metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages m182-m183

[(2R,3S)-Butane-1,2,3,4-tetraol-κ3O1,O2,O3](ethanol-κO)tris­­(nitrato-κ2O,O′)samarium(III)

aChemical Engineering College, Inner Mongolia University of Technology, People's Republic of China, bBeijing National Laboratory for Molecular Sciences, The State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China, and cState Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, People's Republic of China
*Correspondence e-mail: yanglm@pku.edu.cn

(Received 4 December 2012; accepted 31 January 2013; online 2 March 2013)

The title SmIII–erythritol complex, [Sm(NO3)3(C2H6O)(C4H10O4)], is isotypic with its Nd, Eu, Y, Gd, Tb and Ho analogues. The SmIII cation exhibits a coordination number of ten and is chelated by a tridentate erythritol ligand and three bidentate nitrate anions. It is additionally coordinated by an O atom of an ethanol mol­ecule, completing an irregular coordination sphere. The Sm—O bond lengths range from 2.416 (2) to 2.611 (2) Å. In the crystal, extensive O—H⋯O hydrogen bonding involving all hy­droxy groups and some of the nitrate O atoms links the mol­ecules into a three-dimensional network.

Related literature

For background to the coordination behaviour of sugars to metal cations, see: Gottschaldt & Schubert (2009[Gottschaldt, M. & Schubert, U. S. (2009). Chem. Eur. J. 15, 1548-1557.]). For the crystal structure of free erythritol, see: Bekoe & Powell (1959[Bekoe, A. & Powell, H. M. (1959). Proc. R. Soc. London Ser. A, 250, 301-315.]). For isotypic structures of the title compound, see: Yang et al. (2003[Yang, L. M., Su, Y. L., Xu, Y. Z., Wang, Z. M., Guo, Z. H., Weng, S. F., Yan, C. H., Zhang, S. W. & Wu, J. G. (2003). Inorg. Chem. 42, 5844-5856.], 2004[Yang, L. M., Su, Y. L., Xu, Y. Z., Zhang, S. W., Wu, J. G. & Zhao, K. (2004). J. Inorg. Biochem. 98, 1251-1260.], 2012[Yang, L. M., Hua, X. H., Xue, J. H., Pan, Q. H., Yu, L., Li, W. H., Xu, Y. Z., Zhao, G. Z., Liu, L. M., Liu, K. X., Chen, J. E. & Wu, J. G. (2012). Inorg. Chem. 51, 499-510.]); Hua et al. (2013[Hua, X.-H., Xue, J.-H., Yang, L.-M., Xu, Y.-Z. & Wu, J.-G. (2013). Acta Cryst. E69, m162-m163.]).

[Scheme 1]

Experimental

Crystal data
  • [Sm(NO3)3(C2H6O)(C4H10O4)]

  • Mr = 504.57

  • Monoclinic, P 21 /c

  • a = 7.8537 (16) Å

  • b = 12.875 (3) Å

  • c = 15.252 (3) Å

  • β = 100.92 (3)°

  • V = 1514.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.96 mm−1

  • T = 173 K

  • 0.27 × 0.21 × 0.16 mm

Data collection
  • Rigaku Saturn724+ CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Inc., Tokyo, Japan.]) Tmin = 0.488, Tmax = 1.000

  • 10349 measured reflections

  • 3446 independent reflections

  • 3315 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.057

  • S = 1.22

  • 3446 reflections

  • 218 parameters

  • Δρmax = 1.33 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.84 1.83 2.668 (3) 175
O2—H2⋯O7ii 0.84 1.96 2.802 (3) 174
O2—H2⋯O8ii 0.84 2.54 3.146 (4) 130
O3—H3⋯O12iii 0.84 2.07 2.903 (3) 174
O4—H4⋯O8iv 0.84 2.09 2.910 (4) 165
O4—H4⋯O6iv 0.84 2.55 3.235 (3) 140
O5—H5⋯O11v 0.84 2.00 2.827 (4) 167
Symmetry codes: (i) -x, -y, -z+1; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x-1, y, z; (v) -x, -y, -z.

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Inc., Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal ions play important roles in the catalysis of numerous chemical and biological reactions. Interactions between carbohydrates (sugars) and metal ions may be involved in many biochemical processes (Gottschaldt & Schubert, 2009). Here the sugar alcohol erythritol was chosen as a model compound to study the coordination behavior of hydroxyl groups to f-block metal ions.

The molecular structure of the title complex, [Sm(C4H10O4)(C2H5OH)(NO3)3], denoted as SmEN, where E stands for erythritol, N stands for nitrate, is shown in Fig. 1. In the title compound the SmIII cation is 10-fold coordinated by three hydroxyl groups (O1, O2 and O3) from one erythritol molecule, by one hydroxyl group from ethanol (O5), and by three bidentate nitrate ions through O6, O7; O9, O10; O12, O13. The structure of SmEN is isotypic with its Nd, Eu, Y, Gd, Tb (Yang et al., 2003, 2004, 2012) and Ho (Hua et al., 2013) analogues. The Sm—O distances range from 2.416 (2) to 2.611 (2) Å, the average Sm—O distance being 2.499 Å. The C—C—C and the O—C–C bond angles of the central backbone in the free centrosymmetric erythritol molecule are 113° and 107°, respectively (Bekoe & Powell, 1959). After coordination, the C—C—C bond angles are 112.6 (3) and 116.7 (3)° and the O—C—C bond angles range from 104.0 (3) to 111.6 (3)° in SmEN, which indicates a subtle change of the conformation of erythritol.

The extensive hydrogen bond network in SmEN is formed by O—H···O hydrogen bonds from coordinating and uncoordinating hydroxyl groups of erythritol and ethanol and the nitrate O atoms. The coordinating hydroxyl groups O1 of erythritol forms a hydrogen bond with the uncoordinating O4 hydroxyl group of a neighbouring erythritol molecule. The coordinating O2 hydroxyl group forms a bifurcated hydrogen bonds with two oxygen atoms from a nitrate ion (O7, O8). The coordinating hydroxyl group O3 forms a hydrogen bond with an oxygen atom from another nitrate ion (O12). The non-coordinating hydroxyl group O4 is a donor of a bifurcated hydrogen bond to O8 and O6 from one nitrate ion. The ethanol hydroxy group (O5) forms a hydrogen bond with an oxygen atom from a nitrate ion (O11). Details of the hydrogen bonding are given in Table 1 and Fig. 2.

Related literature top

For background to the coordination behaviour of sugars to metal cations, see: Gottschaldt & Schubert (2009). For the crystal structure of free erythritol, see: Bekoe & Powell (1959). For isotypic structures of the title compound, see: Yang et al. (2003, 2004, 2012); Hua et al. (2013).

Experimental top

Sm(NO3)3.6H2O (3 mmol) and erythritol (3 mmol) were dissolved in 6 ml water and 6 ml ethanol. The solution was put on a water bath, and the temperature was raised to 353 K. Small aliquots of EtOH were periodically added to the solution during the heating process to prolong the reaction time. The resulting mixture was filtered and left for crystallization at room temperature. Suitable crystals for X-ray diffraction measuraments were obtained in the course of two weeks.

Refinement top

C-bound H-atoms were placed in calculated positions and were included in the refinement in the riding model approximation, Uiso(H) = 1.5Ueq(C) for methyl group carbon atoms, Uiso(H) = 1.2Ueq(C) for the other carbon atoms. O-bound H atoms were located in a difference Fourier map and were refined with distance constraints of O—H = 0.84 Å, Uiso(H) = 1.2Ueq(O). The two highest peaks in the difference map are 1.33 and 0.97 e- per Å3, respectively. The corresponding distances to the nearest atom, Sm1, are 0.866 and 0.864 Å.

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. The packing of the title complex, showing hydrogen bond interactions as dashed lines.
[(2R,3S)-Butane-1,2,3,4-tetraol-κ3O1,O2,O3](ethanol-κO)tris(nitrato-κ2O,O')samarium(III) top
Crystal data top
[Sm(NO3)3(C2H6O)(C4H10O4)]F(000) = 988
Mr = 504.57Dx = 2.213 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5882 reflections
a = 7.8537 (16) Åθ = 1.4–27.5°
b = 12.875 (3) ŵ = 3.96 mm1
c = 15.252 (3) ÅT = 173 K
β = 100.92 (3)°Block, colorless
V = 1514.4 (5) Å30.27 × 0.21 × 0.16 mm
Z = 4
Data collection top
Rigaku Saturn724+ CCD
diffractometer
3446 independent reflections
Radiation source: fine-focus sealed tube3315 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 2.1°
ω scans fixed at = 45°h = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
k = 1615
Tmin = 0.488, Tmax = 1.000l = 1919
10349 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H-atom parameters constrained
S = 1.22 w = 1/[σ2(Fo2) + (0.010P)2 + 2.6923P]
where P = (Fo2 + 2Fc2)/3
3446 reflections(Δ/σ)max = 0.001
218 parametersΔρmax = 1.33 e Å3
0 restraintsΔρmin = 0.72 e Å3
Crystal data top
[Sm(NO3)3(C2H6O)(C4H10O4)]V = 1514.4 (5) Å3
Mr = 504.57Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8537 (16) ŵ = 3.96 mm1
b = 12.875 (3) ÅT = 173 K
c = 15.252 (3) Å0.27 × 0.21 × 0.16 mm
β = 100.92 (3)°
Data collection top
Rigaku Saturn724+ CCD
diffractometer
3446 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
3315 reflections with I > 2σ(I)
Tmin = 0.488, Tmax = 1.000Rint = 0.035
10349 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 1.22Δρmax = 1.33 e Å3
3446 reflectionsΔρmin = 0.72 e Å3
218 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sm10.12473 (2)0.103866 (13)0.245568 (11)0.01311 (6)
O20.1453 (3)0.19005 (18)0.26026 (15)0.0152 (5)
H20.16270.25360.24970.018*
O70.1854 (3)0.09504 (18)0.26433 (17)0.0191 (5)
O120.1760 (3)0.2978 (2)0.23049 (18)0.0226 (6)
O90.0707 (3)0.0131 (2)0.11892 (18)0.0237 (6)
O30.0744 (3)0.00648 (18)0.32999 (16)0.0172 (5)
H30.10870.05390.31520.021*
O10.1328 (3)0.17252 (18)0.39375 (16)0.0171 (5)
H10.17530.13870.43980.021*
O100.0309 (3)0.1772 (2)0.10178 (17)0.0219 (5)
O140.4196 (3)0.3751 (2)0.2861 (2)0.0298 (6)
O110.2048 (3)0.0930 (2)0.00145 (18)0.0284 (6)
O60.3562 (3)0.00887 (19)0.35122 (17)0.0202 (5)
O40.2725 (3)0.0768 (2)0.45451 (17)0.0217 (5)
H40.37410.08860.42740.026*
N10.3140 (4)0.0835 (2)0.3280 (2)0.0187 (6)
N20.1050 (4)0.0942 (2)0.0709 (2)0.0209 (7)
O130.3997 (3)0.20661 (19)0.28786 (18)0.0233 (6)
O80.3934 (4)0.1577 (2)0.36532 (19)0.0288 (6)
O50.3062 (3)0.0520 (2)0.14084 (17)0.0225 (6)
H50.26540.00500.10470.027*
N30.3355 (4)0.2958 (2)0.2693 (2)0.0180 (6)
C50.4524 (4)0.0950 (3)0.1065 (3)0.0218 (8)
H5A0.52480.03780.09040.026*
H5B0.52500.13740.15350.026*
C30.2160 (4)0.0631 (3)0.3569 (2)0.0155 (7)
H3A0.32520.04670.31370.019*
C40.2402 (4)0.0320 (3)0.4494 (2)0.0195 (7)
H4A0.13480.05040.49330.023*
H4B0.33880.07120.46500.023*
C20.1785 (4)0.1780 (3)0.3500 (2)0.0166 (7)
H2A0.28360.21900.35620.020*
C10.0225 (4)0.2200 (3)0.4137 (2)0.0191 (7)
H1A0.01640.29640.40720.023*
H1B0.03280.20420.47600.023*
C60.3896 (5)0.1610 (3)0.0262 (3)0.0275 (9)
H6A0.32230.11820.02120.041*
H6B0.48920.19120.00520.041*
H6C0.31620.21680.04210.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.01387 (8)0.01135 (10)0.01389 (10)0.00053 (6)0.00207 (6)0.00031 (7)
O20.0215 (12)0.0087 (12)0.0153 (12)0.0035 (9)0.0037 (9)0.0039 (10)
O70.0174 (11)0.0155 (13)0.0231 (14)0.0022 (9)0.0010 (10)0.0016 (11)
O120.0181 (12)0.0197 (14)0.0275 (14)0.0009 (10)0.0017 (10)0.0055 (11)
O90.0284 (13)0.0166 (13)0.0248 (14)0.0026 (10)0.0019 (11)0.0012 (12)
O30.0183 (11)0.0105 (12)0.0238 (13)0.0014 (9)0.0068 (9)0.0022 (10)
O10.0166 (11)0.0180 (13)0.0160 (12)0.0031 (9)0.0012 (9)0.0009 (10)
O100.0270 (13)0.0205 (14)0.0164 (13)0.0053 (10)0.0001 (10)0.0012 (11)
O140.0291 (15)0.0187 (14)0.0410 (18)0.0112 (11)0.0052 (12)0.0063 (13)
O110.0265 (14)0.0382 (17)0.0175 (14)0.0043 (12)0.0032 (10)0.0024 (13)
O60.0203 (12)0.0134 (13)0.0251 (14)0.0014 (9)0.0003 (10)0.0033 (11)
O40.0221 (12)0.0227 (14)0.0191 (13)0.0042 (10)0.0007 (10)0.0073 (11)
N10.0196 (14)0.0170 (16)0.0195 (16)0.0000 (11)0.0033 (11)0.0010 (13)
N20.0178 (14)0.0254 (18)0.0192 (16)0.0023 (12)0.0026 (11)0.0017 (14)
O130.0179 (12)0.0166 (13)0.0341 (15)0.0003 (10)0.0016 (10)0.0005 (12)
O80.0349 (15)0.0151 (14)0.0336 (16)0.0075 (11)0.0005 (12)0.0065 (12)
O50.0235 (13)0.0224 (14)0.0238 (14)0.0037 (10)0.0102 (10)0.0061 (12)
N30.0186 (14)0.0140 (15)0.0216 (16)0.0031 (11)0.0045 (11)0.0005 (13)
C50.0175 (16)0.024 (2)0.026 (2)0.0004 (14)0.0094 (14)0.0040 (17)
C30.0139 (15)0.0161 (18)0.0167 (17)0.0029 (12)0.0033 (12)0.0012 (14)
C40.0222 (17)0.0183 (19)0.0178 (18)0.0003 (14)0.0036 (13)0.0040 (15)
C20.0175 (15)0.0160 (18)0.0176 (18)0.0031 (13)0.0066 (13)0.0007 (15)
C10.0207 (17)0.0159 (18)0.0215 (19)0.0023 (13)0.0062 (14)0.0031 (15)
C60.035 (2)0.023 (2)0.023 (2)0.0038 (16)0.0037 (16)0.0020 (17)
Geometric parameters (Å, º) top
Sm1—O12.416 (2)O6—N11.267 (4)
Sm1—O52.427 (3)O4—C41.429 (4)
Sm1—O22.441 (2)O4—H40.8400
Sm1—O102.486 (3)N1—O81.221 (4)
Sm1—O62.507 (2)O13—N31.265 (4)
Sm1—O132.511 (2)O5—C51.459 (4)
Sm1—O92.516 (3)O5—H50.8400
Sm1—O32.537 (2)C5—C61.496 (5)
Sm1—O122.547 (3)C5—H5A0.9900
Sm1—O72.611 (2)C5—H5B0.9900
O2—C21.448 (4)C3—C41.512 (5)
O2—H20.8400C3—C21.516 (5)
O7—N11.270 (4)C3—H3A1.0000
O12—N31.280 (4)C4—H4A0.9900
O9—N21.275 (4)C4—H4B0.9900
O3—C31.453 (4)C2—C11.512 (5)
O3—H30.8400C2—H2A1.0000
O1—C11.448 (4)C1—H1A0.9900
O1—H10.8400C1—H1B0.9900
O10—N21.265 (4)C6—H6A0.9800
O14—N31.216 (4)C6—H6B0.9800
O11—N21.227 (4)C6—H6C0.9800
O1—Sm1—O5143.28 (8)C1—O1—H1105.1
O1—Sm1—O267.50 (8)Sm1—O1—H1121.9
O5—Sm1—O2144.50 (8)N2—O10—Sm197.0 (2)
O1—Sm1—O10127.41 (8)N1—O6—Sm199.15 (18)
O5—Sm1—O1077.06 (9)C4—O4—H4108.2
O2—Sm1—O1067.52 (8)O8—N1—O6121.3 (3)
O1—Sm1—O671.93 (8)O8—N1—O7121.8 (3)
O5—Sm1—O681.04 (9)O6—N1—O7116.8 (3)
O2—Sm1—O6134.38 (8)O11—N2—O10121.1 (3)
O10—Sm1—O6158.09 (9)O11—N2—O9122.4 (3)
O1—Sm1—O1372.42 (9)O10—N2—O9116.5 (3)
O5—Sm1—O1374.36 (9)N3—O13—Sm197.69 (18)
O2—Sm1—O13117.19 (8)C5—O5—Sm1137.0 (2)
O10—Sm1—O13106.37 (9)C5—O5—H5105.5
O6—Sm1—O1366.94 (8)Sm1—O5—H5115.6
O1—Sm1—O9142.39 (8)O14—N3—O13122.5 (3)
O5—Sm1—O973.49 (9)O14—N3—O12121.7 (3)
O2—Sm1—O982.37 (8)O13—N3—O12115.8 (3)
O10—Sm1—O951.15 (8)O5—C5—C6110.4 (3)
O6—Sm1—O9121.97 (8)O5—C5—H5A109.6
O13—Sm1—O9144.30 (9)C6—C5—H5A109.6
O1—Sm1—O367.40 (8)O5—C5—H5B109.6
O5—Sm1—O3133.87 (8)C6—C5—H5B109.6
O2—Sm1—O363.15 (8)H5A—C5—H5B108.1
O10—Sm1—O3112.83 (8)O3—C3—C4111.6 (3)
O6—Sm1—O382.77 (8)O3—C3—C2107.5 (3)
O13—Sm1—O3135.47 (8)C4—C3—C2112.6 (3)
O9—Sm1—O379.34 (8)O3—C3—H3A108.3
O1—Sm1—O1275.47 (8)C4—C3—H3A108.3
O5—Sm1—O1295.05 (9)C2—C3—H3A108.3
O2—Sm1—O1273.59 (8)O4—C4—C3111.5 (3)
O10—Sm1—O1266.89 (8)O4—C4—H4A109.3
O6—Sm1—O12115.38 (8)C3—C4—H4A109.3
O13—Sm1—O1250.47 (8)O4—C4—H4B109.3
O9—Sm1—O12118.03 (8)C3—C4—H4B109.3
O3—Sm1—O12130.81 (8)H4A—C4—H4B108.0
O1—Sm1—O7106.52 (8)O2—C2—C1107.5 (3)
O5—Sm1—O771.60 (8)O2—C2—C3104.0 (3)
O2—Sm1—O7125.41 (8)C1—C2—C3116.7 (3)
O10—Sm1—O7121.23 (8)O2—C2—H2A109.5
O6—Sm1—O749.91 (8)C1—C2—H2A109.5
O13—Sm1—O7111.01 (8)C3—C2—H2A109.5
O9—Sm1—O772.58 (8)O1—C1—C2109.1 (3)
O3—Sm1—O764.96 (8)O1—C1—H1A109.9
O12—Sm1—O7160.58 (8)C2—C1—H1A109.9
C2—O2—Sm1110.65 (18)O1—C1—H1B109.9
C2—O2—H2103.5C2—C1—H1B109.9
Sm1—O2—H2122.5H1A—C1—H1B108.3
N1—O7—Sm194.10 (18)C5—C6—H6A109.5
N3—O12—Sm195.50 (19)C5—C6—H6B109.5
N2—O9—Sm195.30 (19)H6A—C6—H6B109.5
C3—O3—Sm1118.28 (18)C5—C6—H6C109.5
C3—O3—H3108.5H6A—C6—H6C109.5
Sm1—O3—H3121.2H6B—C6—H6C109.5
C1—O1—Sm1118.48 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.841.832.668 (3)175
O2—H2···O7ii0.841.962.802 (3)174
O2—H2···O8ii0.842.543.146 (4)130
O3—H3···O12iii0.842.072.903 (3)174
O4—H4···O8iv0.842.092.910 (4)165
O4—H4···O6iv0.842.553.235 (3)140
O5—H5···O11v0.842.002.827 (4)167
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x1, y, z; (v) x, y, z.

Experimental details

Crystal data
Chemical formula[Sm(NO3)3(C2H6O)(C4H10O4)]
Mr504.57
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)7.8537 (16), 12.875 (3), 15.252 (3)
β (°) 100.92 (3)
V3)1514.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.96
Crystal size (mm)0.27 × 0.21 × 0.16
Data collection
DiffractometerRigaku Saturn724+ CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.488, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10349, 3446, 3315
Rint0.035
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.057, 1.22
No. of reflections3446
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.33, 0.72

Computer programs: CrystalClear (Rigaku, 2007), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.841.832.668 (3)174.6
O2—H2···O7ii0.841.962.802 (3)174.3
O2—H2···O8ii0.842.543.146 (4)129.7
O3—H3···O12iii0.842.072.903 (3)174.1
O4—H4···O8iv0.842.092.910 (4)165.2
O4—H4···O6iv0.842.553.235 (3)140.0
O5—H5···O11v0.842.002.827 (4)166.8
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x1, y, z; (v) x, y, z.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (grants Nos. 50973003 and 21001009) and the National High-Tech R&D Program of China (863 Program) of MOST (No. 2010 A A03A406). Special thanks to Drs Hao, Wang and Liang for their assistance with the data collection.

References

First citationBekoe, A. & Powell, H. M. (1959). Proc. R. Soc. London Ser. A, 250, 301–315.  CrossRef CAS
First citationGottschaldt, M. & Schubert, U. S. (2009). Chem. Eur. J. 15, 1548–1557.  Web of Science CrossRef PubMed CAS
First citationHua, X.-H., Xue, J.-H., Yang, L.-M., Xu, Y.-Z. & Wu, J.-G. (2013). Acta Cryst. E69, m162–m163.  CSD CrossRef CAS IUCr Journals
First citationRigaku (2007). CrystalClear. Rigaku Inc., Tokyo, Japan.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationYang, L. M., Hua, X. H., Xue, J. H., Pan, Q. H., Yu, L., Li, W. H., Xu, Y. Z., Zhao, G. Z., Liu, L. M., Liu, K. X., Chen, J. E. & Wu, J. G. (2012). Inorg. Chem. 51, 499–510.  Web of Science CSD CrossRef CAS PubMed
First citationYang, L. M., Su, Y. L., Xu, Y. Z., Wang, Z. M., Guo, Z. H., Weng, S. F., Yan, C. H., Zhang, S. W. & Wu, J. G. (2003). Inorg. Chem. 42, 5844–5856.  Web of Science CSD CrossRef PubMed CAS
First citationYang, L. M., Su, Y. L., Xu, Y. Z., Zhang, S. W., Wu, J. G. & Zhao, K. (2004). J. Inorg. Biochem. 98, 1251–1260.  Web of Science CSD CrossRef PubMed CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages m182-m183
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds