supplementary materials


ng5310 scheme

Acta Cryst. (2013). E69, m72    [ doi:10.1107/S160053681205115X ]

Bis(diethylamido-[kappa]N)(diethylamine-[kappa]N)bis(2,6-diisopropylphenylamido-[kappa]N)zirconium(IV)

M. Zauliczny, R. Grubba, L. Ponikiewski and J. Pikies

Abstract top

In the title compound, [Zr(C12H18N)2(C4H10N)2(C4H11N)] or [Zr(HNC6H3iPr2)2(NEt2)2(HNEt2)], which was obtained by the reaction of Zr(NEt)4 with iPr2C6H3NH2, the ZrIV atom is in a trigonal-bipiramidal geometry in which the N atoms from two iPr2C6H3NH and one NEt2 ligand occupy the equatorial positions, and the N atoms of an NEt2 and an Et2NH ligand occupy the apical positions. An intramolecular N-H...N contact occurs. There are two independent molecules in the asymmetric unit.

Comment top

Complex (I) was synthesized in the course of our studies on amido complexes of zirconium (Kempe, 2000). The compound was obtained in the reaction Zr(NEt)4 with iPr2C6H3NH2 (molar ratio 1:2). Complex (I) contains four amido ligands (two NEt2 and two iPr2C6H3NH) and one amino ligand (HNEt2). Analyzing bond lengths in title compound it is easily spotted that bond Zr—N3 is much longer than other bonds. It is caused by the fact, that ligand containing N1 is amine ligand. Difference between length of bonds Zr—N between NEt2 and HNEt2 is about 0.25 Å. Distances between N atoms of iPr2C6H3NH and Zr are both about 2.12 Å and very similar to related Zr(IV) amido complexes (Profilet et al., 1990; Blake et al., 1997). In case of two NEt2 ligands distances Zr—N differ by about 0.12 Å but both are in the range typical for zirconium complexes with diethylamido ligands (Porter et al., 2004; Ghesner et al., 2006). Comparing angles between N1—Zr1—N2, N2—Zr1—N5 and N5—Zr1—N1 [table 1] it can be seen that they are roughly 120°, in addition the angle between N3—Zr1—N4 [table 1] indicates that molecular geometry is close to trigonal bipyramidal. Admittedly in perfect trigonal bipyramid first three angles would be equal to 120° and N3—Zr1—N4 would be equal to 180°, but actual angles are so close to said values that it is safe to say they resemble trigonal bipyramid.

The crystal packing diagram shows, that the compound crystallizes with two molecules in the unit cell in the triclinic space group. The crystal packing of the title compound is presented in Fig.2.

Related literature top

For related zirconium(IV) structures, see: Profilet et al. (1990); Blake et al. (1997); Porter et al. (2004); Ghesner et al. (2006). For related syntheses, see: Kempe (2000).

Experimental top

To a 100 ml Schlenk flask, equipped with a magnetic stirrer, charged with a solution of 4,8 g (4,44 ml) Zr(NEt2)4 in 30 ml of pentane, 5 g (4,76 ml) of 2,6-diisopropylaniline in 10 ml of pentane was added dropwise. The reaction was carried on in a room temperature in an argon atmosphere. Solution was left on a magnetic stirrer. Over a week of stirring, the mixture changed colour from yellow to brown. The solvent was removed under vacuum. After evaporating most of the solvent, dark solid was obtained which after keeping it longer under vacuum got darker and became oil. Residue was dissolved in 8 ml of pentane, and recrystallized at 4°C to obtain about 2 g of colorless X-ray-quality crystals. The total yield was 24%. Elemental analysis, found %: C 65.73, H 9.72, N 10.46; calc. % for C30H52N5Zr: C 65.40, H 10.21, N 10.59.

Refinement top

The C—H H atoms were positioned with idealized geometry and were refined isotropically with Uiso(H) = 1.2Ueq(C) for aromatic, methylene and methine H atoms (1.5 for methyl H atoms) using a riding model with C—H = 0.93 Å (aromatic H atoms), 0.96 Å (methyl H atoms), 0.97 Å (methylene H atoms) and 0.98 Å (methine H atoms).The amine hydrogen atoms were located in the difference Fourier map and refined using a ridnig model with Uiso(H) = 1.2Ueq(N). The hydrogen atom H1A is located in the difference map and restrained, N1-H1A = 0.89 Å with Uiso(H) = 1.2Ueq(N). The highest residual electron density peaks are located within 1 Å from atom Zr1 and the deepest hole is located 0.78 Å from Zr1.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering. Displacement ellipsoids are drawn at the 30% probability level H atoms connected to C have been omitted.
[Figure 2] Fig. 2. A view of the packing of the title compound alond the a axix.
Bis(diethylamido-κN)(diethylamine-κN)bis(2,6- diisopropylphenylamido-κN)zirconium(IV) top
Crystal data top
[Zr(C12H18N)2(C4H10N)2(C4H11N)]Z = 2
Mr = 661.17F(000) = 716
Triclinic, P1Dx = 1.164 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.2079 (3) ÅCell parameters from 6954 reflections
b = 13.1612 (5) Åθ = 2.9–28.4°
c = 14.3443 (6) ŵ = 0.32 mm1
α = 86.578 (3)°T = 293 K
β = 70.484 (3)°Block, colourless
γ = 71.232 (3)°0.58 × 0.39 × 0.34 mm
V = 1885.61 (12) Å3
Data collection top
Agilent Xcalibur (Sapphire2
diffractometer
7412 independent reflections
Graphite monochromator5867 reflections with I > 2σ(I)
Detector resolution: 8.1883 pixels mm-1Rint = 0.035
ω scansθmax = 26°, θmin = 2.9°
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2010)
h = 138
Tmin = 0.889, Tmax = 0.928k = 1612
11493 measured reflectionsl = 1712
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0694P)2 + 9.6553P]
where P = (Fo2 + 2Fc2)/3
7412 reflections(Δ/σ)max < 0.001
402 parametersΔρmax = 1.82 e Å3
1 restraintΔρmin = 2.13 e Å3
Crystal data top
[Zr(C12H18N)2(C4H10N)2(C4H11N)]γ = 71.232 (3)°
Mr = 661.17V = 1885.61 (12) Å3
Triclinic, P1Z = 2
a = 11.2079 (3) ÅMo Kα radiation
b = 13.1612 (5) ŵ = 0.32 mm1
c = 14.3443 (6) ÅT = 293 K
α = 86.578 (3)°0.58 × 0.39 × 0.34 mm
β = 70.484 (3)°
Data collection top
Agilent Xcalibur (Sapphire2
diffractometer
7412 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2010)
5867 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 0.928Rint = 0.035
11493 measured reflectionsθmax = 26°
Refinement top
R[F2 > 2σ(F2)] = 0.073H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.188Δρmax = 1.82 e Å3
S = 1.12Δρmin = 2.13 e Å3
7412 reflectionsAbsolute structure: ?
402 parametersFlack parameter: ?
1 restraintRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zr10.73585 (6)0.79022 (4)0.21365 (4)0.03188 (17)
N10.7260 (3)0.8397 (3)0.3554 (3)0.0216 (8)
H1A0.650 (3)0.838 (4)0.401 (3)0.026*
N20.7770 (4)0.6310 (3)0.1615 (3)0.0199 (8)
H20.856 (5)0.591 (4)0.160 (4)0.024*
N30.9717 (4)0.7334 (3)0.1861 (3)0.0244 (8)
H3A0.963 (5)0.779 (4)0.229 (4)0.029*
N40.5246 (4)0.8112 (3)0.2736 (3)0.0277 (9)
N50.7378 (3)0.9016 (3)0.1088 (3)0.0197 (7)
C10.8144 (4)0.8339 (3)0.4082 (3)0.0196 (9)
C20.8987 (4)0.8990 (4)0.3821 (3)0.0207 (9)
C30.9889 (5)0.8903 (4)0.4321 (4)0.0285 (10)
H31.04410.93310.41520.034*
C40.9975 (5)0.8195 (4)0.5060 (4)0.0320 (11)
H41.05880.81410.53810.038*
C50.9145 (5)0.7562 (4)0.5325 (4)0.0306 (11)
H50.92020.70930.58310.037*
C60.8225 (4)0.7616 (4)0.4847 (3)0.0248 (10)
C70.8854 (4)0.9830 (4)0.3060 (3)0.0242 (9)
H70.86310.95380.25520.029*
C80.7667 (5)1.0843 (4)0.3554 (4)0.0349 (12)
H8A0.68711.06490.38490.052*
H8B0.75391.13570.30640.052*
H8C0.78551.11530.40570.052*
C91.0102 (5)1.0135 (5)0.2538 (4)0.0367 (12)
H9A1.03161.04690.3010.055*
H9B0.99471.06270.20370.055*
H9C1.08330.950.22360.055*
C100.7317 (5)0.6931 (4)0.5149 (4)0.0277 (10)
H100.72060.6720.45470.033*
C110.5927 (5)0.7584 (5)0.5843 (4)0.0404 (13)
H11A0.59810.77170.64750.061*
H11B0.53180.71860.59250.061*
H11C0.56120.82560.55610.061*
C120.7852 (6)0.5903 (5)0.5637 (5)0.0453 (14)
H12A0.8710.54820.520.068*
H12B0.72440.54960.57730.068*
H12C0.79370.60830.62460.068*
C130.6972 (4)0.5653 (3)0.1692 (3)0.0192 (9)
C140.7022 (4)0.4784 (4)0.2323 (3)0.0226 (9)
C150.6217 (5)0.4149 (4)0.2379 (3)0.0282 (10)
H150.62660.3570.27840.034*
C160.5353 (5)0.4361 (4)0.1847 (4)0.0306 (11)
H160.48130.39370.18990.037*
C170.5298 (5)0.5218 (4)0.1233 (3)0.0261 (10)
H170.47180.53570.0870.031*
C180.6073 (4)0.5871 (3)0.1142 (3)0.0193 (9)
C190.7952 (5)0.4533 (4)0.2924 (3)0.0267 (10)
H190.80760.52090.30490.032*
C200.7410 (6)0.4094 (4)0.3930 (4)0.0375 (12)
H20A0.65390.45730.42860.056*
H20B0.80.40350.430.056*
H20C0.73510.33980.38360.056*
C210.9322 (5)0.3769 (5)0.2345 (4)0.0390 (12)
H21A0.92460.30850.22320.058*
H21B0.99160.36820.27160.058*
H21C0.96680.4060.1720.058*
C220.6044 (4)0.6763 (3)0.0418 (3)0.0210 (9)
H220.62820.73160.06750.025*
C230.4647 (5)0.7303 (4)0.0324 (4)0.0306 (11)
H23A0.44140.67970.00220.046*
H23B0.46610.79110.0080.046*
H23C0.39990.75380.09690.046*
C240.7096 (5)0.6349 (4)0.0588 (3)0.0294 (10)
H24A0.79650.60840.05180.044*
H24B0.70710.69240.10330.044*
H24C0.69180.5780.08480.044*
C251.0286 (4)0.6345 (4)0.2313 (3)0.0251 (10)
H25A1.05310.57370.18590.03*
H25B0.96020.62610.29110.03*
C261.1508 (5)0.6316 (5)0.2573 (4)0.0380 (12)
H26A1.22050.63730.19820.057*
H26B1.18140.56520.28680.057*
H26C1.12740.69070.30330.057*
C271.0646 (4)0.7550 (4)0.0928 (3)0.0239 (9)
H27A1.14310.75930.10470.029*
H27B1.02170.82390.07070.029*
C281.1072 (7)0.6691 (5)0.0121 (4)0.0509 (16)
H28A1.16630.60430.0270.076*
H28B1.15270.69310.05020.076*
H28C1.02980.65550.00810.076*
C290.4813 (5)0.7500 (4)0.3598 (3)0.0282 (10)
H29A0.44770.79660.4190.034*
H29B0.55850.69170.36360.034*
C300.3737 (5)0.7030 (5)0.3591 (4)0.0366 (12)
H30A0.29260.76030.3640.055*
H30B0.35770.65830.41430.055*
H30C0.4030.66080.29850.055*
C310.4177 (4)0.9023 (4)0.2580 (4)0.0292 (10)
H31A0.35050.87560.24970.035*
H31B0.45460.93420.19690.035*
C320.3507 (8)0.9887 (5)0.3406 (5)0.067 (2)
H32A0.30250.96080.39920.101*
H32B0.28981.04890.32140.101*
H32C0.41731.01120.35360.101*
C330.7937 (4)0.8757 (4)0.0015 (3)0.0268 (10)
H33A0.82640.79820.00970.032*
H33B0.86970.90150.02580.032*
C340.6955 (5)0.9233 (4)0.0547 (4)0.0344 (12)
H34A0.61590.90410.02430.052*
H34B0.7360.89550.12230.052*
H34C0.67291.00020.05270.052*
C350.6795 (5)1.0173 (4)0.1362 (4)0.0297 (10)
H35A0.65081.0270.20770.036*
H35B0.60061.04570.11660.036*
C360.7729 (6)1.0832 (4)0.0903 (4)0.0405 (13)
H36A0.85531.05160.10350.061*
H36B0.73131.15550.11860.061*
H36C0.79061.08390.02010.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr10.0557 (4)0.0191 (2)0.0234 (3)0.0121 (2)0.0168 (2)0.00391 (17)
N10.0115 (17)0.028 (2)0.0236 (19)0.0066 (15)0.0036 (14)0.0005 (16)
N20.0132 (18)0.0206 (19)0.0262 (19)0.0045 (15)0.0079 (15)0.0025 (15)
N30.0156 (19)0.0203 (19)0.035 (2)0.0068 (15)0.0042 (16)0.0001 (16)
N40.0171 (19)0.035 (2)0.025 (2)0.0036 (17)0.0046 (15)0.0012 (17)
N50.0151 (18)0.0180 (18)0.0237 (19)0.0038 (14)0.0047 (14)0.0006 (14)
C10.013 (2)0.021 (2)0.020 (2)0.0019 (17)0.0023 (16)0.0057 (17)
C20.011 (2)0.025 (2)0.022 (2)0.0028 (17)0.0021 (16)0.0082 (17)
C30.018 (2)0.031 (3)0.036 (3)0.0060 (19)0.0078 (19)0.007 (2)
C40.018 (2)0.041 (3)0.040 (3)0.004 (2)0.015 (2)0.008 (2)
C50.033 (3)0.035 (3)0.026 (2)0.007 (2)0.015 (2)0.001 (2)
C60.023 (2)0.024 (2)0.022 (2)0.0027 (19)0.0049 (18)0.0056 (18)
C70.023 (2)0.024 (2)0.026 (2)0.0083 (19)0.0070 (18)0.0045 (18)
C80.035 (3)0.025 (3)0.038 (3)0.005 (2)0.008 (2)0.000 (2)
C90.030 (3)0.048 (3)0.035 (3)0.023 (2)0.004 (2)0.003 (2)
C100.025 (2)0.029 (3)0.029 (2)0.009 (2)0.0093 (19)0.003 (2)
C110.035 (3)0.048 (3)0.033 (3)0.018 (3)0.000 (2)0.004 (2)
C120.059 (4)0.036 (3)0.053 (4)0.019 (3)0.031 (3)0.013 (3)
C130.012 (2)0.022 (2)0.020 (2)0.0049 (17)0.0014 (16)0.0032 (17)
C140.018 (2)0.025 (2)0.023 (2)0.0074 (18)0.0032 (17)0.0011 (18)
C150.030 (3)0.028 (2)0.028 (2)0.016 (2)0.006 (2)0.006 (2)
C160.027 (3)0.036 (3)0.034 (3)0.021 (2)0.006 (2)0.001 (2)
C170.023 (2)0.033 (3)0.025 (2)0.012 (2)0.0072 (19)0.0018 (19)
C180.015 (2)0.020 (2)0.019 (2)0.0037 (17)0.0023 (16)0.0050 (17)
C190.027 (2)0.025 (2)0.031 (3)0.011 (2)0.012 (2)0.0074 (19)
C200.048 (3)0.039 (3)0.030 (3)0.017 (3)0.016 (2)0.009 (2)
C210.033 (3)0.042 (3)0.038 (3)0.004 (2)0.014 (2)0.005 (2)
C220.021 (2)0.018 (2)0.024 (2)0.0035 (17)0.0099 (18)0.0028 (17)
C230.021 (2)0.028 (3)0.043 (3)0.002 (2)0.016 (2)0.001 (2)
C240.025 (2)0.031 (3)0.028 (2)0.007 (2)0.0051 (19)0.003 (2)
C250.022 (2)0.023 (2)0.029 (2)0.0064 (19)0.0084 (19)0.0012 (19)
C260.033 (3)0.042 (3)0.047 (3)0.014 (2)0.022 (2)0.011 (2)
C270.017 (2)0.026 (2)0.026 (2)0.0059 (18)0.0043 (18)0.0023 (19)
C280.072 (4)0.037 (3)0.028 (3)0.005 (3)0.007 (3)0.003 (2)
C290.020 (2)0.043 (3)0.020 (2)0.011 (2)0.0021 (18)0.003 (2)
C300.029 (3)0.047 (3)0.037 (3)0.020 (2)0.008 (2)0.003 (2)
C310.015 (2)0.033 (3)0.037 (3)0.0052 (19)0.0066 (19)0.003 (2)
C320.077 (5)0.040 (4)0.057 (4)0.001 (3)0.003 (4)0.017 (3)
C330.018 (2)0.032 (3)0.028 (2)0.0070 (19)0.0059 (18)0.005 (2)
C340.036 (3)0.038 (3)0.033 (3)0.014 (2)0.018 (2)0.011 (2)
C350.031 (3)0.022 (2)0.039 (3)0.008 (2)0.016 (2)0.003 (2)
C360.048 (3)0.032 (3)0.053 (3)0.021 (3)0.026 (3)0.017 (3)
Geometric parameters (Å, º) top
Zr1—N52.036 (4)C18—C221.519 (6)
Zr1—N22.122 (4)C19—C211.520 (7)
Zr1—N12.129 (4)C19—C201.524 (7)
Zr1—N42.160 (4)C19—H190.98
Zr1—N32.402 (4)C20—H20A0.96
N1—C11.417 (5)C20—H20B0.96
N1—H1A0.890 (2)C20—H20C0.96
N2—C131.407 (5)C21—H21A0.96
N2—H20.87 (5)C21—H21B0.96
N3—C251.470 (6)C21—H21C0.96
N3—C271.473 (6)C22—C241.522 (6)
N3—H3A0.84 (5)C22—C231.546 (6)
N4—C291.465 (6)C22—H220.98
N4—C311.465 (6)C23—H23A0.96
N5—C331.469 (6)C23—H23B0.96
N5—C351.470 (6)C23—H23C0.96
C1—C61.417 (6)C24—H24A0.96
C1—C21.418 (6)C24—H24B0.96
C2—C31.398 (6)C24—H24C0.96
C2—C71.515 (6)C25—C261.524 (6)
C3—C41.376 (7)C25—H25A0.97
C3—H30.93C25—H25B0.97
C4—C51.389 (7)C26—H26A0.96
C4—H40.93C26—H26B0.96
C5—C61.399 (6)C26—H26C0.96
C5—H50.93C27—C281.511 (7)
C6—C101.512 (7)C27—H27A0.97
C7—C91.518 (6)C27—H27B0.97
C7—C81.546 (6)C28—H28A0.96
C7—H70.98C28—H28B0.96
C8—H8A0.96C28—H28C0.96
C8—H8B0.96C29—C301.525 (7)
C8—H8C0.96C29—H29A0.97
C9—H9A0.96C29—H29B0.97
C9—H9B0.96C30—H30A0.96
C9—H9C0.96C30—H30B0.96
C10—C121.525 (7)C30—H30C0.96
C10—C111.537 (7)C31—C321.508 (8)
C10—H100.98C31—H31A0.97
C11—H11A0.96C31—H31B0.97
C11—H11B0.96C32—H32A0.96
C11—H11C0.96C32—H32B0.96
C12—H12A0.96C32—H32C0.96
C12—H12B0.96C33—C341.531 (6)
C12—H12C0.96C33—H33A0.97
C13—C141.413 (6)C33—H33B0.97
C13—C181.427 (6)C34—H34A0.96
C14—C151.396 (6)C34—H34B0.96
C14—C191.511 (6)C34—H34C0.96
C15—C161.375 (7)C35—C361.528 (7)
C15—H150.93C35—H35A0.97
C16—C171.387 (7)C35—H35B0.97
C16—H160.93C36—H36A0.96
C17—C181.378 (6)C36—H36B0.96
C17—H170.93C36—H36C0.96
N5—Zr1—N2115.34 (14)C21—C19—H19107
N5—Zr1—N1116.93 (14)C20—C19—H19107
N2—Zr1—N1126.85 (14)C19—C20—H20A109.5
N5—Zr1—N4100.60 (14)C19—C20—H20B109.5
N2—Zr1—N490.93 (15)H20A—C20—H20B109.5
N1—Zr1—N488.60 (14)C19—C20—H20C109.5
N5—Zr1—N395.87 (13)H20A—C20—H20C109.5
N2—Zr1—N383.79 (14)H20B—C20—H20C109.5
N1—Zr1—N382.12 (14)C19—C21—H21A109.5
N4—Zr1—N3163.41 (14)C19—C21—H21B109.5
C1—N1—Zr1138.4 (3)H21A—C21—H21B109.5
C1—N1—H1A105 (3)C19—C21—H21C109.5
Zr1—N1—H1A111 (3)H21A—C21—H21C109.5
C13—N2—Zr1133.5 (3)H21B—C21—H21C109.5
C13—N2—H2109 (3)C18—C22—C24110.6 (4)
Zr1—N2—H2111 (3)C18—C22—C23113.1 (4)
C25—N3—C27114.4 (4)C24—C22—C23111.1 (4)
C25—N3—Zr1117.5 (3)C18—C22—H22107.3
C27—N3—Zr1120.5 (3)C24—C22—H22107.3
C25—N3—H3A99 (4)C23—C22—H22107.3
C27—N3—H3A106 (4)C22—C23—H23A109.5
Zr1—N3—H3A93 (4)C22—C23—H23B109.5
C29—N4—C31114.7 (4)H23A—C23—H23B109.5
C29—N4—Zr1116.7 (3)C22—C23—H23C109.5
C31—N4—Zr1125.7 (3)H23A—C23—H23C109.5
C33—N5—C35114.2 (4)H23B—C23—H23C109.5
C33—N5—Zr1124.4 (3)C22—C24—H24A109.5
C35—N5—Zr1121.4 (3)C22—C24—H24B109.5
C6—C1—N1120.8 (4)H24A—C24—H24B109.5
C6—C1—C2119.6 (4)C22—C24—H24C109.5
N1—C1—C2119.6 (4)H24A—C24—H24C109.5
C3—C2—C1119.4 (4)H24B—C24—H24C109.5
C3—C2—C7119.5 (4)N3—C25—C26114.5 (4)
C1—C2—C7120.9 (4)N3—C25—H25A108.6
C4—C3—C2121.0 (4)C26—C25—H25A108.6
C4—C3—H3119.5N3—C25—H25B108.6
C2—C3—H3119.5C26—C25—H25B108.6
C3—C4—C5119.9 (4)H25A—C25—H25B107.6
C3—C4—H4120.1C25—C26—H26A109.5
C5—C4—H4120.1C25—C26—H26B109.5
C4—C5—C6121.4 (5)H26A—C26—H26B109.5
C4—C5—H5119.3C25—C26—H26C109.5
C6—C5—H5119.3H26A—C26—H26C109.5
C5—C6—C1118.7 (4)H26B—C26—H26C109.5
C5—C6—C10121.0 (4)N3—C27—C28112.3 (4)
C1—C6—C10120.4 (4)N3—C27—H27A109.1
C2—C7—C9115.3 (4)C28—C27—H27A109.1
C2—C7—C8109.3 (4)N3—C27—H27B109.1
C9—C7—C8110.1 (4)C28—C27—H27B109.1
C2—C7—H7107.3H27A—C27—H27B107.9
C9—C7—H7107.3C27—C28—H28A109.5
C8—C7—H7107.3C27—C28—H28B109.5
C7—C8—H8A109.5H28A—C28—H28B109.5
C7—C8—H8B109.5C27—C28—H28C109.5
H8A—C8—H8B109.5H28A—C28—H28C109.5
C7—C8—H8C109.5H28B—C28—H28C109.5
H8A—C8—H8C109.5N4—C29—C30114.9 (4)
H8B—C8—H8C109.5N4—C29—H29A108.5
C7—C9—H9A109.5C30—C29—H29A108.5
C7—C9—H9B109.5N4—C29—H29B108.5
H9A—C9—H9B109.5C30—C29—H29B108.5
C7—C9—H9C109.5H29A—C29—H29B107.5
H9A—C9—H9C109.5C29—C30—H30A109.5
H9B—C9—H9C109.5C29—C30—H30B109.5
C6—C10—C12114.6 (4)H30A—C30—H30B109.5
C6—C10—C11110.6 (4)C29—C30—H30C109.5
C12—C10—C11109.1 (4)H30A—C30—H30C109.5
C6—C10—H10107.4H30B—C30—H30C109.5
C12—C10—H10107.4N4—C31—C32114.6 (5)
C11—C10—H10107.4N4—C31—H31A108.6
C10—C11—H11A109.5C32—C31—H31A108.6
C10—C11—H11B109.5N4—C31—H31B108.6
H11A—C11—H11B109.5C32—C31—H31B108.6
C10—C11—H11C109.5H31A—C31—H31B107.6
H11A—C11—H11C109.5C31—C32—H32A109.5
H11B—C11—H11C109.5C31—C32—H32B109.5
C10—C12—H12A109.5H32A—C32—H32B109.5
C10—C12—H12B109.5C31—C32—H32C109.5
H12A—C12—H12B109.5H32A—C32—H32C109.5
C10—C12—H12C109.5H32B—C32—H32C109.5
H12A—C12—H12C109.5N5—C33—C34114.7 (4)
H12B—C12—H12C109.5N5—C33—H33A108.6
N2—C13—C14121.1 (4)C34—C33—H33A108.6
N2—C13—C18120.0 (4)N5—C33—H33B108.6
C14—C13—C18118.8 (4)C34—C33—H33B108.6
C15—C14—C13119.5 (4)H33A—C33—H33B107.6
C15—C14—C19120.0 (4)C33—C34—H34A109.5
C13—C14—C19120.5 (4)C33—C34—H34B109.5
C16—C15—C14121.5 (4)H34A—C34—H34B109.5
C16—C15—H15119.3C33—C34—H34C109.5
C14—C15—H15119.3H34A—C34—H34C109.5
C15—C16—C17118.9 (4)H34B—C34—H34C109.5
C15—C16—H16120.5N5—C35—C36115.0 (4)
C17—C16—H16120.5N5—C35—H35A108.5
C18—C17—C16122.3 (4)C36—C35—H35A108.5
C18—C17—H17118.8N5—C35—H35B108.5
C16—C17—H17118.8C36—C35—H35B108.5
C17—C18—C13118.9 (4)H35A—C35—H35B107.5
C17—C18—C22120.8 (4)C35—C36—H36A109.5
C13—C18—C22120.2 (4)C35—C36—H36B109.5
C14—C19—C21111.3 (4)H36A—C36—H36B109.5
C14—C19—C20114.2 (4)C35—C36—H36C109.5
C21—C19—C20109.9 (4)H36A—C36—H36C109.5
C14—C19—H19107H36B—C36—H36C109.5
N5—Zr1—N1—C196.8 (5)N1—C1—C6—C103.1 (6)
N2—Zr1—N1—C171.9 (5)C2—C1—C6—C10178.9 (4)
N4—Zr1—N1—C1162.0 (5)C3—C2—C7—C928.7 (6)
N3—Zr1—N1—C14.2 (4)C1—C2—C7—C9155.7 (4)
N5—Zr1—N2—C13105.4 (4)C3—C2—C7—C895.9 (5)
N1—Zr1—N2—C1385.7 (4)C1—C2—C7—C879.7 (5)
N4—Zr1—N2—C133.2 (4)C5—C6—C10—C1225.1 (6)
N3—Zr1—N2—C13161.0 (4)C1—C6—C10—C12155.9 (4)
N5—Zr1—N3—C25167.4 (3)C5—C6—C10—C1198.6 (5)
N2—Zr1—N3—C2552.5 (3)C1—C6—C10—C1180.3 (5)
N1—Zr1—N3—C2576.1 (3)Zr1—N2—C13—C14106.6 (4)
N4—Zr1—N3—C2519.6 (7)Zr1—N2—C13—C1872.2 (5)
N5—Zr1—N3—C2719.4 (3)N2—C13—C14—C15179.9 (4)
N2—Zr1—N3—C2795.5 (3)C18—C13—C14—C151.3 (6)
N1—Zr1—N3—C27135.9 (3)N2—C13—C14—C190.7 (6)
N4—Zr1—N3—C27167.5 (4)C18—C13—C14—C19179.5 (4)
N5—Zr1—N4—C29174.3 (3)C13—C14—C15—C161.3 (7)
N2—Zr1—N4—C2969.7 (3)C19—C14—C15—C16179.5 (4)
N1—Zr1—N4—C2957.2 (3)C14—C15—C16—C170.9 (7)
N3—Zr1—N4—C291.4 (7)C15—C16—C17—C180.5 (7)
N5—Zr1—N4—C3114.6 (4)C16—C17—C18—C130.5 (7)
N2—Zr1—N4—C31130.6 (4)C16—C17—C18—C22176.5 (4)
N1—Zr1—N4—C31102.5 (4)N2—C13—C18—C17179.8 (4)
N3—Zr1—N4—C31158.3 (4)C14—C13—C18—C170.9 (6)
N2—Zr1—N5—C3314.4 (4)N2—C13—C18—C224.2 (6)
N1—Zr1—N5—C33155.6 (3)C14—C13—C18—C22176.9 (4)
N4—Zr1—N5—C33110.5 (3)C15—C14—C19—C2190.7 (5)
N3—Zr1—N5—C3371.5 (3)C13—C14—C19—C2188.5 (5)
N2—Zr1—N5—C35164.6 (3)C15—C14—C19—C2034.4 (6)
N1—Zr1—N5—C3525.4 (4)C13—C14—C19—C20146.4 (4)
N4—Zr1—N5—C3568.4 (3)C17—C18—C22—C2490.1 (5)
N3—Zr1—N5—C35109.5 (3)C13—C18—C22—C2485.9 (5)
Zr1—N1—C1—C6105.2 (5)C17—C18—C22—C2335.2 (6)
Zr1—N1—C1—C272.9 (6)C13—C18—C22—C23148.8 (4)
C6—C1—C2—C30.2 (6)C27—N3—C25—C2659.7 (5)
N1—C1—C2—C3177.8 (4)Zr1—N3—C25—C26150.5 (3)
C6—C1—C2—C7175.4 (4)C25—N3—C27—C2863.2 (5)
N1—C1—C2—C76.6 (6)Zr1—N3—C27—C2885.7 (5)
C1—C2—C3—C40.2 (7)C31—N4—C29—C3058.1 (6)
C7—C2—C3—C4175.9 (4)Zr1—N4—C29—C30140.0 (4)
C2—C3—C4—C50.7 (7)C29—N4—C31—C3262.7 (6)
C3—C4—C5—C60.8 (7)Zr1—N4—C31—C3297.4 (5)
C4—C5—C6—C10.4 (7)C35—N5—C33—C3456.0 (5)
C4—C5—C6—C10179.4 (4)Zr1—N5—C33—C34123.1 (4)
N1—C1—C6—C5177.9 (4)C33—N5—C35—C3654.4 (5)
C2—C1—C6—C50.1 (6)Zr1—N5—C35—C36126.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N10.84 (5)2.56 (5)2.983 (5)112 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N10.84 (5)2.56 (5)2.983 (5)112 (4)
references
References top

Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Blake, A. J., Nikonov, G. I. & Mountford, P. (1997). Acta Cryst. C53, 874–876.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Ghesner, I., Fenwick, A. & Stephen, D. W. (2006). Organometallics, 25, 4985–4995.

Kempe, R. (2000). Angew. Chem. Int. Ed. 39, 468–493.

Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.

Porter, R. M. & Danopoulos, A. A. (2004). Dalton Trans. pp. 2556–2562.

Profilet, R. D., Zabrano, C. H., Fanwick, P. E., Nash, J. J. & Rothwell, I. P. (1990). Inorg. Chem. 29, 4362–4364.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.