supplementary materials


is5235 scheme

Acta Cryst. (2013). E69, m119-m120    [ doi:10.1107/S1600536813001438 ]

catena-Poly[[[(2,2'-bipyridine-[kappa]2N,N')manganese(II)]-[mu]-(2,5-dichloro-3,6-dioxocyclohexa-1,4-diene-1,4-diolato)-[kappa]4O1,O6:O3,O4] ethanol disolvate]

Y. Nishimura, A. Himegi, A. Fuyuhiro, S. Hayami and S. Kawata

Abstract top

The asymmetric unit of the title coordination polymer, {[Mn(C6Cl2O4)(C10H8N2)]·2C2H5OH}n, consists of one MnII ion, one 2,2'-bipyridine (bpy) ligand, one chloranilate (CA2-) ligand and two ethanol solvent molecules. The MnII ion is octahedrally coordinated by two N atoms of one bpy ligand and four O atoms of two chloranilate ions. The chloranilate ion serves as a bridging ligand between the MnII ions, leading to an infinite zigzag chain along [101]. [pi]-[pi] stacking interactions [centroid-centroid distance = 4.098 (2) Å] is observed between the pyridine rings of adjacent chains. The ethanol molecules act as accepters as well as donors for O-H...O hydrogen bonds, and form a hydrogen-bonded chain along the a axis. The H atoms of the hydroxy groups of the two independent ethanol molecules are each disordered over two sites with equal occupancies.

Comment top

In this paper manganese assembled structures of chloranilic acid (H2CA = 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone) are rationally designed by using bpy. Chloranilic acid can coordinate to metal ions in both the bidentate and the bisbidentate fashions (Nagayoshi et al., 2003). The dianion of chloranilic acid consists of two allyl systems connected by C—C single bonds, with four oxygen atoms partially negatively charged. This potentiality allows for the coordination of transition-metal ions through CA2- bridges and permits the probable propagation of magnetic super-exchange interactions between the paramagnetic centers. These kind of complexes using manganese two ions and H2CA were reported previously (Kabir et al., 2001). We report here, {[Mn(C10H8N2)(C6Cl2O4)].(C2H6O)2}n (1), which consists of the Mn(II) one-dimensional chain complex and two ethanol solvent molecules. The manganese(II) ion has a distorted octahedral environment, caused by fairly small bite angles of N—Mn—N [73.06 (7)°] and O—Mn—O [74.62 (5), 74.60 (5)°]. The latter compares with that in [Mn(bpy)CA]n (2) (Zheng, et al., 1996) [73.67 (7)°] but is smaller than that of O—Cu—O [77.31 (4)°] in [Cu(DCMB)(CA)]n (DCMB = 3,3'-dicarbomethoxy-2,2'-bipyridine) (Decurtins et al., 1996). The Mn—N distances [2.2472 (18) and 2.2397 (18) Å] agree well with those in [Mn(bpy)(C2O4)]n (Deguenon et al., 1990), (2.241, 2.258 Å) and the average Mn—O length (2.166 Å) is compatible with that in 2 (2.180 Å). Overall, the determined Mn—N and Mn—O bond lengths are in agreement with dipositive charged manganese ions as coordination centres. The CA2- bridges Mn(II) ions, which leads to infinite chains exhibiting a zig-zag pattern with bipyridine ligands stacking between the chains. The nearest C–C distance of the stacked bipyridine ligands is 3.607 (3) Å. This stacking interaction makes two-dimensional packing structure. This Mn···Mn [8.131 (1) Å] separation is a little smaller than the Mn···Mn [8.170 Å] separation in the chain of 2. The chain complex was assembled in the bc plane to form a one-dimensional channel along the a axis. The crystal structures of 1, 2 and [Mn(CA)(terpy)]n (terpy = 2,2:6,2-terpyridine) are similar. However, only compound 1 contains two ethanol solvents as solvent molecules. Interstitial solvents are introduced to the channel constructed by the assembling of one-dimensional chains to make a clathrate. Two ethanol solvent molecules are connected through hydrogen bonding, and form a one-dimensional chain along the a axis. As a result, voids of compound 1 is expanded by introduction of solvents into the clathrate.

Related literature top

For related structures, see: Nagayoshi et al. (2003); Decurtins et al. (1996); Deguenon et al. (1990); Kabir et al. (2001); Zheng et al. (1996).

Experimental top

A mixture of MnCl2.4H2O (1 ml, 5 mmolL-1) in aqueous solution and 2,2'-bipyridine (1 ml, 5 mmolL-1) in ethanol solution was transferred to a glass tube, and then an ethanol solution (10 ml) of H2CA (2 ml, 5 mmolL-1) was poured into the tube without mixing the two solutions. Dark violet crystals began to form at ambient temperature in a one week. One of these crystals was used for X-ray crystallography.

Refinement top

The C-bound H atoms in the bpy and the methyl group of the ethanol molecule were placed at calculated positions with C—H = 0.95 and 0.98 Å, respectively, and were treated as riding on their parent atoms with Uiso(H) set to 1.2Ueq(C). Both of the hydrogen atoms on the hydroxy groups of the ethanol solvent molecules are disordered over two sites, each with an occupancy of 0.5 and were treated as riding on their parent oxygen atoms, with O—H = 0.84 Å and with Uiso(H) set to 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. An ORTEP drawing for the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A fragment of one-dimensional channel structure of the title compound along the a axis. H atoms have been omitted for clarity.
[Figure 3] Fig. 3. A partial packing view of the title compound, showing the ethanol solvent molecules forming a one-dimensional chain along the a axis through hydrogen bonds. The hydrogen bonds are shown as dashed lines. H atoms have been omitted for clarity.
catena-Poly[[[(2,2'-bipyridine-κ2N,N')manganese(II)]-µ-(2,5-dichloro-3,6-dioxocyclohexa-1,4-diene-1,4-diolato)-κ4O1,O6:O3,O4] ethanol disolvate] top
Crystal data top
[Mn(C6Cl2O4)(C10H8N2)]·2C2H6OF(000) = 1044
Mr = 510.22Dx = 1.575 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 6299 reflections
a = 8.3130 (15) Åθ = 3.2–27.5°
b = 20.866 (4) ŵ = 0.90 mm1
c = 12.513 (2) ÅT = 100 K
β = 97.665 (2)°Platelet, violet
V = 2151.2 (7) Å30.40 × 0.10 × 0.05 mm
Z = 4
Data collection top
Rigaku Saturn724
diffractometer
4903 independent reflections
Radiation source: fine-focus sealed tube4526 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 7.111 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 1010
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
k = 2726
Tmin = 0.897, Tmax = 0.956l = 1616
24503 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0369P)2 + 2.5077P]
where P = (Fo2 + 2Fc2)/3
4903 reflections(Δ/σ)max = 0.002
284 parametersΔρmax = 0.99 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
[Mn(C6Cl2O4)(C10H8N2)]·2C2H6OV = 2151.2 (7) Å3
Mr = 510.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.3130 (15) ŵ = 0.90 mm1
b = 20.866 (4) ÅT = 100 K
c = 12.513 (2) Å0.40 × 0.10 × 0.05 mm
β = 97.665 (2)°
Data collection top
Rigaku Saturn724
diffractometer
4903 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
4526 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 0.956Rint = 0.028
24503 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.089Δρmax = 0.99 e Å3
S = 1.10Δρmin = 0.57 e Å3
4903 reflectionsAbsolute structure: ?
284 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.26466 (3)0.152282 (13)0.52153 (2)0.01343 (8)
Cl10.34709 (5)0.29498 (2)0.19487 (4)0.01890 (11)
Cl20.31626 (5)0.22151 (2)0.36711 (4)0.02093 (11)
O10.29779 (16)0.21863 (6)0.39171 (11)0.0173 (3)
O20.02350 (16)0.18152 (6)0.45478 (10)0.0160 (3)
O30.00620 (16)0.32640 (6)0.09766 (10)0.0157 (3)
O40.26694 (16)0.29681 (7)0.16927 (11)0.0180 (3)
O50.4059 (3)0.44845 (11)0.46828 (18)0.0517 (5)
H10.31600.44200.49000.078*0.50
H40.46010.47140.51510.078*0.50
O60.0886 (3)0.44697 (10)0.49882 (18)0.0513 (5)
H20.02700.47910.49200.077*0.50
H30.18200.43950.48330.077*0.50
N10.32635 (19)0.07145 (8)0.41547 (13)0.0169 (3)
N20.19315 (19)0.06124 (8)0.59751 (13)0.0169 (3)
C10.1713 (2)0.23827 (9)0.33539 (14)0.0141 (3)
C20.1669 (2)0.27578 (9)0.24228 (15)0.0147 (3)
C30.0202 (2)0.29465 (8)0.18379 (14)0.0132 (3)
C40.1402 (2)0.27663 (8)0.22528 (15)0.0139 (3)
C50.1360 (2)0.23993 (9)0.31882 (15)0.0153 (3)
C60.0100 (2)0.21788 (8)0.37393 (14)0.0142 (3)
C70.3914 (3)0.07952 (10)0.32347 (16)0.0221 (4)
H70.41800.12170.30310.026*
C80.4214 (3)0.02880 (11)0.25711 (17)0.0264 (4)
H80.46770.03610.19270.032*
C90.3826 (3)0.03242 (11)0.28672 (18)0.0275 (5)
H90.40120.06800.24250.033*
C100.3160 (3)0.04169 (10)0.38176 (17)0.0233 (4)
H100.28910.08350.40360.028*
C110.2895 (2)0.01144 (9)0.44437 (15)0.0166 (4)
C120.2186 (2)0.00567 (9)0.54702 (15)0.0167 (4)
C130.1817 (3)0.05325 (10)0.58966 (17)0.0228 (4)
H130.19990.09190.55300.027*
C140.1180 (3)0.05466 (11)0.68661 (18)0.0279 (5)
H140.09310.09440.71750.033*
C150.0909 (3)0.00214 (11)0.73776 (18)0.0271 (5)
H150.04680.00220.80400.033*
C160.1296 (3)0.05905 (10)0.69034 (16)0.0222 (4)
H160.11020.09820.72510.027*
C170.4877 (4)0.38834 (13)0.4599 (2)0.0414 (6)
H17A0.58370.39520.42220.050*
H17B0.41380.35840.41580.050*
C180.5409 (5)0.35873 (16)0.5669 (3)0.0669 (11)
H18A0.59810.31850.55710.080*
H18B0.44580.34990.60320.080*
H18C0.61380.38820.61100.080*
C190.0048 (5)0.39086 (16)0.4859 (3)0.0585 (8)
H19A0.00620.37500.41130.070*
H19B0.11800.40120.49630.070*
C200.0558 (6)0.33965 (17)0.5616 (3)0.0766 (12)
H20A0.02810.30670.56250.092*
H20B0.08280.35770.63410.092*
H20C0.15310.32040.53850.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01400 (15)0.01304 (14)0.01278 (14)0.00029 (10)0.00001 (10)0.00026 (10)
Cl10.0120 (2)0.0238 (2)0.0214 (2)0.00032 (16)0.00420 (16)0.00607 (17)
Cl20.0124 (2)0.0278 (2)0.0233 (2)0.00060 (17)0.00476 (17)0.00960 (18)
O10.0127 (6)0.0198 (7)0.0188 (6)0.0002 (5)0.0003 (5)0.0053 (5)
O20.0151 (6)0.0169 (6)0.0157 (6)0.0001 (5)0.0015 (5)0.0043 (5)
O30.0147 (6)0.0172 (6)0.0150 (6)0.0001 (5)0.0012 (5)0.0029 (5)
O40.0134 (6)0.0224 (7)0.0181 (6)0.0009 (5)0.0011 (5)0.0060 (5)
O50.0511 (12)0.0525 (12)0.0534 (12)0.0145 (10)0.0140 (10)0.0084 (10)
O60.0492 (12)0.0384 (10)0.0683 (14)0.0091 (9)0.0155 (11)0.0082 (10)
N10.0168 (8)0.0171 (8)0.0164 (7)0.0001 (6)0.0008 (6)0.0016 (6)
N20.0171 (8)0.0160 (7)0.0174 (7)0.0005 (6)0.0013 (6)0.0004 (6)
C10.0127 (8)0.0139 (8)0.0153 (8)0.0002 (6)0.0009 (6)0.0009 (7)
C20.0113 (8)0.0171 (8)0.0164 (8)0.0012 (7)0.0040 (7)0.0016 (7)
C30.0143 (8)0.0117 (8)0.0136 (8)0.0005 (6)0.0021 (6)0.0008 (6)
C40.0125 (8)0.0132 (8)0.0159 (8)0.0010 (6)0.0018 (7)0.0012 (7)
C50.0113 (8)0.0179 (9)0.0169 (8)0.0005 (7)0.0027 (7)0.0021 (7)
C60.0153 (9)0.0137 (8)0.0138 (8)0.0017 (7)0.0023 (7)0.0015 (6)
C70.0256 (10)0.0226 (10)0.0184 (9)0.0004 (8)0.0041 (8)0.0001 (8)
C80.0305 (11)0.0302 (11)0.0192 (10)0.0039 (9)0.0062 (8)0.0048 (8)
C90.0334 (12)0.0244 (10)0.0243 (10)0.0072 (9)0.0025 (9)0.0086 (8)
C100.0270 (11)0.0169 (9)0.0247 (10)0.0042 (8)0.0007 (8)0.0036 (8)
C110.0151 (9)0.0160 (9)0.0176 (9)0.0016 (7)0.0020 (7)0.0016 (7)
C120.0153 (9)0.0152 (9)0.0185 (9)0.0004 (7)0.0016 (7)0.0006 (7)
C130.0263 (11)0.0157 (9)0.0257 (10)0.0017 (8)0.0010 (8)0.0003 (8)
C140.0334 (12)0.0221 (10)0.0278 (11)0.0061 (9)0.0030 (9)0.0045 (8)
C150.0319 (12)0.0280 (11)0.0226 (10)0.0043 (9)0.0076 (9)0.0033 (8)
C160.0259 (10)0.0218 (10)0.0194 (9)0.0003 (8)0.0042 (8)0.0004 (8)
C170.0538 (17)0.0398 (14)0.0322 (13)0.0009 (12)0.0117 (12)0.0033 (11)
C180.116 (3)0.0443 (17)0.0475 (18)0.0256 (19)0.038 (2)0.0151 (14)
C190.067 (2)0.0472 (17)0.059 (2)0.0157 (16)0.0020 (16)0.0035 (15)
C200.133 (4)0.0471 (19)0.051 (2)0.001 (2)0.020 (2)0.0120 (16)
Geometric parameters (Å, º) top
Mn1—O12.1796 (14)C11—C121.488 (3)
Mn1—O22.1546 (14)C12—C131.391 (3)
Mn1—O3i2.1511 (14)C13—C141.387 (3)
Mn1—O4i2.1782 (14)C14—C151.380 (3)
Mn1—N12.2473 (16)C15—C161.384 (3)
Mn1—N22.2398 (16)C17—C181.488 (4)
Cl1—C21.7304 (18)C19—C201.471 (5)
Cl2—C51.7322 (18)O5—H10.840
O1—C11.254 (2)O5—H40.840
O2—C61.258 (2)O6—H20.840
O3—C31.257 (2)O6—H30.840
O3—Mn1ii2.1510 (13)C7—H70.950
O4—C41.257 (2)C8—H80.950
O4—Mn1ii2.1782 (14)C9—H90.950
O5—C171.437 (3)C10—H100.950
O6—C191.402 (4)C13—H130.950
N1—C71.346 (3)C14—H140.950
N1—C111.350 (2)C15—H150.950
N2—C161.340 (3)C16—H160.950
N2—C121.351 (2)C17—H17A0.990
C1—C21.400 (3)C17—H17B0.990
C1—C61.544 (2)C18—H18A0.980
C2—C31.392 (3)C18—H18B0.980
C3—C41.541 (2)C18—H18C0.980
C4—C51.395 (3)C19—H19A0.990
C5—C61.392 (3)C19—H19B0.990
C7—C81.388 (3)C20—H20A0.980
C8—C91.380 (3)C20—H20B0.980
C9—C101.391 (3)C20—H20C0.980
C10—C111.392 (3)H2—H2iii1.0155 (1)
O3i—Mn1—O2151.46 (5)N2—C12—C11116.06 (16)
O3i—Mn1—O4i74.60 (5)C13—C12—C11122.40 (17)
O2—Mn1—O4i88.83 (5)C14—C13—C12118.93 (19)
O3i—Mn1—O189.74 (5)C15—C14—C13119.5 (2)
O2—Mn1—O174.62 (5)C14—C15—C16118.5 (2)
O4i—Mn1—O1111.37 (6)N2—C16—C15122.82 (19)
O3i—Mn1—N2105.80 (6)O5—C17—C18112.5 (2)
O2—Mn1—N296.82 (5)O6—C19—C20113.3 (3)
O4i—Mn1—N289.11 (6)C17—O5—H1109.5
O1—Mn1—N2157.24 (6)C17—O5—H4109.5
O3i—Mn1—N198.26 (5)C19—O6—H2109.5
O2—Mn1—N1104.92 (6)C19—O6—H3109.5
O4i—Mn1—N1158.45 (6)N1—C7—H7118.629
O1—Mn1—N188.57 (6)C8—C7—H7118.631
N2—Mn1—N173.05 (6)C7—C8—H8120.730
C1—O1—Mn1116.52 (12)C9—C8—H8120.716
C6—O2—Mn1117.46 (12)C8—C9—H9120.253
C3—O3—Mn1ii117.58 (12)C10—C9—H9120.256
C4—O4—Mn1ii116.71 (12)C9—C10—H10120.608
C7—N1—C11118.46 (17)C11—C10—H10120.605
C7—N1—Mn1124.09 (13)C12—C13—H13120.536
C11—N1—Mn1117.40 (12)C14—C13—H13120.531
C16—N2—C12118.74 (17)C13—C14—H14120.253
C16—N2—Mn1123.70 (13)C15—C14—H14120.257
C12—N2—Mn1117.55 (12)C14—C15—H15120.770
O1—C1—C2125.27 (17)C16—C15—H15120.765
O1—C1—C6115.62 (16)N2—C16—H16118.596
C2—C1—C6119.11 (16)C15—C16—H16118.588
C3—C2—C1121.31 (16)O5—C17—H17A109.084
C3—C2—Cl1119.45 (14)O5—C17—H17B109.087
C1—C2—Cl1119.14 (14)C18—C17—H17A109.089
O3—C3—C2125.04 (17)C18—C17—H17B109.086
O3—C3—C4115.60 (16)H17A—C17—H17B107.842
C2—C3—C4119.36 (16)C17—C18—H18A109.466
O4—C4—C5125.24 (17)C17—C18—H18B109.469
O4—C4—C3115.39 (16)C17—C18—H18C109.469
C5—C4—C3119.37 (16)H18A—C18—H18B109.486
C6—C5—C4121.33 (17)H18A—C18—H18C109.468
C6—C5—Cl2119.44 (14)H18B—C18—H18C109.470
C4—C5—Cl2119.23 (14)O6—C19—H19A108.909
O2—C6—C5125.20 (17)O6—C19—H19B108.914
O2—C6—C1115.45 (16)C20—C19—H19A108.916
C5—C6—C1119.36 (16)C20—C19—H19B108.918
N1—C7—C8122.74 (19)H19A—C19—H19B107.740
C9—C8—C7118.6 (2)C19—C20—H20A109.468
C8—C9—C10119.49 (19)C19—C20—H20B109.476
C9—C10—C11118.79 (19)C19—C20—H20C109.478
N1—C11—C10121.97 (18)H20A—C20—H20B109.465
N1—C11—C12115.88 (16)H20A—C20—H20C109.470
C10—C11—C12122.15 (18)H20B—C20—H20C109.470
N2—C12—C13121.54 (18)O6iii—H2—H2161.01 (15)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1···O60.841.912.716 (4)160
O5—H4···O5iv0.842.002.715 (4)142
O6—H2···O6iii0.841.832.661 (3)170
O6—H3···O50.841.902.716 (4)162
Symmetry codes: (iii) x, y+1, z+1; (iv) x+1, y+1, z+1.
Selected bond lengths (Å) top
Mn1—O12.1796 (14)Mn1—O4i2.1782 (14)
Mn1—O22.1546 (14)Mn1—N12.2473 (16)
Mn1—O3i2.1511 (14)Mn1—N22.2398 (16)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1···O60.841.912.716 (4)160
O5—H4···O5ii0.842.002.715 (4)142
O6—H2···O6iii0.841.832.661 (3)170
O6—H3···O50.841.902.716 (4)162
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y+1, z+1.
Acknowledgements top

This work was supported by funds (No. 101501) from the Central Research Institute of Fukuoka University and Grant-in-Aids for Science Research (No. 22550067) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

references
References top

Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.

Decurtins, S., Schmalle, H. W., Zheng, L.-M. & Ensling, J. (1996). Inorg. Chim. Acta, 244, 165–170.

Deguenon, D., Bernardinelli, G., Tuchagues, J.-P. & Castan, J.-P. (1990). Inorg. Chem. 29, 3031–3037.

Kabir, M. K., Kawahara, M., Kumagai, H., Adachi, K., Kawata, S., Ishii, T. & Kitagawa, S. (2001). Polyhedron, 20, 1417–1422.

Nagayoshi, K., Kabir, M. K., Tobita, H., Honda, K., Kawahara, M., Katada, M., Adachi, K., Nishikawa, H., Ikemoto, I., Kumagai, H., Hosokoshi, Y., Inoue, K., Kitagawa, S. & Kawata, S. (2003). J. Am. Chem. Soc. 125, 221–232.

Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.

Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Rigaku (2010). Crystal Structure. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Zheng, L.-M., Schmalle, H. W., Huber, R. & Decurtins, S. (1996). Polyhedron, 15, 4399–4405.