supplementary materials


cv5405 scheme

Acta Cryst. (2013). E69, o896    [ doi:10.1107/S1600536813011598 ]

1,2-Bis{2-[(4-methoxybenzylidene)amino]phenyl}disulfane

W. Xin

Abstract top

The asymmetric unit of the title compound, C28H24N2O2S2, contains one-half molecule, which is completed by twofold rotation symmetry with the twofold axis passing through the mid-point of the central S-S bond. The planes of the two benzene rings linked by the disulfide chain form a dihedral angle of 76.1 (1)°, while the planes of the two benzene rings in the benzylideneaniline fragment form a dihedral angle of 48.9 (1)°. The crystal packing exhibits no significantly short intermolecular contacts.

Comment top

As a contribution to structural study of diaminodiphenyl disulfides (İde et al., 1997; Wang et al., 2011; He et al., 2011), we present here the crystal structure of the title compound, (I).

In (I) (Fig. 1), the bond lengths and angles are normal and correspond to those observed in related compounds (İde et al., 1997; Ozbey et al.,1998; He et al., 2011). The molecule has crystallographic twofold rotation symmetry with the twofold axis passing through the midpoint of the central S—S bond. Two benzene rings connected through disulfide chain form a dihedral angle of 76.1 (1)°. Two benzene rings in two benzylideneaniline fragments form the dihedral angles of 48.9 (1)°. The crystal packing exhibits no significantly short intermolecular contacts.

Related literature top

For the crystal structures of related compounds, see: İde et al. (1997); Ozbey et al. (1998); He et al. (2011); Wang et al. (2011).

Experimental top

4-Methoxybenzaldehyde (2 mmol) in ethanol (10 ml) was added to a solution of 2,2'-diaminodiphenyl disulfide (1 mmol) in ethanol (20 ml). The solution was heated to 323 K for 4 h. The reaction mixture was cooled to room tempertature and the yellow crystalline product was obtained.

Refinement top

All H atoms were placed in geometrically idealized positions (C—H 0.93–0.96 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 50% probabilty displacement ellipsoids. Unlabelled atoms are related with the labelled ones by symmetry operation (-x, y, 1/2 - z).
1,2-Bis{2-[(4-methoxybenzylidene)amino]phenyl}disulfane top
Crystal data top
C28H24N2O2S2Dx = 1.308 Mg m3
Mr = 484.61Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 1719 reflections
a = 10.2657 (11) Åθ = 2.5–22.9°
b = 13.0675 (13) ŵ = 0.25 mm1
c = 18.3415 (15) ÅT = 298 K
V = 2460.5 (4) Å3Block, yellow
Z = 40.26 × 0.22 × 0.17 mm
F(000) = 1016
Data collection top
Bruker SMART APEX CCD area-etector
diffractometer
2163 independent reflections
Radiation source: fine-focus sealed tube1363 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.094
phi and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 812
Tmin = 0.939, Tmax = 0.960k = 1215
9487 measured reflectionsl = 1721
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.075P)2]
where P = (Fo2 + 2Fc2)/3
2163 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C28H24N2O2S2V = 2460.5 (4) Å3
Mr = 484.61Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 10.2657 (11) ŵ = 0.25 mm1
b = 13.0675 (13) ÅT = 298 K
c = 18.3415 (15) Å0.26 × 0.22 × 0.17 mm
Data collection top
Bruker SMART APEX CCD area-etector
diffractometer
2163 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1363 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.960Rint = 0.094
9487 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.139Δρmax = 0.37 e Å3
S = 0.95Δρmin = 0.28 e Å3
2163 reflectionsAbsolute structure: ?
155 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.01987 (8)0.02789 (6)0.19518 (4)0.0510 (3)
N10.1694 (2)0.02278 (17)0.06606 (11)0.0433 (6)
O10.0529 (2)0.39678 (18)0.14776 (12)0.0757 (7)
C10.1483 (3)0.0635 (2)0.18144 (14)0.0408 (7)
C20.1829 (3)0.1399 (2)0.23057 (15)0.0494 (8)
H20.13900.14590.27470.059*
C30.2830 (3)0.2067 (2)0.21360 (16)0.0574 (8)
H30.30620.25750.24670.069*
C40.3491 (3)0.1991 (2)0.14808 (16)0.0596 (9)
H40.41530.24500.13690.072*
C50.3159 (3)0.1225 (2)0.09907 (15)0.0510 (8)
H50.36050.11710.05510.061*
C60.2160 (3)0.0532 (2)0.11509 (14)0.0417 (7)
C70.2471 (3)0.0735 (2)0.02534 (14)0.0468 (7)
H70.33590.05940.02760.056*
C80.2011 (3)0.1530 (2)0.02483 (13)0.0451 (7)
C90.0684 (3)0.1658 (2)0.03945 (14)0.0483 (7)
H90.00890.11920.02050.058*
C100.0241 (3)0.2456 (2)0.08118 (15)0.0518 (8)
H100.06460.25240.09020.062*
C110.1108 (3)0.3167 (2)0.11021 (14)0.0518 (8)
C120.2432 (3)0.3044 (2)0.09884 (14)0.0541 (8)
H120.30240.35050.11870.065*
C130.2868 (3)0.2216 (2)0.05696 (14)0.0539 (8)
H130.37580.21230.05050.065*
C140.1355 (4)0.4714 (3)0.1798 (2)0.0852 (12)
H14A0.19300.49870.14340.128*
H14B0.08360.52570.19980.128*
H14C0.18590.44040.21800.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0584 (6)0.0438 (5)0.0509 (5)0.0064 (4)0.0120 (4)0.0093 (3)
N10.0474 (15)0.0441 (13)0.0383 (12)0.0016 (11)0.0033 (11)0.0047 (11)
O10.0769 (17)0.0664 (16)0.0839 (16)0.0040 (13)0.0048 (13)0.0296 (13)
C10.0446 (18)0.0362 (15)0.0415 (15)0.0036 (13)0.0016 (13)0.0014 (12)
C20.064 (2)0.0450 (18)0.0395 (15)0.0004 (15)0.0080 (14)0.0022 (13)
C30.069 (2)0.0495 (19)0.0536 (18)0.0127 (17)0.0051 (16)0.0100 (15)
C40.064 (2)0.054 (2)0.061 (2)0.0174 (16)0.0045 (16)0.0008 (16)
C50.054 (2)0.0534 (19)0.0451 (16)0.0032 (16)0.0130 (14)0.0001 (14)
C60.0428 (17)0.0428 (16)0.0395 (15)0.0035 (13)0.0009 (13)0.0001 (12)
C70.0447 (18)0.0508 (17)0.0449 (15)0.0015 (15)0.0022 (14)0.0015 (13)
C80.053 (2)0.0492 (17)0.0330 (14)0.0047 (14)0.0048 (13)0.0003 (12)
C90.0509 (19)0.0487 (18)0.0452 (16)0.0089 (15)0.0002 (14)0.0031 (13)
C100.0499 (19)0.0558 (19)0.0496 (17)0.0019 (16)0.0017 (14)0.0028 (15)
C110.063 (2)0.0533 (19)0.0389 (15)0.0033 (17)0.0038 (15)0.0040 (14)
C120.065 (2)0.0540 (19)0.0436 (16)0.0157 (17)0.0081 (15)0.0101 (14)
C130.0511 (19)0.066 (2)0.0444 (16)0.0081 (16)0.0066 (14)0.0069 (15)
C140.101 (3)0.065 (3)0.090 (3)0.011 (2)0.005 (2)0.030 (2)
Geometric parameters (Å, º) top
S1—C11.797 (3)C7—C81.466 (4)
S1—S1i2.0518 (14)C7—H70.9300
N1—C71.278 (3)C8—C131.388 (4)
N1—C61.423 (3)C8—C91.398 (4)
O1—C111.387 (4)C9—C101.372 (4)
O1—C141.420 (4)C9—H90.9300
C1—C21.390 (4)C10—C111.392 (4)
C1—C61.408 (3)C10—H100.9300
C2—C31.385 (4)C11—C121.385 (4)
C2—H20.9300C12—C131.400 (4)
C3—C41.383 (4)C12—H120.9300
C3—H30.9300C13—H130.9300
C4—C51.388 (4)C14—H14A0.9600
C4—H40.9300C14—H14B0.9600
C5—C61.398 (4)C14—H14C0.9600
C5—H50.9300
C1—S1—S1i106.46 (9)C13—C8—C9117.3 (3)
C7—N1—C6121.4 (2)C13—C8—C7121.3 (3)
C11—O1—C14117.9 (3)C9—C8—C7121.3 (3)
C2—C1—C6120.1 (3)C10—C9—C8121.4 (3)
C2—C1—S1125.0 (2)C10—C9—H9119.3
C6—C1—S1114.8 (2)C8—C9—H9119.3
C3—C2—C1119.8 (3)C9—C10—C11120.6 (3)
C3—C2—H2120.1C9—C10—H10119.7
C1—C2—H2120.1C11—C10—H10119.7
C4—C3—C2120.9 (3)C12—C11—O1125.7 (3)
C4—C3—H3119.6C12—C11—C10119.5 (3)
C2—C3—H3119.6O1—C11—C10114.8 (3)
C3—C4—C5119.7 (3)C11—C12—C13119.1 (3)
C3—C4—H4120.2C11—C12—H12120.5
C5—C4—H4120.2C13—C12—H12120.5
C4—C5—C6120.7 (3)C8—C13—C12122.0 (3)
C4—C5—H5119.7C8—C13—H13119.0
C6—C5—H5119.7C12—C13—H13119.0
C5—C6—C1118.8 (2)O1—C14—H14A109.5
C5—C6—N1124.4 (2)O1—C14—H14B109.5
C1—C6—N1116.5 (2)H14A—C14—H14B109.5
N1—C7—C8122.2 (3)O1—C14—H14C109.5
N1—C7—H7118.9H14A—C14—H14C109.5
C8—C7—H7118.9H14B—C14—H14C109.5
Symmetry code: (i) x, y, z+1/2.
Acknowledgements top

The author acknowledges the financial support of the Kingfa Scientific & Technological corporation Ltd.

references
References top

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

He, Q.-P., Dai, L. & Tan, B. (2011). Acta Cryst. E67, o3240.

İde, S., Öztaş, G., Ancin, N. & Tüzün, M. (1997). Acta Cryst. C53, 376–378.

Ozbey, S., Temel, A., Ancin, N., Oztas, S. G. & Tuzun, M. (1998). Z. Kristallogr. New Cryst. Struct. 213, 207–208.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wang, Y., Shi, S., Han, Y. & Wei, G.-D. (2011). Acta Cryst. E67, o3364.