supplementary materials


bt6908 scheme

Acta Cryst. (2013). E69, o991    [ doi:10.1107/S1600536813013810 ]

N,N'-Bis(4-hydroxyphenyl)pyridine-2,6-dicarboxamide dimethylformamide monosolvate

G. Waris, H. M. Siddiqi, U. Flörke, R. Hussain and M. S. Butt

Abstract top

The molecular structure of the pyridine derivative, C19H15N3O4·C3H7NO, shows almost planar geometry with dihedral angles of 6.9 (1) and 13.4 (1)° between the pyridine ring and the two benzene rings. This conformation is stabilized by two intramolecular N-H...N(pyridine) bonds. In the crystal, strong O-H...O(carboxamide) and N-H...O(hydroxyphenyl) hydrogen bonds link the molecules, forming a three-dimensional structure. The dimethylformamide solvent molecules are not involved in the hydrogen bonding. The structure shows pseudosymmetry, but refinement in the space group Pbcn leads to significantly worse results and a disordered dimethylformamide molecule.

Comment top

Aromatic polyamides' application in novel technologies has grown rapidly due to their usage as a beneficial alternative for metals and other goods (Yang, et al., 1998, Hamciuc et al., 2001). The company of amide linkages makes them strong applicant for semi-permeable membrane as they are hydrophilic polymers and water absorbent. In addition their high tech artificial fibre usage in the production of defensive attire of protective firemen, soldiers, race car drivers and gas filteration makes them prominent among others (Ebadi, et al., 2010, Diakoumakos et al., 1994). As part of our ongoing research in solubility of aromatic poly(amide-imide)s by structural modification, we are reporting a pyridine-based monomer having inbuilt amide functionality. It enhances the solubility of resulting poly(amid-imide)s without deteriorating the inherent properties of the polymer.

Related literature top

For applications of aromatic polyamides, see: Hamciuc et al., (2001); Yang et al. (1998); Diakoumakos & Mikroyannidis (1994); Ebadi & Mehdipour-Ataei (2010). For the structure of a related Co-complex, see: Ali et al. (2012).

Experimental top

This preparation was carried out by using reagent grade quality chemicals without their further purification. In a 100 ml, three necked, round bottomed flask, equipped with a condenser, a nitrogen gas inlet tube, a thermometer and a magnetic stirrer, 0.02mole (2.18 g m) of 4-hydroxyaniline in 30 mL of dry tetrahydrofuran(THF) stirred at 273–278 K for 30 minutes and 0.01 mol (2.04 g m) of pyridine -2,6-dicarbonyl dichloride in 35 mL of THF was added dropwise by dropping funnel and stirring was continued for further 1 h under same conditions. The temperature of reaction mixture was then raised to 308–313 K and stirring was continued for 30 minutes. The flask content was cooled to room temperature, poured into water and let it for 24 h. Resulting purplish precipitates were filtered, washed with hot water and 5% NaOH solution. Finally, product was washed with hot water and methanol, dried under vacuum at 80°C. The crude product was recrystallized from tetrahydrofuran and dimethylformamide(4:1).

Refinement top

Hydrogen atoms were clearly identified in difference syntheses, refined at idealized positions riding on the carbon, nitrogen or oxygen atoms with C–H 0.95–0.98, N–H 0.88, O–H 0.84 Å and with isotropic displacement parameters Uiso(H) = 1.2Ueq(C/N) or 1.5Ueq(–CH3 and –OH H atoms). All CH3 and OH hydrogen atoms were allowed to rotate but not to tip.

The title compound crystallizes in the non-centrosymmetric space group Pca21; however, in the absence of significant anomalous scattering effects, the Flack parameter is essentially meaningless. Accordingly, Friedel pairs were merged.

Refinement in space group Pbcn with both molecules on special positions gives 359 systematic absence violations (in Pca21 only 3, all with I less than 3σ), most of them with I>3σ(I) and significantly worse refinement parameters R1 = 0.107, wR2 = 0.284, S = 1.24.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with anisotropic displacement parameters drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing viewed along b axis with intermolecular hydrogen bonds as dotted lines. H-atoms not involved are omitted.
N,N'-Bis(4-hydroxyphenyl)pyridine-2,6-dicarboxamide dimethylformamide monosolvate top
Crystal data top
C19H15N3O4·C3H7NODx = 1.393 Mg m3
Mr = 422.44Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 8531 reflections
a = 16.8124 (12) Åθ = 2.2–28.3°
b = 10.9545 (8) ŵ = 0.10 mm1
c = 10.9331 (7) ÅT = 130 K
V = 2013.6 (2) Å3Prism, pale-pink
Z = 40.47 × 0.41 × 0.39 mm
F(000) = 888
Data collection top
Bruker SMART APEX
diffractometer
2536 independent reflections
Radiation source: sealed tube2434 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 27.9°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 2222
Tmin = 0.954, Tmax = 0.962k = 1414
18386 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: difference Fourier map
wR(F2) = 0.099H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0683P)2 + 0.4544P]
where P = (Fo2 + 2Fc2)/3
2536 reflections(Δ/σ)max < 0.001
284 parametersΔρmax = 0.33 e Å3
1 restraintΔρmin = 0.32 e Å3
Crystal data top
C19H15N3O4·C3H7NOV = 2013.6 (2) Å3
Mr = 422.44Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 16.8124 (12) ŵ = 0.10 mm1
b = 10.9545 (8) ÅT = 130 K
c = 10.9331 (7) Å0.47 × 0.41 × 0.39 mm
Data collection top
Bruker SMART APEX
diffractometer
2536 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2434 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.962Rint = 0.022
18386 measured reflectionsθmax = 27.9°
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.099Δρmax = 0.33 e Å3
S = 1.03Δρmin = 0.32 e Å3
2536 reflectionsAbsolute structure: ?
284 parametersFlack parameter: ?
1 restraintRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.22086 (7)0.57263 (12)0.50884 (13)0.0191 (3)
O20.58528 (7)0.39649 (13)0.37035 (15)0.0215 (3)
H20.62680.40490.41220.032*
O30.22824 (7)0.93446 (12)1.04434 (13)0.0202 (3)
O40.59295 (8)1.09650 (14)1.18167 (15)0.0242 (3)
H40.63531.08121.14400.036*
N10.25192 (7)0.75080 (13)0.77701 (18)0.0152 (2)
N20.33363 (8)0.62143 (14)0.61383 (17)0.0183 (3)
H2B0.35000.66150.67890.022*
N30.33916 (8)0.87656 (14)0.93824 (16)0.0180 (3)
H3A0.35440.83410.87410.022*
C10.08639 (9)0.7555 (2)0.7806 (2)0.0224 (3)
H1A0.02990.75660.78190.027*
C20.12663 (10)0.69108 (18)0.69062 (19)0.0189 (4)
H2A0.09840.64790.62910.023*
C30.20912 (10)0.69128 (16)0.69270 (17)0.0153 (3)
C40.12932 (10)0.81813 (18)0.8684 (2)0.0193 (4)
H4A0.10310.86350.93050.023*
C50.21208 (10)0.81302 (15)0.86329 (17)0.0152 (3)
C60.25491 (11)0.62261 (14)0.59558 (19)0.0152 (3)
C70.39446 (10)0.56544 (16)0.54420 (19)0.0165 (4)
C80.38133 (10)0.48237 (17)0.44972 (19)0.0188 (4)
H8A0.32860.46300.42530.023*
C90.44580 (10)0.42785 (18)0.3914 (2)0.0192 (4)
H9A0.43690.37110.32710.023*
C100.52331 (10)0.45623 (16)0.42674 (19)0.0170 (4)
C110.53648 (10)0.54289 (17)0.51766 (19)0.0181 (4)
H11A0.58920.56520.53950.022*
C120.47240 (10)0.59636 (17)0.57604 (19)0.0180 (4)
H12A0.48150.65490.63860.022*
C130.26050 (10)0.88030 (15)0.95796 (19)0.0157 (4)
C140.40125 (10)0.93161 (17)1.00651 (19)0.0165 (4)
C150.38915 (11)1.02561 (18)1.0904 (2)0.0202 (4)
H15A0.33691.05361.10750.024*
C160.45424 (12)1.07814 (19)1.1488 (2)0.0214 (4)
H16A0.44601.14251.20570.026*
C170.53075 (10)1.03808 (18)1.12533 (19)0.0186 (4)
C180.54283 (11)0.94174 (19)1.0435 (2)0.0204 (4)
H18A0.59500.91211.02860.024*
C190.47829 (10)0.88971 (17)0.9842 (2)0.0198 (4)
H19A0.48660.82490.92780.024*
O1000.33017 (10)0.30965 (16)0.17286 (19)0.0424 (4)
N1000.21891 (10)0.2555 (2)0.2759 (3)0.0341 (4)
C1000.25928 (14)0.31580 (19)0.1894 (3)0.0342 (5)
H1000.22970.36780.13680.041*
C1010.2617 (2)0.1731 (3)0.3556 (4)0.0661 (10)
H1010.24720.08870.33610.099*
H1020.24790.19070.44090.099*
H1030.31910.18410.34380.099*
C1020.13354 (17)0.2626 (4)0.2881 (5)0.0805 (13)
H1040.11270.32350.23080.121*
H1050.11990.28640.37190.121*
H1060.11010.18280.26990.121*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0161 (5)0.0232 (6)0.0180 (7)0.0000 (5)0.0017 (5)0.0037 (6)
O20.0134 (6)0.0297 (7)0.0215 (7)0.0051 (5)0.0001 (6)0.0053 (6)
O30.0157 (6)0.0250 (6)0.0200 (7)0.0009 (5)0.0019 (6)0.0036 (6)
O40.0147 (6)0.0375 (8)0.0204 (8)0.0070 (5)0.0008 (6)0.0074 (7)
N10.0134 (5)0.0171 (5)0.0150 (6)0.0018 (8)0.0006 (8)0.0015 (4)
N20.0137 (7)0.0237 (7)0.0175 (8)0.0013 (5)0.0002 (6)0.0057 (7)
N30.0144 (7)0.0224 (7)0.0171 (8)0.0006 (5)0.0008 (7)0.0045 (7)
C10.0121 (6)0.0301 (8)0.0252 (8)0.0008 (8)0.0013 (9)0.0048 (7)
C20.0161 (8)0.0226 (8)0.0182 (10)0.0017 (6)0.0024 (7)0.0035 (8)
C30.0148 (7)0.0169 (7)0.0142 (9)0.0005 (6)0.0004 (7)0.0006 (7)
C40.0145 (7)0.0239 (9)0.0195 (9)0.0023 (6)0.0010 (7)0.0025 (8)
C50.0148 (7)0.0157 (7)0.0151 (9)0.0001 (6)0.0006 (7)0.0018 (7)
C60.0141 (7)0.0159 (7)0.0156 (9)0.0003 (6)0.0004 (7)0.0023 (7)
C70.0131 (7)0.0198 (8)0.0167 (9)0.0020 (6)0.0002 (7)0.0014 (8)
C80.0133 (7)0.0232 (8)0.0201 (10)0.0011 (6)0.0011 (7)0.0028 (8)
C90.0176 (8)0.0226 (9)0.0173 (8)0.0008 (7)0.0021 (7)0.0025 (7)
C100.0146 (7)0.0197 (8)0.0167 (9)0.0023 (6)0.0005 (7)0.0011 (8)
C110.0136 (7)0.0213 (8)0.0193 (9)0.0008 (6)0.0022 (7)0.0001 (7)
C120.0167 (8)0.0202 (8)0.0172 (10)0.0002 (6)0.0015 (7)0.0023 (7)
C130.0145 (8)0.0159 (7)0.0167 (9)0.0007 (6)0.0015 (7)0.0018 (7)
C140.0126 (7)0.0205 (8)0.0163 (9)0.0016 (6)0.0007 (7)0.0013 (7)
C150.0143 (7)0.0245 (8)0.0217 (9)0.0006 (7)0.0007 (7)0.0041 (8)
C160.0193 (8)0.0250 (9)0.0198 (10)0.0030 (7)0.0002 (8)0.0063 (8)
C170.0161 (8)0.0251 (9)0.0148 (9)0.0052 (6)0.0002 (7)0.0014 (8)
C180.0138 (7)0.0245 (8)0.0228 (9)0.0003 (6)0.0013 (8)0.0009 (8)
C190.0168 (8)0.0205 (8)0.0220 (10)0.0002 (6)0.0019 (7)0.0031 (7)
O1000.0323 (8)0.0469 (10)0.0478 (11)0.0081 (7)0.0065 (8)0.0085 (9)
N1000.0273 (8)0.0307 (8)0.0442 (10)0.0010 (8)0.0072 (11)0.0014 (7)
C1000.0339 (11)0.0272 (9)0.0415 (14)0.0009 (9)0.0054 (11)0.0063 (11)
C1010.069 (2)0.076 (2)0.053 (2)0.0001 (18)0.0106 (18)0.0381 (19)
C1020.0282 (13)0.089 (3)0.124 (4)0.0040 (15)0.026 (2)0.037 (3)
Geometric parameters (Å, º) top
O1—C61.236 (2)C9—C101.394 (2)
O2—C101.376 (2)C9—H9A0.9500
O2—H20.8400C10—C111.392 (3)
O3—C131.240 (2)C11—C121.382 (3)
O4—C171.372 (2)C11—H11A0.9500
O4—H40.8400C12—H12A0.9500
N1—C31.339 (2)C14—C151.394 (3)
N1—C51.343 (2)C14—C191.396 (2)
N2—C61.338 (2)C15—C161.392 (3)
N2—C71.415 (2)C15—H15A0.9500
N2—H2B0.8800C16—C171.383 (3)
N3—C131.341 (2)C16—H16A0.9500
N3—C141.418 (2)C17—C181.398 (3)
N3—H3A0.8800C18—C191.387 (3)
C1—C41.383 (3)C18—H18A0.9500
C1—C21.387 (3)C19—H19A0.9500
C1—H1A0.9500O100—C1001.207 (3)
C2—C31.387 (2)N100—C1001.339 (3)
C2—H2A0.9500N100—C1021.444 (3)
C3—C61.512 (3)N100—C1011.446 (4)
C4—C51.394 (2)C100—H1000.9500
C4—H4A0.9500C101—H1010.9800
C5—C131.509 (2)C101—H1020.9800
C7—C81.394 (3)C101—H1030.9800
C7—C121.397 (2)C102—H1040.9800
C8—C91.392 (3)C102—H1050.9800
C8—H8A0.9500C102—H1060.9800
C10—O2—H2109.5C11—C12—C7120.87 (18)
C17—O4—H4109.5C11—C12—H12A119.6
C3—N1—C5117.56 (13)C7—C12—H12A119.6
C6—N2—C7129.70 (17)O3—C13—N3124.65 (17)
C6—N2—H2B115.2O3—C13—C5121.33 (15)
C7—N2—H2B115.2N3—C13—C5114.01 (17)
C13—N3—C14128.95 (17)C15—C14—C19119.57 (17)
C13—N3—H3A115.5C15—C14—N3123.58 (16)
C14—N3—H3A115.5C19—C14—N3116.83 (17)
C4—C1—C2119.34 (15)C16—C15—C14119.53 (17)
C4—C1—H1A120.3C16—C15—H15A120.2
C2—C1—H1A120.3C14—C15—H15A120.2
C1—C2—C3118.38 (18)C17—C16—C15120.99 (18)
C1—C2—H2A120.8C17—C16—H16A119.5
C3—C2—H2A120.8C15—C16—H16A119.5
N1—C3—C2123.33 (17)O4—C17—C16118.52 (18)
N1—C3—C6116.88 (15)O4—C17—C18121.91 (17)
C2—C3—C6119.79 (17)C16—C17—C18119.55 (17)
C1—C4—C5118.27 (19)C19—C18—C17119.72 (17)
C1—C4—H4A120.9C19—C18—H18A120.1
C5—C4—H4A120.9C17—C18—H18A120.1
N1—C5—C4123.12 (18)C18—C19—C14120.62 (18)
N1—C5—C13117.43 (15)C18—C19—H19A119.7
C4—C5—C13119.45 (17)C14—C19—H19A119.7
O1—C6—N2124.63 (18)C100—N100—C102122.9 (3)
O1—C6—C3121.56 (16)C100—N100—C101118.78 (19)
N2—C6—C3113.81 (17)C102—N100—C101118.2 (3)
C8—C7—C12119.42 (17)O100—C100—N100125.4 (2)
C8—C7—N2124.55 (16)O100—C100—H100117.3
C12—C7—N2116.02 (17)N100—C100—H100117.3
C9—C8—C7119.75 (16)N100—C101—H101109.5
C9—C8—H8A120.1N100—C101—H102109.5
C7—C8—H8A120.1H101—C101—H102109.5
C8—C9—C10120.31 (18)N100—C101—H103109.5
C8—C9—H9A119.8H101—C101—H103109.5
C10—C9—H9A119.8H102—C101—H103109.5
O2—C10—C11121.57 (16)N100—C102—H104109.5
O2—C10—C9118.51 (17)N100—C102—H105109.5
C11—C10—C9119.92 (17)H104—C102—H105109.5
C12—C11—C10119.64 (17)N100—C102—H106109.5
C12—C11—H11A120.2H104—C102—H106109.5
C10—C11—H11A120.2H105—C102—H106109.5
C4—C1—C2—C30.5 (4)C9—C10—C11—C122.8 (3)
C5—N1—C3—C20.0 (3)C10—C11—C12—C70.6 (3)
C5—N1—C3—C6179.48 (14)C8—C7—C12—C112.0 (3)
C1—C2—C3—N10.2 (3)N2—C7—C12—C11177.10 (18)
C1—C2—C3—C6179.65 (18)C14—N3—C13—O30.8 (3)
C2—C1—C4—C50.5 (4)C14—N3—C13—C5178.39 (17)
C3—N1—C5—C40.1 (3)N1—C5—C13—O3176.12 (17)
C3—N1—C5—C13179.83 (14)C4—C5—C13—O34.1 (3)
C1—C4—C5—N10.4 (3)N1—C5—C13—N34.7 (2)
C1—C4—C5—C13179.91 (18)C4—C5—C13—N3175.07 (18)
C7—N2—C6—O10.7 (3)C13—N3—C14—C1516.9 (3)
C7—N2—C6—C3178.91 (17)C13—N3—C14—C19164.9 (2)
N1—C3—C6—O1174.51 (16)C19—C14—C15—C161.3 (3)
C2—C3—C6—O15.0 (3)N3—C14—C15—C16176.87 (19)
N1—C3—C6—N25.9 (2)C14—C15—C16—C170.3 (3)
C2—C3—C6—N2174.64 (18)C15—C16—C17—O4177.3 (2)
C6—N2—C7—C810.6 (3)C15—C16—C17—C181.3 (3)
C6—N2—C7—C12170.39 (19)O4—C17—C18—C19176.8 (2)
C12—C7—C8—C92.4 (3)C16—C17—C18—C191.8 (3)
N2—C7—C8—C9176.64 (18)C17—C18—C19—C140.8 (3)
C7—C8—C9—C100.2 (3)C15—C14—C19—C180.8 (3)
C8—C9—C10—O2177.25 (18)N3—C14—C19—C18177.52 (19)
C8—C9—C10—C112.4 (3)C102—N100—C100—O100177.4 (3)
O2—C10—C11—C12176.86 (19)C101—N100—C100—O1001.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N10.882.202.661 (2)113
N3—H3A···N10.882.222.675 (2)112
O2—H2···O1i0.841.922.7572 (19)179
O4—H4···O3ii0.841.912.7464 (19)172
N2—H2B···O2iii0.882.443.125 (2)135
N3—H3A···O4iv0.882.413.043 (2)130
Symmetry codes: (i) x+1/2, y+1, z; (ii) x+1/2, y+2, z; (iii) x+1, y+1, z+1/2; (iv) x+1, y+2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N10.882.202.661 (2)112.5
N3—H3A···N10.882.222.675 (2)111.9
O2—H2···O1i0.841.922.7572 (19)178.8
O4—H4···O3ii0.841.912.7464 (19)172.0
N2—H2B···O2iii0.882.443.125 (2)134.6
N3—H3A···O4iv0.882.413.043 (2)129.6
Symmetry codes: (i) x+1/2, y+1, z; (ii) x+1/2, y+2, z; (iii) x+1, y+1, z+1/2; (iv) x+1, y+2, z1/2.
Acknowledgements top

The authors acknowledge the Higher Education Commission of Pakistan for financial assistance and the Universität Paderborn, Germany, for carrying out XRD analysis.

references
References top

Ali, A., Hundal, G. & Gupta, R. (2012). Cryst. Growth Des. 12, 1308–1319.

Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Diakoumakos, C. D. & Mikroyannidis, J. A. (1994). Polymer, 35, 1986–1990.

Ebadi, H. & Mehdipour-Ataei, S. (2010). Chin. J. Polym. Sci. 28, 29–37.

Hamciuc, E., Hamciuc, C., Sava, I. & Bruma, M. (2001). Eur. Polym. J. 37, 287–293.

Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Yang, G., Jikei, M. & Kakimoto, M.-A. (1998). Macromolecules, 31, 5964–5966.