supplementary materials


tk5184 scheme

Acta Cryst. (2013). E69, m92-m93    [ doi:10.1107/S1600536812051641 ]

rac-Dichlorido[3-ethoxy-3-(1-ethyl-1H-benzimidazol-2-yl)-2,3-dihydro-1H-pyrrolo[1,2-a]benzimidazole]copper(II)

R. T. Stibrany and J. A. Potenza

Abstract top

The title complex, [CuCl2(C21H22N4O)], contains a bis(benzimidazole) unit with a chiral bridgehead C atom that forms part of a tetrahydropyrrole ring fused to one of the benzimidazoles. The chelate angle is 90.45 (9)° and the dihedral angle between the essentially planar benzimidazole fragments is 26.68 (9)°. The CuII coordination geometry lies approximately midway between tetrahedral and square planar. Overall, each chiral molecule contains six fused rings, and a racemic mixture is formed with symmetry-related enantiomers. In the crystal, C-H...[pi] and C-H...Cl interactions link molecules into a supramolecular chain along the a-axis direction.

Comment top

The title complex (I), Fig. 1, was prepared as part of our long-term interest in the chemistry of bis(imidazoles), bis(benzimidazoles), and their complexes with metal ions. These species have demonstrated their usefulness as proton sponges (Stibrany et al., 2002), geometrically constraining ligands (Stibrany et al., 2004), agents to study electron transfer (Knapp et al., 1990), polymerization catalysts (Stibrany et al., 2003), 19F NMR polymerization catalyst probes (Stibrany, 2003), and in the formation of metal-organic copolymers (Stibrany & Potenza, 2008). In this study we extend the ring system with the addition of a fused tetrahydropyyrole.

Only two bis(benzimidazole) ligands containing quaternary bridgehead carbon atoms have been structurally characterized (Fig. 2) II (Stibrany, 2009) and III (Stibrany et al., 2003; Stibrany & Potenza, 2006). Several structures containing bis(benzimidazole) ligands with a single bridgehead carbon atom of the form CuIIN2X2, where X is a halogen, have previously been reported (Baugh et al., 2006; Stibrany, 2009; Stibrany et al., 2003; Stibrany & Potenza, 2006; Stibrany & Potenza, 2008). Of those structures, several contain tertiary bridgehead carbon atoms (3') and the remaining contain quaternary bridgehead carbon atoms (4'). The "bite" angle of the bis(benzimidazole) ligands, which is defined as the N—Cu—N angle and is constrained by the ligand structure. The previously reported average for structures containing (4') carbon bridgehead atoms was reported as 90.4 (8)° (Stibrany, 2009). This compares favorably with the title structure which is 90.45 (9)° for the N23—Cu—N13 bond angle. The essentially planar benzimidazole fragments are twisted by 26.68 (9)°. A τ4 value of 0.53 indicates the coordination geometry is approximately midway between a perfect tetrahedral coordination geometry (τ4 = 1) and a perfect square-planar geometry (τ4 = 0) (Yang et al., 2007).

Related literature top

For 19F NMR studies of related compounds, see: Stibrany (2003). For polymerization studies, see: Stibrany et al. (2003). For their use as agents to study electron transfer, see: Knapp et al. (1990). For related structures, see: Baugh et al. (2006); Stibrany (2009); Stibrany et al. (2002, 2004); Stibrany & Potenza (2006, 2008). For calculation of the four-coordination geometry, see: Yang et al. (2007).

Experimental top

In a 50 ml Erlenmeyer flask containing acetonitrile (10 ml), CuCl2.2H2O (20 mg) was dissolved. Then rac-[3-ethoxy-3-(1-ethylbenzimidazol-2-yl)-4,5- dihydro-pyrrolo[1,2-a]benzimidazole] (41 mg) was added to the flask to give a green solution. The flask was sealed in a jar containing diethyl ether designed to allow slow vapor diffusion of diethyl ether. After 3 days, yellow-green plates of the title complex formed.

Refinement top

Hydrogen atoms were positioned geometrically using a riding model, with C—H = 0.97 secondary alkyl, 0.96 primary alkyl, and 0.93 Å, and with Uiso(H) = 1.2–1.5Ueq (C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (I) showing the atom-numbering scheme. Displacement ellipsoids are shown at the 40% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Drawings of previously reported quaternary substituted bis(benzimidazoles).
rac-Dichlorido[3-ethoxy-3-(1-ethyl-1H-benzimidazol-2-yl)-2,3- dihydro-1H-pyrrolo[1,2-a]benzimidazole]copper(II) top
Crystal data top
[CuCl2(C21H22N4O)]Z = 2
Mr = 480.87F(000) = 494
Triclinic, P1Dx = 1.522 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9409 (17) ÅCell parameters from 897 reflections
b = 9.5209 (18) Åθ = 5.0–50.8°
c = 14.323 (3) ŵ = 1.32 mm1
α = 106.973 (4)°T = 294 K
β = 92.373 (4)°Cleaved plate, yellow-green
γ = 113.778 (4)°0.43 × 0.23 × 0.06 mm
V = 1049.3 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4126 independent reflections
Radiation source: fine-focus sealed tube3380 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 26.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000; Blessing, 1995)
h = 1111
Tmin = 0.771, Tmax = 1.00k = 1111
10062 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0832P)2 + 0.250P]
where P = (Fo2 + 2Fc2)/3
4126 reflections(Δ/σ)max = 0.001
264 parametersΔρmax = 0.90 e Å3
1 restraintΔρmin = 0.29 e Å3
Crystal data top
[CuCl2(C21H22N4O)]γ = 113.778 (4)°
Mr = 480.87V = 1049.3 (3) Å3
Triclinic, P1Z = 2
a = 8.9409 (17) ÅMo Kα radiation
b = 9.5209 (18) ŵ = 1.32 mm1
c = 14.323 (3) ÅT = 294 K
α = 106.973 (4)°0.43 × 0.23 × 0.06 mm
β = 92.373 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4126 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000; Blessing, 1995)
3380 reflections with I > 2σ(I)
Tmin = 0.771, Tmax = 1.00Rint = 0.027
10062 measured reflectionsθmax = 26.1°
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.124Δρmax = 0.90 e Å3
S = 1.00Δρmin = 0.29 e Å3
4126 reflectionsAbsolute structure: ?
264 parametersFlack parameter: ?
1 restraintRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.05985 (4)1.12548 (4)0.28616 (3)0.04148 (15)
Cl10.11321 (11)1.17616 (13)0.15011 (7)0.0642 (3)
Cl20.17411 (11)1.26316 (11)0.38646 (7)0.0588 (2)
O10.0067 (3)0.7244 (3)0.15123 (16)0.0505 (5)
N110.3553 (3)1.0483 (3)0.21160 (19)0.0420 (6)
N130.1575 (3)1.1244 (3)0.25783 (17)0.0375 (5)
N210.0518 (3)0.7479 (3)0.36364 (18)0.0410 (5)
N230.1091 (3)0.9408 (3)0.33722 (18)0.0411 (5)
C10.0961 (3)0.8415 (3)0.2462 (2)0.0385 (6)
C30.0847 (5)0.7703 (5)0.0917 (3)0.0678 (10)
H3A0.00930.86000.07290.081*
H3B0.15940.80520.12870.081*
C40.1818 (6)0.6250 (7)0.0011 (3)0.1055 (19)
H4A0.10730.58790.03290.158*
H4B0.23950.65450.04210.158*
H4C0.26070.53930.02030.158*
C110.4096 (3)1.2079 (3)0.2130 (2)0.0397 (6)
C120.2047 (3)1.0057 (3)0.2399 (2)0.0365 (6)
C130.2862 (3)1.2549 (3)0.2426 (2)0.0369 (6)
C140.3060 (4)1.4126 (4)0.2565 (2)0.0466 (7)
H140.22501.44600.27770.056*
C150.4509 (4)1.5166 (4)0.2374 (3)0.0513 (8)
H150.46791.62280.24550.062*
C160.5728 (4)1.4675 (4)0.2062 (2)0.0516 (8)
H160.66851.54150.19330.062*
C170.5561 (4)1.3137 (4)0.1939 (2)0.0483 (7)
H170.63831.28160.17380.058*
C180.4450 (4)0.9499 (4)0.1798 (3)0.0625 (10)
H18A0.56291.02110.19240.075*
H18B0.42790.87870.21890.075*
C190.3921 (9)0.8517 (9)0.0753 (4)0.145 (3)
H19A0.27900.77190.06380.217*
H19B0.46200.79760.05630.217*
H19C0.40040.92060.03650.217*
C210.1714 (3)0.7566 (3)0.4191 (2)0.0407 (6)
C220.0218 (3)0.8560 (3)0.3164 (2)0.0375 (6)
C230.2082 (3)0.8786 (3)0.4025 (2)0.0397 (6)
C240.3296 (4)0.9138 (4)0.4451 (3)0.0535 (8)
H240.35430.99520.43560.064*
C250.4141 (4)0.8241 (4)0.5026 (3)0.0575 (8)
H250.49790.84450.53140.069*
C260.3756 (4)0.7040 (4)0.5180 (2)0.0526 (8)
H260.43450.64630.55720.063*
C270.2544 (4)0.6675 (4)0.4778 (2)0.0497 (7)
H270.22880.58760.48900.060*
C280.0448 (4)0.6532 (4)0.3416 (3)0.0513 (8)
H28A0.02220.54330.29620.062*
H28B0.09450.64860.40150.062*
C290.1774 (4)0.7556 (4)0.2925 (3)0.0492 (7)
H29A0.20950.68600.24170.059*
H29B0.27550.83540.34160.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0349 (2)0.0438 (2)0.0595 (3)0.02188 (17)0.01855 (16)0.02833 (18)
Cl10.0509 (5)0.0988 (7)0.0767 (6)0.0443 (5)0.0264 (4)0.0576 (5)
Cl20.0677 (5)0.0548 (5)0.0766 (6)0.0398 (4)0.0346 (4)0.0319 (4)
O10.0545 (13)0.0378 (11)0.0488 (12)0.0117 (10)0.0105 (10)0.0121 (9)
N110.0327 (12)0.0374 (13)0.0589 (15)0.0155 (10)0.0175 (10)0.0186 (11)
N130.0279 (11)0.0363 (12)0.0499 (13)0.0122 (10)0.0101 (9)0.0187 (10)
N210.0402 (13)0.0358 (12)0.0511 (14)0.0155 (10)0.0124 (10)0.0215 (11)
N230.0384 (13)0.0376 (13)0.0543 (14)0.0172 (11)0.0173 (11)0.0227 (11)
C10.0362 (14)0.0312 (14)0.0483 (15)0.0146 (12)0.0098 (11)0.0133 (12)
C30.063 (2)0.066 (2)0.054 (2)0.0090 (19)0.0028 (17)0.0210 (18)
C40.091 (3)0.102 (4)0.058 (2)0.014 (3)0.003 (2)0.020 (2)
C110.0328 (14)0.0373 (15)0.0468 (15)0.0123 (12)0.0087 (11)0.0152 (12)
C120.0284 (13)0.0365 (14)0.0455 (15)0.0133 (11)0.0091 (11)0.0157 (12)
C130.0304 (13)0.0368 (14)0.0425 (15)0.0116 (11)0.0056 (11)0.0163 (12)
C140.0405 (16)0.0413 (16)0.0608 (19)0.0179 (13)0.0113 (13)0.0209 (14)
C150.0447 (17)0.0374 (16)0.069 (2)0.0128 (14)0.0041 (15)0.0222 (15)
C160.0336 (15)0.0453 (17)0.0633 (19)0.0011 (13)0.0041 (13)0.0245 (15)
C170.0320 (15)0.0505 (18)0.0619 (19)0.0141 (13)0.0135 (13)0.0233 (15)
C180.051 (2)0.054 (2)0.097 (3)0.0285 (17)0.0366 (19)0.034 (2)
C190.128 (6)0.139 (6)0.143 (6)0.072 (5)0.030 (5)0.005 (5)
C210.0364 (14)0.0371 (15)0.0453 (15)0.0114 (12)0.0081 (12)0.0157 (12)
C220.0338 (14)0.0314 (14)0.0451 (15)0.0101 (11)0.0074 (11)0.0157 (12)
C230.0361 (14)0.0333 (14)0.0462 (16)0.0103 (12)0.0118 (12)0.0150 (12)
C240.0511 (18)0.0455 (18)0.070 (2)0.0229 (15)0.0246 (16)0.0241 (16)
C250.0498 (19)0.054 (2)0.067 (2)0.0194 (16)0.0293 (16)0.0201 (17)
C260.0499 (18)0.0497 (18)0.0485 (17)0.0088 (15)0.0150 (14)0.0211 (15)
C270.0501 (18)0.0448 (17)0.0517 (18)0.0125 (14)0.0109 (14)0.0242 (14)
C280.0536 (18)0.0479 (18)0.068 (2)0.0294 (16)0.0194 (15)0.0290 (16)
C290.0477 (17)0.0435 (17)0.068 (2)0.0259 (14)0.0170 (15)0.0251 (15)
Geometric parameters (Å, º) top
Cu—N231.993 (2)C14—C151.373 (4)
Cu—N132.005 (2)C14—H140.9300
Cu—Cl12.2169 (9)C15—C161.391 (5)
Cu—Cl22.2198 (9)C15—H150.9300
O1—C31.426 (4)C16—C171.366 (5)
O1—C11.428 (3)C16—H160.9300
N11—C121.357 (3)C17—H170.9300
N11—C111.390 (4)C18—C191.452 (6)
N11—C181.454 (4)C18—H18A0.9700
N13—C121.321 (4)C18—H18B0.9700
N13—C131.393 (4)C19—H19A0.9600
N21—C221.338 (3)C19—H19B0.9600
N21—C211.373 (4)C19—H19C0.9600
N21—C281.464 (4)C21—C271.392 (4)
N23—C221.318 (4)C21—C231.405 (4)
N23—C231.407 (3)C23—C241.375 (4)
C1—C121.504 (4)C24—C251.386 (5)
C1—C221.505 (4)C24—H240.9300
C1—C291.546 (4)C25—C261.391 (5)
C3—C41.498 (6)C25—H250.9300
C3—H3A0.9700C26—C271.365 (5)
C3—H3B0.9700C26—H260.9300
C4—H4A0.9600C27—H270.9300
C4—H4B0.9600C28—C291.545 (4)
C4—H4C0.9600C28—H28A0.9700
C11—C131.386 (4)C28—H28B0.9700
C11—C171.390 (4)C29—H29A0.9700
C13—C141.391 (4)C29—H29B0.9700
N23—Cu—N1390.45 (9)C17—C16—C15121.9 (3)
N23—Cu—Cl1141.12 (8)C17—C16—H16119.0
N13—Cu—Cl194.14 (7)C15—C16—H16119.0
N23—Cu—Cl2100.17 (7)C16—C17—C11116.5 (3)
N13—Cu—Cl2143.67 (8)C16—C17—H17121.8
Cl1—Cu—Cl298.64 (4)C11—C17—H17121.8
C3—O1—C1116.9 (2)C19—C18—N11112.5 (4)
C12—N11—C11106.7 (2)C19—C18—H18A109.1
C12—N11—C18129.1 (3)N11—C18—H18A109.1
C11—N11—C18124.2 (2)C19—C18—H18B109.1
C12—N13—C13106.1 (2)N11—C18—H18B109.1
C12—N13—Cu130.38 (19)H18A—C18—H18B107.8
C13—N13—Cu123.17 (18)C18—C19—H19A109.5
C22—N21—C21107.9 (2)C18—C19—H19B109.5
C22—N21—C28114.1 (2)H19A—C19—H19B109.5
C21—N21—C28138.0 (3)C18—C19—H19C109.5
C22—N23—C23104.6 (2)H19A—C19—H19C109.5
C22—N23—Cu118.62 (19)H19B—C19—H19C109.5
C23—N23—Cu136.46 (19)N21—C21—C27132.3 (3)
O1—C1—C12112.2 (2)N21—C21—C23105.3 (2)
O1—C1—C22110.5 (2)C27—C21—C23122.3 (3)
C12—C1—C22110.3 (2)N23—C22—N21113.5 (3)
O1—C1—C29104.6 (2)N23—C22—C1135.6 (3)
C12—C1—C29118.8 (2)N21—C22—C1110.7 (2)
C22—C1—C2999.6 (2)C24—C23—C21120.1 (3)
O1—C3—C4107.8 (4)C24—C23—N23131.1 (3)
O1—C3—H3A110.1C21—C23—N23108.8 (2)
C4—C3—H3A110.1C23—C24—C25117.9 (3)
O1—C3—H3B110.1C23—C24—H24121.1
C4—C3—H3B110.1C25—C24—H24121.1
H3A—C3—H3B108.5C24—C25—C26121.0 (3)
C3—C4—H4A109.5C24—C25—H25119.5
C3—C4—H4B109.5C26—C25—H25119.5
H4A—C4—H4B109.5C27—C26—C25122.5 (3)
C3—C4—H4C109.5C27—C26—H26118.8
H4A—C4—H4C109.5C25—C26—H26118.8
H4B—C4—H4C109.5C26—C27—C21116.2 (3)
C13—C11—C17122.0 (3)C26—C27—H27121.9
C13—C11—N11106.4 (2)C21—C27—H27121.9
C17—C11—N11131.6 (3)N21—C28—C29100.3 (2)
N13—C12—N11112.2 (2)N21—C28—H28A111.7
N13—C12—C1122.2 (2)C29—C28—H28A111.7
N11—C12—C1125.5 (2)N21—C28—H28B111.7
C11—C13—C14120.9 (3)C29—C28—H28B111.7
C11—C13—N13108.6 (2)H28A—C28—H28B109.5
C14—C13—N13130.4 (3)C28—C29—C1106.2 (2)
C15—C14—C13116.8 (3)C28—C29—H29A110.5
C15—C14—H14121.6C1—C29—H29A110.5
C13—C14—H14121.6C28—C29—H29B110.5
C14—C15—C16121.9 (3)C1—C29—H29B110.5
C14—C15—H15119.1H29A—C29—H29B108.7
C16—C15—H15119.1
N23—Cu—N13—C1225.1 (3)C14—C15—C16—C170.8 (5)
Cl1—Cu—N13—C12116.3 (2)C15—C16—C17—C110.8 (5)
Cl2—Cu—N13—C12133.1 (2)C13—C11—C17—C160.3 (5)
N23—Cu—N13—C13162.5 (2)N11—C11—C17—C16177.3 (3)
Cl1—Cu—N13—C1356.1 (2)C12—N11—C18—C1983.6 (5)
Cl2—Cu—N13—C1354.5 (3)C11—N11—C18—C1992.7 (5)
N13—Cu—N23—C2215.8 (2)C22—N21—C21—C27176.2 (3)
Cl1—Cu—N23—C2281.4 (2)C28—N21—C21—C272.1 (6)
Cl2—Cu—N23—C22160.9 (2)C22—N21—C21—C230.8 (3)
N13—Cu—N23—C23156.1 (3)C28—N21—C21—C23179.1 (3)
Cl1—Cu—N23—C23106.8 (3)C23—N23—C22—N211.5 (3)
Cl2—Cu—N23—C2311.0 (3)Cu—N23—C22—N21172.72 (19)
C3—O1—C1—C1251.1 (3)C23—N23—C22—C1173.0 (3)
C3—O1—C1—C2272.5 (3)Cu—N23—C22—C112.8 (4)
C3—O1—C1—C29178.8 (3)C21—N21—C22—N231.5 (3)
C1—O1—C3—C4174.3 (3)C28—N21—C22—N23179.8 (3)
C12—N11—C11—C130.1 (3)C21—N21—C22—C1174.4 (2)
C18—N11—C11—C13176.9 (3)C28—N21—C22—C14.3 (3)
C12—N11—C11—C17177.8 (3)O1—C1—C22—N2386.1 (4)
C18—N11—C11—C175.2 (5)C12—C1—C22—N2338.5 (4)
C13—N13—C12—N111.3 (3)C29—C1—C22—N23164.2 (3)
Cu—N13—C12—N11172.07 (19)O1—C1—C22—N2188.5 (3)
C13—N13—C12—C1178.6 (3)C12—C1—C22—N21146.9 (2)
Cu—N13—C12—C15.2 (4)C29—C1—C22—N2121.1 (3)
C11—N11—C12—N130.9 (3)N21—C21—C23—C24177.6 (3)
C18—N11—C12—N13175.9 (3)C27—C21—C23—C240.2 (5)
C11—N11—C12—C1178.1 (3)N21—C21—C23—N230.1 (3)
C18—N11—C12—C11.3 (5)C27—C21—C23—N23177.5 (3)
O1—C1—C12—N1397.8 (3)C22—N23—C23—C24176.4 (3)
C22—C1—C12—N1325.9 (4)Cu—N23—C23—C2411.0 (5)
C29—C1—C12—N13139.9 (3)C22—N23—C23—C210.9 (3)
O1—C1—C12—N1179.1 (3)Cu—N23—C23—C21171.7 (2)
C22—C1—C12—N11157.2 (3)C21—C23—C24—C250.9 (5)
C29—C1—C12—N1143.2 (4)N23—C23—C24—C25176.1 (3)
C17—C11—C13—C141.4 (5)C23—C24—C25—C261.0 (5)
N11—C11—C13—C14176.7 (3)C24—C25—C26—C270.2 (5)
C17—C11—C13—N13178.8 (3)C25—C26—C27—C210.6 (5)
N11—C11—C13—N130.7 (3)N21—C21—C27—C26176.0 (3)
C12—N13—C13—C111.2 (3)C23—C21—C27—C260.6 (4)
Cu—N13—C13—C11172.76 (18)C22—N21—C28—C2914.7 (3)
C12—N13—C13—C14175.9 (3)C21—N21—C28—C29167.1 (3)
Cu—N13—C13—C1410.1 (4)N21—C28—C29—C127.3 (3)
C11—C13—C14—C151.4 (5)O1—C1—C29—C2884.9 (3)
N13—C13—C14—C15178.2 (3)C12—C1—C29—C28149.1 (3)
C13—C14—C15—C160.4 (5)C22—C1—C29—C2829.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C11/C13–C17 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C4—H4B···Cg1i0.962.993.910 (5)160
C17—H17···Cl1ii0.932.783.694 (4)169
Symmetry codes: (i) x, y+2, z; (ii) x+1, y, z.
Selected geometric parameters (Å, º) top
Cu—N231.993 (2)Cu—Cl12.2169 (9)
Cu—N132.005 (2)Cu—Cl22.2198 (9)
N23—Cu—N1390.45 (9)N23—Cu—Cl2100.17 (7)
N23—Cu—Cl1141.12 (8)N13—Cu—Cl2143.67 (8)
N13—Cu—Cl194.14 (7)Cl1—Cu—Cl298.64 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C11/C13–C17 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C4—H4B···Cg1i0.962.993.910 (5)160
C17—H17···Cl1ii0.932.783.694 (4)169
Symmetry codes: (i) x, y+2, z; (ii) x+1, y, z.
references
References top

Baugh, L. S., Sissano, J. A., Kacker, S., Berluche, E., Stibrany, R. T., Schulz, D. N. & Rucker, S. P. (2006). J. Polymer Sci. Part A: Polymer Chem. 44, 1817–1840.

Blessing, R. H. (1995). Acta Cryst. A51, 33–38.

Bruker (2000). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Knapp, S., Keenan, T. P., Zhang, X., Fikar, R., Potenza, J. A. & Schugar, H. J. (1990). J. Am. Chem. Soc. 112, 3452–3464.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Stibrany, R. T. (2003). Copper-Based Olefin Polymerization Catalysts: High-Pressure 19F NMR Catalyst Probe, ACS Symp. Ser. 857, Beyond Metallocenes, edited by G. G. Hlatky & A. O. Patil, pp. 210–221. Washington, DC: ACS Press.

Stibrany, R. T. (2009). J. Chem. Crystallogr. 39, 719–722.

Stibrany, R. T., Lobanov, M. V., Schugar, H. J. & Potenza, J. A. (2004). Inorg. Chem. 43, 1472–1480.

Stibrany, R. T. & Potenza, J. A. (2006). Private communication (deposition number CCDC 618562). CCDC, Cambridge, England. Can you give the REFCODE?

Stibrany, R. T. & Potenza, J. A. (2008). Acta Cryst. C64, m213–m216.

Stibrany, R. T., Schugar, H. J. & Potenza, J. A. (2002). Acta Cryst. E58, o1142–o1144.

Stibrany, R. T., Schulz, D. N., Kacker, S., Patil, A. O., Baugh, L. S., Rucker, S. P., Zushma, S., Berluche, E. & Sissano, J. A. (2003). Macromolecules, 36, 8584–8586.

Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.