)0.0309 (17)0.0065 (15)
C150.0526 (12)0.0351 (10)0.0280 (10)0.0257 (10)0.0091 (9)0.0133 (8)
C160.0440 (11)0.0340 (10)0.0281 (9)0.0177 (9)0.0105 (8)0.0149 (8)
C170.0399 (11)0.0468 (12)0.0285 (10)0.0242 (9)0.0151 (8)0.0102 (8)
C180.0274 (10)0.0494 (12)0.0383 (11)0.0145 (9)0.0120 (8)0.0093 (9)
O20.0459 (9)0.0542 (10)0.0379 (9)0.0012 (8)0.0148 (7)0.0088 (7)
O30.0296 (7)0.0457 (8)0.0417 (8)0.0149 (6)0.0121 (6)0.0121 (7)
O40.0454 (8)0.0265 (7)0.0360 (7)0.0169 (6)0.0155 (6)0.0095 (6)
O50.0300 (7)0.0403 (8)0.0317 (7)0.0180 (6)0.0104 (6)0.0092 (6)
O60.0375 (8)0.0299 (7)0.0388 (8)0.0170 (6)0.0096 (6)0.0137 (6)
O70.0714 (11)0.0648 (11)0.0521 (10)0.0544 (10)0.0361 (9)0.0359 (9)
O80.0487 (9)0.0396 (8)0.0515 (9)0.0239 (7)0.0257 (7)0.0246 (7)
C190.0279 (9)0.0339 (10)0.0366 (10)0.0155 (8)0.0083 (8)0.0134 (8)
C200.0347 (10)0.0382 (10)0.0322 (10)0.0212 (9)0.0088 (8)0.0121 (8)
C210.0321 (10)0.0267 (9)0.0329 (10)0.0151 (8)0.0114 (8)0.0108 (7)
C220.0249 (9)0.0325 (9)0.0323 (10)0.0159 (8)0.0108 (7)0.0122 (8)
C230.0347 (10)0.0313 (9)0.0324 (10)0.0156 (8)0.0120 (8)0.0083 (8)
C240.0368 (10)0.0307 (9)0.0313 (10)0.0116 (8)0.0133 (8)0.0016 (8)
Geometric parameters (Å, º) top
O1—C151.415 (2)C14—H14B0.9600
O1—C11.431 (2)C14—H14C0.9600
N1—C181.488 (2)C15—C161.500 (3)
N1—C171.490 (2)C15—H15A0.9700
N1—C161.496 (2)C15—H15B0.9700
N1—H10.9100C16—H16A0.9700
C1—C21.514 (3)C16—H16B0.9700
C1—C81.522 (3)C17—H17A0.9600
C1—H1A0.9800C17—H17B0.9600
C2—C31.366 (3)C17—H17C0.9600
C2—C71.400 (3)C18—H18A0.9600
C3—C41.418 (4)C18—H18B0.9600
C3—H30.9300C18—H18C0.9600
C4—C51.369 (4)O2—C241.200 (3)
C4—H40.9300O3—C241.332 (3)
C5—C61.354 (4)O3—H3A0.8200
C5—H50.9300O4—C211.414 (2)
C6—C71.367 (4)O4—H4A0.8200
C6—H60.9300O5—C221.265 (2)
C7—H70.9300O6—C221.244 (2)
C8—C131.389 (3)O7—C191.313 (2)
C8—C91.403 (3)O7—H7A0.8200
C9—C101.406 (4)O8—C191.206 (2)
C9—C141.480 (4)C19—C201.511 (3)
C10—C111.368 (4)C20—C211.550 (3)
C10—H100.9300C20—H20A0.9700
C11—C121.368 (4)C20—H20B0.9700
C11—H110.9300C21—C231.535 (3)
C12—C131.394 (3)C21—C221.549 (3)
C12—H120.9300C23—C241.505 (3)
C13—H130.9300C23—H23A0.9700
C14—H14A0.9600C23—H23B0.9700
C15—O1—C1112.03 (14)O1—C15—C16108.73 (16)
C18—N1—C17109.99 (15)O1—C15—H15A109.9
C18—N1—C16113.44 (15)C16—C15—H15A109.9
C17—N1—C16109.95 (15)O1—C15—H15B109.9
C18—N1—H1107.8C16—C15—H15B109.9
C17—N1—H1107.8H15A—C15—H15B108.3
C16—N1—H1107.8N1—C16—C15113.81 (16)
O1—C1—C2107.13 (15)N1—C16—H16A108.8
O1—C1—C8111.31 (16)C15—C16—H16A108.8
C2—C1—C8112.95 (15)N1—C16—H16B108.8
O1—C1—H1A108.4C15—C16—H16B108.8
C2—C1—H1A108.4H16A—C16—H16B107.7
C8—C1—H1A108.4N1—C17—H17A109.5
C3—C2—C7119.2 (2)N1—C17—H17B109.5
C3—C2—C1121.8 (2)H17A—C17—H17B109.5
C7—C2—C1119.03 (19)N1—C17—H17C109.5
C2—C3—C4119.5 (2)H17A—C17—H17C109.5
C2—C3—H3120.2H17B—C17—H17C109.5
C4—C3—H3120.2N1—C18—H18A109.5
C5—C4—C3119.0 (2)N1—C18—H18B109.5
C5—C4—H4120.5H18A—C18—H18B109.5
C3—C4—H4120.5N1—C18—H18C109.5
C6—C5—C4121.8 (2)H18A—C18—H18C109.5
C6—C5—H5119.1H18B—C18—H18C109.5
C4—C5—H5119.1C24—O3—H3A109.5
C5—C6—C7119.4 (3)C21—O4—H4A109.5
C5—C6—H6120.3C19—O7—H7A109.5
C7—C6—H6120.3O8—C19—O7123.69 (19)
C6—C7—C2121.1 (2)O8—C19—C20123.37 (17)
C6—C7—H7119.5O7—C19—C20112.93 (17)
C2—C7—H7119.5C19—C20—C21111.50 (16)
C13—C8—C9119.1 (2)C19—C20—H20A109.3
C13—C8—C1120.07 (17)C21—C20—H20A109.3
C9—C8—C1120.8 (2)C19—C20—H20B109.3
C8—C9—C10117.7 (2)C21—C20—H20B109.3
C8—C9—C14122.4 (2)H20A—C20—H20B108.0
C10—C9—C14119.9 (2)O4—C21—C23107.28 (15)
C11—C10—C9122.3 (2)O4—C21—C22111.65 (15)
C11—C10—H10118.8C23—C21—C22110.56 (15)
C9—C10—H10118.8O4—C21—C20110.38 (14)
C12—C11—C10119.9 (2)C23—C21—C20107.75 (16)
C12—C11—H11120.1C22—C21—C20109.14 (15)
C10—C11—H11120.1O6—C22—O5126.11 (17)
C11—C12—C13119.4 (3)O6—C22—C21116.70 (16)
C11—C12—H12120.3O5—C22—C21117.19 (16)
C13—C12—H12120.3C24—C23—C21113.05 (16)
C8—C13—C12121.5 (2)C24—C23—H23A109.0
C8—C13—H13119.2C21—C23—H23A109.0
C12—C13—H13119.2C24—C23—H23B109.0
C9—C14—H14A109.5C21—C23—H23B109.0
C9—C14—H14B109.5H23A—C23—H23B107.8
H14A—C14—H14B109.5O2—C24—O3123.4 (2)
C9—C14—H14C109.5O2—C24—C23124.1 (2)
H14A—C14—H14C109.5O3—C24—C23112.52 (17)
H14B—C14—H14C109.5
C15—O1—C1—C2156.91 (16)C10—C11—C12—C130.2 (4)
C15—O1—C1—C879.15 (19)C9—C8—C13—C121.2 (3)
O1—C1—C2—C369.6 (2)C1—C8—C13—C12179.11 (19)
C8—C1—C2—C353.3 (3)C11—C12—C13—C80.7 (3)
O1—C1—C2—C7108.4 (2)C1—O1—C15—C16175.89 (16)
C8—C1—C2—C7128.6 (2)C18—N1—C16—C1561.1 (2)
C7—C2—C3—C40.1 (4)C17—N1—C16—C15175.25 (17)
C1—C2—C3—C4178.0 (2)O1—C15—C16—N161.9 (2)
C2—C3—C4—C50.5 (4)O8—C19—C20—C2176.4 (2)
C3—C4—C5—C61.3 (4)O7—C19—C20—C21102.6 (2)
C4—C5—C6—C71.6 (4)C19—C20—C21—O454.0 (2)
C5—C6—C7—C21.1 (4)C19—C20—C21—C23170.86 (15)
C3—C2—C7—C60.4 (4)C19—C20—C21—C2269.05 (19)
C1—C2—C7—C6177.8 (2)O4—C21—C22—O6176.07 (15)
O1—C1—C8—C1324.5 (2)C23—C21—C22—O656.7 (2)
C2—C1—C8—C1396.0 (2)C20—C21—C22—O661.6 (2)
O1—C1—C8—C9155.81 (17)O4—C21—C22—O54.3 (2)
C2—C1—C8—C983.6 (2)C23—C21—C22—O5123.66 (17)
C13—C8—C9—C100.9 (3)C20—C21—C22—O5117.99 (18)
C1—C8—C9—C10179.40 (18)O4—C21—C23—C2451.0 (2)
C13—C8—C9—C14179.4 (2)C22—C21—C23—C2471.0 (2)
C1—C8—C9—C140.3 (3)C20—C21—C23—C24169.85 (16)
C8—C9—C10—C110.1 (3)C21—C23—C24—O2124.6 (2)
C14—C9—C10—C11179.8 (2)C21—C23—C24—O355.7 (2)
C9—C10—C11—C120.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O6i0.911.832.725 (2)167
O4—H4A···O8ii0.822.303.067 (2)156
O7—H7A···O5ii0.821.812.634 (2)178
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H24NO+·C6H7O7
Mr461.50
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)9.9515 (8), 10.7382 (9), 12.625 (1)
α, β, γ (°)98.863 (7), 104.391 (7), 111.498 (8)
V3)1170.0 (2)
Z2
Radiation typeCu Kα
µ (mm1)0.82
Crystal size (mm)0.32 × 0.28 × 0.14
Data collection
DiffractometerAgilent Xcalibur (Eos, Gemini)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
Tmin, Tmax0.854, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7161, 4471, 3795
Rint0.029
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.161, 1.03
No. of reflections4471
No. of parameters305
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.27

Computer programs: CrysAlis PRO (Agilent, 2012), CrysAlis RED (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O6i0.911.832.725 (2)166.5
O4—H4A···O8ii0.822.303.067 (2)155.6
O7—H7A···O5ii0.821.812.634 (2)178.1
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

MK and HSY thank the University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science
First citationFun, H.-K., Hemamalini, M., Siddaraju, B. P., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o682–o683.  CSD CrossRef CAS IUCr Journals
First citationGlaser, R., Donnel, D. & Maartmann-Moe, K. (1992). J. Pharm. Sci. 81, 858–862.  CrossRef PubMed CAS Web of Science
First citationHunskaar, S. & Donnel, D. (1991). J. Int. Med. Res. 19, 71–87.  PubMed CAS Web of Science
First citationJasinski, J. P., Butcher, R. J., Siddaraju, B. P., Yathirajan, H. S. & Narayana, B. (2011). Acta Cryst. E67, o190–o191.  Web of Science CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds