supplementary materials


pv2620 scheme

Acta Cryst. (2013). E69, o447    [ doi:10.1107/S1600536813005023 ]

1[beta],15[alpha]-Dihydroxy-16[alpha],17-epoxypregn-4-ene-3,20-dione

Y.-B. Shen, Y.-B. Wang, J.-M. Luo and M. Wang

Abstract top

The title molecule, C21H28O5, is composed of three six-membered rings (A/B/C) and a five-membered ring (D). Ring A adopts a 1[alpha]-sofa conformation, while rings B and C adopt chair conformations. Cyclopentane ring D adopts a 14[alpha]-envelope conformation. In the crystal, O-H...O hydrogen bonds lead to the formation of ribbons running along the a axis. The structure is further consolidated by C-H...O interactions, which link the molecules head-to-tail into ribbons along the a axis.

Comment top

16α,17α-Epoxyprogesterone (EP) is an important intermediate for many hormone based pharmaceuticals, such as hydrocortisone and megestrol, produced through 11α-hydroxylation by microorganisms in the industry (Zhou et al., 2009; Breskvar et al., 1995).

The bond distances and angles in the title compound (Fig. 1) agree very well with the corresponding bond distances and angles reported in a closely related compound (Nie et al., 2005). The title compound has three six-membered rings (A/B/C) and one five-membered rings (D). Ring A has a 1α-sofa conformation. Rings B and C adopt chair conformations, while the cyclopentane ring D adopts a 14α-envelope conformation. The 1-hydroxy is in β and 15-hydroxy in α configuration. In the crystal packing (Fig. 2 & Tab 1), there are intermolecular hydrogen bonds O3—H3···O5 and O1—H1···O4 which stabilize the structure and contribute to the formation of one-dimensional ribbons running along the a-axis. The structure is further consolidated by intermolecular hydrogen bonding interactions of the tyoe C—H···O (Tab. 1).

Related literature top

For background to 16α,17α-epoxyprogesterone, see: Breskvar et al. (1995); Zhou et al. (2009). For the crystal structure of a related compound, see: Nie et al. (2005).

Experimental top

Colletotrichum lini AS3. 4486 was obtained from Institute of Microbiology, Chinese Academy of Sciences. The strain was cultivated in shake flasks in two stages. Firstly, mycelium was grown on seed medium (glucose 30 g/L, corn steep liquor 10 g/L, pH 7.0) for 72 h on a rotary shaker (200 r/min) at 298 K. At the second stage, 10% (v/v) of the first mycelium obtained were added to the growing medium containing (g/l): glucose 30, corn steep liquor 10, soy meal 10, NaNO3 2, KH2PO4 1, K2HPO4 2, MgSO4.7H2O 0.5, KCl 0.5, FeSO4.7H2O 0.02 (pH 7.0) and incubated for 24 h at the same conditions. Thereafter 50 mg of the 16α,17α-epoxyprogesterone dissolved in 1 ml of ethanol was added to the culture after 24 h for growth and the reaction was allowed to proceed for 72 h. The mycelium was then removed by filteration. The biomass and the broth were extracted separately with EtOAc. All extracts were combined and dried (anhydr. Na2SO4). The solvents after filtration were evaporated under reduced pressure. The crude extracts were purified by Si gel column using dichloromethane/ether/methanol (25:2:1, v/v/v). The white powder was diffused with n-hexane/acetone at room temperature. Colourless prismatic crystals suitable for X-ray analysis were obtained.

Refinement top

The hydroxyl H atoms were located from difference Fourier maps and refined freely. The H atoms bonded to C atoms were positioned geometrically and refined using a riding model, with C—H = 0.95, 0.98, 0.99, 1.00 Å, for aryl, methyl, methylene and methyne H-atoms, respectively. The Uiso(H) were allowed at 1.5Ueq(C methyl) or 1.2Ueq(C non-methyl). In the absence of sufficient anomalous dispersion effects in diffraction measurements, an absolute structure was not determined 1815 Friedel pairs were not merged.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with 18% probability ellipsoids
[Figure 2] Fig. 2. A view of the unit cell packing of the title compound showing intermolecular O—H···O hydrogen bonds forming ribbons of molecules running along the a-axis.
1β,15α-Dihydroxy-16α,17-epoxypregn-4-ene-3,20-dione top
Crystal data top
C21H28O5F(000) = 776
Mr = 360.43Dx = 1.339 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4859 reflections
a = 7.6372 (10) Åθ = 1.9–27.9°
b = 13.7067 (16) ŵ = 0.09 mm1
c = 17.083 (2) ÅT = 113 K
V = 1788.3 (4) Å3Prism, colorless
Z = 40.22 × 0.18 × 0.14 mm
Data collection top
Rigaku Saturn 724CCD
diffractometer
4237 independent reflections
Radiation source: rotating anode3529 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.062
Detector resolution: 14.22 pixels mm-1θmax = 27.9°, θmin = 1.9°
ω scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1818
Tmin = 0.980, Tmax = 0.987l = 2222
18889 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.032P)2]
where P = (Fo2 + 2Fc2)/3
4237 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C21H28O5V = 1788.3 (4) Å3
Mr = 360.43Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.6372 (10) ŵ = 0.09 mm1
b = 13.7067 (16) ÅT = 113 K
c = 17.083 (2) Å0.22 × 0.18 × 0.14 mm
Data collection top
Rigaku Saturn 724CCD
diffractometer
4237 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3529 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.987Rint = 0.062
18889 measured reflectionsθmax = 27.9°
Refinement top
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.077Δρmax = 0.20 e Å3
S = 0.94Δρmin = 0.23 e Å3
4237 reflectionsAbsolute structure: ?
246 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.49950 (15)0.92527 (9)0.12185 (7)0.0224 (3)
H10.551 (3)0.9592 (16)0.0847 (13)0.057 (8)*
O20.03424 (16)1.15599 (9)0.13838 (7)0.0277 (3)
O30.19159 (16)0.52524 (9)0.08958 (7)0.0229 (3)
H30.255 (3)0.4733 (15)0.0906 (13)0.045 (7)*
O40.12518 (14)0.44448 (8)0.00189 (6)0.0185 (3)
O50.54475 (15)0.38806 (9)0.07485 (7)0.0263 (3)
C10.3139 (2)0.94276 (12)0.11529 (10)0.0166 (4)
H1A0.28100.93950.05870.020*
C20.2779 (2)1.04568 (12)0.14471 (11)0.0206 (4)
H2A0.32321.05200.19880.025*
H2B0.34201.09280.11140.025*
C30.0870 (2)1.07134 (13)0.14422 (9)0.0199 (4)
C40.0321 (2)0.98930 (13)0.15609 (9)0.0193 (4)
H40.15441.00190.15490.023*
C50.0208 (2)0.89693 (12)0.16862 (9)0.0160 (4)
C60.1108 (2)0.82234 (12)0.19573 (10)0.0190 (4)
H6A0.22990.85010.19030.023*
H6B0.09090.80880.25200.023*
C70.1019 (2)0.72628 (12)0.15031 (10)0.0172 (4)
H7A0.17930.67760.17550.021*
H7B0.14400.73680.09620.021*
C80.0854 (2)0.68738 (12)0.14825 (9)0.0143 (3)
H80.12430.67390.20310.017*
C90.2095 (2)0.76441 (12)0.11175 (9)0.0140 (4)
H90.15750.78110.05970.017*
C100.2117 (2)0.86252 (12)0.15956 (9)0.0152 (4)
C110.3945 (2)0.72402 (12)0.09401 (10)0.0171 (4)
H11A0.45670.77140.06030.020*
H11B0.46010.71920.14380.020*
C120.3979 (2)0.62358 (12)0.05362 (9)0.0161 (4)
H12A0.35270.62970.00050.019*
H12B0.51990.59940.05080.019*
C130.2860 (2)0.55152 (12)0.09924 (9)0.0141 (4)
C140.0983 (2)0.59318 (11)0.10095 (9)0.0145 (4)
H140.07050.61160.04570.017*
C150.0208 (2)0.50721 (12)0.12027 (10)0.0164 (4)
H150.02630.49670.17810.020*
C160.0699 (2)0.42251 (12)0.08075 (9)0.0171 (4)
H160.03940.35400.09560.020*
C170.2552 (2)0.44928 (12)0.06428 (9)0.0154 (4)
C180.3623 (2)0.53329 (13)0.18182 (9)0.0185 (4)
H18A0.29830.47980.20700.028*
H18B0.35050.59260.21340.028*
H18C0.48630.51580.17740.028*
C190.2903 (2)0.84768 (12)0.24259 (9)0.0185 (4)
H19A0.28640.90950.27140.028*
H19B0.41210.82580.23800.028*
H19C0.22210.79840.27080.028*
C200.3939 (2)0.37170 (12)0.05503 (9)0.0171 (4)
C210.3414 (2)0.27630 (13)0.02084 (11)0.0235 (4)
H21A0.30400.28580.03350.035*
H21B0.24450.24880.05130.035*
H21C0.44120.23140.02220.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0168 (7)0.0216 (7)0.0286 (7)0.0011 (6)0.0030 (6)0.0020 (6)
O20.0319 (8)0.0174 (7)0.0339 (7)0.0057 (6)0.0032 (6)0.0027 (6)
O30.0141 (7)0.0206 (7)0.0341 (7)0.0022 (6)0.0049 (6)0.0006 (6)
O40.0173 (6)0.0210 (6)0.0172 (6)0.0004 (5)0.0026 (5)0.0010 (5)
O50.0169 (7)0.0224 (7)0.0397 (8)0.0009 (6)0.0023 (6)0.0068 (6)
C10.0127 (9)0.0166 (9)0.0206 (9)0.0005 (8)0.0010 (7)0.0009 (8)
C20.0225 (10)0.0152 (9)0.0240 (9)0.0014 (8)0.0014 (8)0.0005 (8)
C30.0267 (10)0.0183 (9)0.0147 (8)0.0034 (8)0.0010 (8)0.0016 (8)
C40.0188 (9)0.0207 (9)0.0186 (9)0.0012 (8)0.0014 (7)0.0028 (8)
C50.0181 (9)0.0165 (9)0.0135 (8)0.0005 (8)0.0007 (7)0.0042 (7)
C60.0155 (9)0.0195 (9)0.0218 (9)0.0000 (8)0.0016 (7)0.0014 (8)
C70.0153 (9)0.0156 (8)0.0209 (8)0.0010 (7)0.0006 (8)0.0016 (7)
C80.0116 (8)0.0155 (8)0.0159 (8)0.0012 (7)0.0017 (7)0.0010 (7)
C90.0127 (9)0.0153 (9)0.0142 (8)0.0006 (7)0.0001 (7)0.0006 (7)
C100.0144 (9)0.0153 (9)0.0160 (8)0.0003 (7)0.0001 (7)0.0008 (7)
C110.0164 (9)0.0145 (8)0.0204 (8)0.0021 (7)0.0029 (8)0.0013 (7)
C120.0130 (9)0.0153 (8)0.0198 (8)0.0005 (8)0.0017 (7)0.0010 (7)
C130.0130 (9)0.0145 (8)0.0148 (8)0.0007 (7)0.0008 (7)0.0000 (7)
C140.0140 (9)0.0154 (8)0.0140 (8)0.0008 (7)0.0011 (7)0.0003 (7)
C150.0128 (9)0.0164 (9)0.0199 (8)0.0006 (7)0.0002 (7)0.0011 (7)
C160.0184 (10)0.0160 (9)0.0167 (8)0.0019 (7)0.0010 (7)0.0032 (7)
C170.0158 (9)0.0156 (9)0.0146 (8)0.0006 (8)0.0018 (7)0.0014 (7)
C180.0181 (10)0.0188 (9)0.0187 (8)0.0008 (8)0.0012 (7)0.0010 (7)
C190.0186 (10)0.0194 (9)0.0176 (9)0.0012 (8)0.0004 (7)0.0017 (7)
C200.0190 (10)0.0150 (9)0.0173 (8)0.0006 (8)0.0025 (8)0.0018 (7)
C210.0213 (11)0.0182 (10)0.0310 (10)0.0003 (8)0.0010 (8)0.0023 (8)
Geometric parameters (Å, º) top
O1—C11.4421 (19)C9—C101.573 (2)
O1—H10.88 (2)C9—H91.0000
O2—C31.232 (2)C10—C191.554 (2)
O3—C151.4270 (19)C11—C121.540 (2)
O3—H30.86 (2)C11—H11A0.9900
O4—C161.4434 (19)C11—H11B0.9900
O4—C171.4583 (19)C12—C131.521 (2)
O5—C201.2213 (19)C12—H12A0.9900
C1—C21.523 (2)C12—H12B0.9900
C1—C101.546 (2)C13—C171.541 (2)
C1—H1A1.0000C13—C141.543 (2)
C2—C31.499 (2)C13—C181.547 (2)
C2—H2A0.9900C14—C151.525 (2)
C2—H2B0.9900C14—H141.0000
C3—C41.461 (2)C15—C161.511 (2)
C4—C51.346 (2)C15—H151.0000
C4—H40.9500C16—C171.488 (2)
C5—C61.507 (2)C16—H161.0000
C5—C101.540 (2)C17—C201.509 (2)
C6—C71.530 (2)C18—H18A0.9800
C6—H6A0.9900C18—H18B0.9800
C6—H6B0.9900C18—H18C0.9800
C7—C81.527 (2)C19—H19A0.9800
C7—H7A0.9900C19—H19B0.9800
C7—H7B0.9900C19—H19C0.9800
C8—C141.526 (2)C20—C211.487 (2)
C8—C91.550 (2)C21—H21A0.9800
C8—H81.0000C21—H21B0.9800
C9—C111.548 (2)C21—H21C0.9800
C1—O1—H1107.2 (14)H11A—C11—H11B107.5
C15—O3—H3111.2 (14)C13—C12—C11109.95 (13)
C16—O4—C1761.72 (10)C13—C12—H12A109.7
O1—C1—C2107.82 (14)C11—C12—H12A109.7
O1—C1—C10109.88 (13)C13—C12—H12B109.7
C2—C1—C10113.98 (14)C11—C12—H12B109.7
O1—C1—H1A108.3H12A—C12—H12B108.2
C2—C1—H1A108.3C12—C13—C17118.52 (14)
C10—C1—H1A108.3C12—C13—C14106.96 (13)
C3—C2—C1113.03 (15)C17—C13—C14101.66 (13)
C3—C2—H2A109.0C12—C13—C18111.13 (13)
C1—C2—H2A109.0C17—C13—C18105.30 (13)
C3—C2—H2B109.0C14—C13—C18113.11 (13)
C1—C2—H2B109.0C15—C14—C8120.04 (13)
H2A—C2—H2B107.8C15—C14—C13105.81 (13)
O2—C3—C4122.16 (16)C8—C14—C13112.52 (13)
O2—C3—C2122.65 (16)C15—C14—H14105.8
C4—C3—C2115.09 (15)C8—C14—H14105.8
C5—C4—C3124.00 (16)C13—C14—H14105.8
C5—C4—H4118.0O3—C15—C16112.84 (14)
C3—C4—H4118.0O3—C15—C14109.39 (13)
C4—C5—C6119.13 (16)C16—C15—C14102.90 (13)
C4—C5—C10123.80 (16)O3—C15—H15110.5
C6—C5—C10117.04 (14)C16—C15—H15110.5
C5—C6—C7113.48 (13)C14—C15—H15110.5
C5—C6—H6A108.9O4—C16—C1759.63 (10)
C7—C6—H6A108.9O4—C16—C15113.00 (13)
C5—C6—H6B108.9C17—C16—C15109.33 (14)
C7—C6—H6B108.9O4—C16—H16120.1
H6A—C6—H6B107.7C17—C16—H16120.1
C8—C7—C6110.73 (14)C15—C16—H16120.1
C8—C7—H7A109.5O4—C17—C1658.65 (10)
C6—C7—H7A109.5O4—C17—C20111.69 (13)
C8—C7—H7B109.5C16—C17—C20120.89 (14)
C6—C7—H7B109.5O4—C17—C13115.34 (13)
H7A—C7—H7B108.1C16—C17—C13107.21 (13)
C14—C8—C7111.60 (13)C20—C17—C13125.04 (14)
C14—C8—C9108.89 (13)C13—C18—H18A109.5
C7—C8—C9110.14 (13)C13—C18—H18B109.5
C14—C8—H8108.7H18A—C18—H18B109.5
C7—C8—H8108.7C13—C18—H18C109.5
C9—C8—H8108.7H18A—C18—H18C109.5
C11—C9—C8113.17 (14)H18B—C18—H18C109.5
C11—C9—C10113.43 (13)C10—C19—H19A109.5
C8—C9—C10112.33 (12)C10—C19—H19B109.5
C11—C9—H9105.7H19A—C19—H19B109.5
C8—C9—H9105.7C10—C19—H19C109.5
C10—C9—H9105.7H19A—C19—H19C109.5
C5—C10—C1108.00 (13)H19B—C19—H19C109.5
C5—C10—C19108.31 (13)O5—C20—C21121.64 (16)
C1—C10—C19110.15 (13)O5—C20—C17120.23 (15)
C5—C10—C9107.70 (13)C21—C20—C17118.12 (15)
C1—C10—C9111.07 (13)C20—C21—H21A109.5
C19—C10—C9111.47 (13)C20—C21—H21B109.5
C12—C11—C9115.02 (13)H21A—C21—H21B109.5
C12—C11—H11A108.5C20—C21—H21C109.5
C9—C11—H11A108.5H21A—C21—H21C109.5
C12—C11—H11B108.5H21B—C21—H21C109.5
C9—C11—H11B108.5
O1—C1—C2—C3177.45 (14)C7—C8—C14—C1553.53 (19)
C10—C1—C2—C355.2 (2)C9—C8—C14—C15175.33 (13)
C1—C2—C3—O2153.53 (16)C7—C8—C14—C13179.01 (13)
C1—C2—C3—C430.1 (2)C9—C8—C14—C1359.20 (17)
O2—C3—C4—C5174.79 (17)C12—C13—C14—C15160.68 (13)
C2—C3—C4—C51.6 (2)C17—C13—C14—C1535.75 (15)
C3—C4—C5—C6168.03 (15)C18—C13—C14—C1576.65 (17)
C3—C4—C5—C109.8 (3)C12—C13—C14—C866.43 (16)
C4—C5—C6—C7133.18 (16)C17—C13—C14—C8168.64 (12)
C10—C5—C6—C748.82 (19)C18—C13—C14—C856.24 (18)
C5—C6—C7—C851.31 (19)C8—C14—C15—O377.47 (18)
C6—C7—C8—C14178.18 (13)C13—C14—C15—O3153.96 (13)
C6—C7—C8—C957.10 (17)C8—C14—C15—C16162.36 (14)
C14—C8—C9—C1147.05 (17)C13—C14—C15—C1633.78 (16)
C7—C8—C9—C11169.73 (13)C17—O4—C16—C1599.68 (15)
C14—C8—C9—C10177.10 (13)O3—C15—C16—O471.90 (17)
C7—C8—C9—C1060.23 (17)C14—C15—C16—O445.87 (16)
C4—C5—C10—C113.9 (2)O3—C15—C16—C17136.24 (14)
C6—C5—C10—C1168.22 (13)C14—C15—C16—C1718.47 (17)
C4—C5—C10—C19105.41 (18)C16—O4—C17—C20113.86 (15)
C6—C5—C10—C1972.49 (17)C16—O4—C17—C1395.44 (15)
C4—C5—C10—C9133.91 (16)C15—C16—C17—O4105.92 (14)
C6—C5—C10—C948.19 (17)O4—C16—C17—C2098.04 (15)
O1—C1—C10—C5166.20 (12)C15—C16—C17—C20156.03 (14)
C2—C1—C10—C545.07 (19)O4—C16—C17—C13109.63 (13)
O1—C1—C10—C1948.08 (17)C15—C16—C17—C133.71 (17)
C2—C1—C10—C1973.04 (18)C12—C13—C17—O477.88 (18)
O1—C1—C10—C975.92 (17)C14—C13—C17—O438.94 (16)
C2—C1—C10—C9162.96 (14)C18—C13—C17—O4157.10 (13)
C11—C9—C10—C5176.74 (13)C12—C13—C17—C16140.75 (14)
C8—C9—C10—C553.34 (17)C14—C13—C17—C1623.94 (16)
C11—C9—C10—C158.67 (18)C18—C13—C17—C1694.23 (14)
C8—C9—C10—C1171.41 (13)C12—C13—C17—C2068.4 (2)
C11—C9—C10—C1964.58 (17)C14—C13—C17—C20174.80 (14)
C8—C9—C10—C1965.34 (17)C18—C13—C17—C2056.64 (19)
C8—C9—C11—C1245.42 (18)O4—C17—C20—O5146.18 (15)
C10—C9—C11—C12174.91 (13)C16—C17—C20—O5148.31 (16)
C9—C11—C12—C1351.89 (18)C13—C17—C20—O51.1 (2)
C11—C12—C13—C17173.60 (13)O4—C17—C20—C2133.4 (2)
C11—C12—C13—C1459.64 (17)C16—C17—C20—C2132.2 (2)
C11—C12—C13—C1864.26 (17)C13—C17—C20—C21179.35 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.88 (2)2.06 (2)2.929 (2)168
O3—H3···O5ii0.86 (2)1.95 (2)2.767 (2)159
C1—H1A···O3i1.002.593.527 (2)157
C6—H6A···O1ii0.992.593.527 (2)158
C12—H12B···O3iii0.992.523.468 (2)161
C21—H21B···O2iv0.982.533.501 (2)170
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x1, y, z; (iii) x+1, y, z; (iv) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.88 (2)2.06 (2)2.929 (2)168
O3—H3···O5ii0.86 (2)1.95 (2)2.767 (2)159
C1—H1A···O3i1.002.593.527 (2)157
C6—H6A···O1ii0.992.593.527 (2)158
C12—H12B···O3iii0.992.523.468 (2)161
C21—H21B···O2iv0.982.533.501 (2)170
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x1, y, z; (iii) x+1, y, z; (iv) x, y1, z.
Acknowledgements top

This work was supported by the National Natural Science Foundation of China (Nos. 21076158 and 21276196) and the National High Technology Research and Development of China (2011 A A02A211).

references
References top

Breskvar, K., Ferencak, Z. & Hudnik-Plevnik, T. (1995). J. Steroid Biochem. Mol. Biol. 52, 271–275.

Nie, Q., Wang, J.-K., Wang, S. & Zhang, M.-J. (2005). Acta Cryst. E61, o912–o913.

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Zhou, H., Lu, W., Wen, J. & Ma, L. (2009). J. Mol. Catal. B Enzym. 56, 136–141.