supplementary materials


fy2096 scheme

Acta Cryst. (2013). E69, o961    [ doi:10.1107/S1600536813013585 ]

2-[(3,4-Dichlorobenzylidene)amino]-4-methylphenol

M. Kose, I. Gonul and V. McKee

Abstract top

In the title compound, C14H11Cl2NO, the dihedral angle between the benzene rings is 15.36 (8)°. A phenol-imine-type intramolecular O-H...N hydrogen bond generates an S(5) ring motif. In the crystal, a pair of weak C-H...O hydrogen bonds form an R21(7) ring motif involving glide-plane-related molecules. The molecules linked via these interactions form chains along [101].

Comment top

Schiff base condensations yield compounds with wide uses as ligands (Akine et al., 2009; Vigato et al., 2004). The title compound was prepared as a part of an investigation of the coordination and biological properties of Schiff base ligands.

The title compound adopts E configuration with respect to the imine C=N double bond with a C9—C8—N1—C6 torsion angle = -179.98 (13)°. The azomethine (C8N1) bond distance is 1.2765 (19) Å and within the normal CN values. The dihedral angle between the two benzene rings is 15.36 (8)°. There is a phenol-imine type intramolecular hydrogen bond (O1H···N1) in the structure forming a S(5) hydrogen bonding motif. There are two intermolecular weak hydrogen bond type (C5H···O1 and C8H···O1) interactions, resulting in a R12(7) hydrogen-bonding motif. Molecules are linked via weak hydrogen bonding form hydrogen-bond chains along the ac diagonal (Fig. 2, Table 1).

There is evidence of π-π stacking in the structure. The C3—C9 section of the molecule is stacked with the C6*—C12* section of an adjacent molecule (* = x + 1, y, z). N1 and C10* are seperated by a distance of 3.302 (2) Å. There is also π-Cl interaction in the structure: Cl2 is stacked with C3** of an adjacent molecule (** = 1/2 - x, 1/2 + y, 3/2 - z) with a distance of 3.407 (2) Å (Fig. 3).

Related literature top

For Schiff bases, see: Akine et al. (2009); Vigato & Tamburini (2004). For related structures, see: Efil et al. (2012); Fridman & Kaftory (2007); Jiao et al. (2006); Wang & Wang (2007). For hydrogen-bond motifs, see: Etter (1990); Bernstein et al. (1995).

Experimental top

A solution of 3,4-dichlorobenzaldehyde (0.0.525 g, 3 mmol) in methanol (25 ml) was added to a methanolic solution (20 ml) of 2-amino-4-methylphenol (0.740 g, 6 mmol). The mixture was stirred for two hours at room temperature and left for air evaporation. After two days, yellow crystals suitable for X-ray diffraction study were collected by filtration.

Refinement top

H atoms bonded to C were inserted at calculated positions with C—H distances of 0.95 and 0.99 Å for non-saturated and saturated C atoms, respectively, They were refined using a riding model with Uiso(H) = 1.2 Ueq(C). The H-atom bonded to O1 was taken directly from the difference Fourier map and was refined with a riding model using temperature factors Uiso(H) = 1.5 Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure of the title compound. Thermal ellipsoids are drawn at 30% probability and the intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. Intra- and intermolecular hydrogen bonding in the structure
[Figure 3] Fig. 3. π-π and Cl-π interactions in the crystal of the title compound
2-[(3,4-Dichlorobenzylidene)amino]-4-methylphenol top
Crystal data top
C14H11Cl2NOF(000) = 576
Mr = 280.14Dx = 1.459 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3681 reflections
a = 4.6074 (7) Åθ = 2.5–28.0°
b = 21.680 (3) ŵ = 0.49 mm1
c = 12.7907 (18) ÅT = 150 K
β = 93.342 (2)°Block, yellow
V = 1275.5 (3) Å30.64 × 0.14 × 0.07 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3159 independent reflections
Radiation source: fine-focus sealed tube2556 reflections with I2σ(I)
Graphite monochromatorRint = 0.032
ω rotation with narrow frames scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2009)
h = 66
Tmin = 0.743, Tmax = 0.966k = 2828
12828 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0503P)2 + 0.3141P]
where P = (Fo2 + 2Fc2)/3
3159 reflections(Δ/σ)max = 0.001
164 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C14H11Cl2NOV = 1275.5 (3) Å3
Mr = 280.14Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.6074 (7) ŵ = 0.49 mm1
b = 21.680 (3) ÅT = 150 K
c = 12.7907 (18) Å0.64 × 0.14 × 0.07 mm
β = 93.342 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3159 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2009)
2556 reflections with I2σ(I)
Tmin = 0.743, Tmax = 0.966Rint = 0.032
12828 measured reflectionsθmax = 28.3°
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.094Δρmax = 0.35 e Å3
S = 1.02Δρmin = 0.23 e Å3
3159 reflectionsAbsolute structure: ?
164 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.62127 (9)0.968261 (19)0.61947 (3)0.03521 (12)
N10.1214 (3)0.79478 (6)0.73732 (10)0.0234 (3)
O10.4296 (3)0.77697 (6)0.55736 (9)0.0381 (3)
H10.29910.79970.57790.057*
C10.4801 (3)0.73837 (7)0.63921 (12)0.0264 (3)
Cl20.86902 (8)1.020614 (17)0.83841 (3)0.03076 (12)
C20.6873 (4)0.69200 (8)0.62554 (13)0.0321 (4)
H20.79260.68720.56000.039*
C30.7391 (3)0.65297 (7)0.70787 (14)0.0322 (4)
H30.88160.62150.69820.039*
C40.5859 (3)0.65887 (7)0.80533 (13)0.0297 (3)
C50.3799 (3)0.70580 (7)0.81783 (12)0.0261 (3)
H50.27520.71070.88350.031*
C60.3245 (3)0.74577 (7)0.73566 (11)0.0228 (3)
C70.6423 (4)0.61546 (8)0.89403 (15)0.0406 (4)
H7A0.51030.62520.95460.061*
H7B0.60920.57290.87180.061*
H7C0.84390.62000.91330.061*
C80.0181 (3)0.81112 (7)0.82195 (12)0.0235 (3)
H80.01530.78990.88510.028*
C90.2291 (3)0.86195 (7)0.82415 (11)0.0216 (3)
C100.3150 (3)0.88903 (7)0.73156 (12)0.0233 (3)
H100.23640.87450.66580.028*
C110.5146 (3)0.93697 (7)0.73568 (11)0.0235 (3)
C120.6295 (3)0.95870 (7)0.83241 (12)0.0233 (3)
C130.5479 (3)0.93173 (7)0.92445 (12)0.0245 (3)
H130.62820.94610.99010.029*
C140.3485 (3)0.88372 (7)0.92030 (12)0.0239 (3)
H140.29240.86540.98350.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0427 (3)0.0358 (2)0.0276 (2)0.00705 (17)0.00626 (17)0.00436 (15)
N10.0204 (6)0.0227 (6)0.0268 (6)0.0010 (5)0.0001 (5)0.0005 (5)
O10.0430 (7)0.0457 (7)0.0249 (6)0.0154 (6)0.0044 (5)0.0008 (5)
C10.0253 (8)0.0272 (8)0.0270 (8)0.0017 (6)0.0029 (6)0.0035 (6)
Cl20.0272 (2)0.0259 (2)0.0390 (2)0.00604 (14)0.00070 (15)0.00215 (15)
C20.0267 (8)0.0361 (9)0.0332 (9)0.0049 (7)0.0002 (6)0.0109 (7)
C30.0243 (8)0.0262 (8)0.0466 (10)0.0060 (6)0.0076 (7)0.0110 (7)
C40.0276 (8)0.0223 (7)0.0403 (9)0.0003 (6)0.0102 (7)0.0023 (6)
C50.0247 (7)0.0237 (7)0.0299 (8)0.0007 (6)0.0016 (6)0.0017 (6)
C60.0188 (7)0.0219 (7)0.0279 (8)0.0002 (5)0.0026 (6)0.0040 (6)
C70.0455 (11)0.0269 (9)0.0508 (11)0.0042 (7)0.0135 (9)0.0033 (8)
C80.0206 (7)0.0239 (7)0.0258 (7)0.0006 (5)0.0007 (5)0.0012 (6)
C90.0179 (7)0.0214 (7)0.0252 (7)0.0024 (5)0.0003 (5)0.0003 (5)
C100.0219 (7)0.0239 (7)0.0237 (7)0.0016 (5)0.0018 (5)0.0020 (6)
C110.0234 (7)0.0228 (7)0.0246 (7)0.0037 (6)0.0037 (6)0.0027 (6)
C120.0187 (7)0.0199 (7)0.0311 (8)0.0011 (5)0.0003 (6)0.0012 (6)
C130.0228 (7)0.0260 (7)0.0241 (7)0.0015 (6)0.0031 (6)0.0027 (6)
C140.0219 (7)0.0260 (7)0.0234 (7)0.0017 (6)0.0014 (5)0.0020 (6)
Geometric parameters (Å, º) top
Cl1—C111.7310 (15)C5—H50.9500
N1—C81.2766 (19)C7—H7A0.9800
N1—C61.4153 (19)C7—H7B0.9800
O1—C11.3708 (19)C7—H7C0.9800
O1—H10.8089C8—C91.469 (2)
C1—C21.390 (2)C8—H80.9500
C1—C61.399 (2)C9—C101.399 (2)
Cl2—C121.7366 (15)C9—C141.400 (2)
C2—C31.382 (2)C10—C111.387 (2)
C2—H20.9500C10—H100.9500
C3—C41.402 (2)C11—C121.399 (2)
C3—H30.9500C12—C131.386 (2)
C4—C51.394 (2)C13—C141.387 (2)
C4—C71.508 (2)C13—H130.9500
C5—C61.397 (2)C14—H140.9500
C8—N1—C6121.40 (13)H7A—C7—H7C109.5
C1—O1—H1106.3H7B—C7—H7C109.5
O1—C1—C2119.44 (14)N1—C8—C9121.64 (14)
O1—C1—C6120.14 (13)N1—C8—H8119.2
C2—C1—C6120.42 (15)C9—C8—H8119.2
C3—C2—C1119.65 (15)C10—C9—C14119.09 (13)
C3—C2—H2120.2C10—C9—C8121.20 (13)
C1—C2—H2120.2C14—C9—C8119.71 (13)
C2—C3—C4121.39 (15)C11—C10—C9120.12 (13)
C2—C3—H3119.3C11—C10—H10119.9
C4—C3—H3119.3C9—C10—H10119.9
C5—C4—C3118.21 (15)N1i—C10—H1094.2
C5—C4—C7121.01 (16)C10—C11—C12120.13 (14)
C3—C4—C7120.79 (15)C10—C11—Cl1118.82 (11)
C4—C5—C6121.28 (15)C12—C11—Cl1121.04 (12)
C4—C5—H5119.4C13—C12—C11120.12 (14)
C6—C5—H5119.4C13—C12—Cl2119.45 (11)
C5—C6—C1119.04 (14)C11—C12—Cl2120.41 (12)
C5—C6—N1127.15 (13)C12—C13—C14119.73 (14)
C1—C6—N1113.81 (13)C12—C13—H13120.1
C4—C7—H7A109.5C14—C13—H13120.1
C4—C7—H7B109.5C13—C14—C9120.80 (14)
H7A—C7—H7B109.5C13—C14—H14119.6
C4—C7—H7C109.5C9—C14—H14119.6
O1—C1—C2—C3179.97 (15)N1—C8—C9—C108.8 (2)
C6—C1—C2—C30.1 (2)N1—C8—C9—C14171.57 (14)
C1—C2—C3—C40.3 (2)C14—C9—C10—C110.3 (2)
C2—C3—C4—C50.6 (2)C8—C9—C10—C11180.00 (13)
C2—C3—C4—C7179.26 (15)C9—C10—C11—C120.4 (2)
C3—C4—C5—C60.5 (2)C9—C10—C11—Cl1178.69 (11)
C7—C4—C5—C6179.34 (15)C10—C11—C12—C131.1 (2)
C4—C5—C6—C10.1 (2)Cl1—C11—C12—C13178.00 (11)
C4—C5—C6—N1179.53 (14)C10—C11—C12—Cl2177.57 (11)
O1—C1—C6—C5179.95 (14)Cl1—C11—C12—Cl23.38 (18)
C2—C1—C6—C50.2 (2)C11—C12—C13—C141.0 (2)
O1—C1—C6—N10.2 (2)Cl2—C12—C13—C14177.67 (11)
C2—C1—C6—N1179.88 (14)C12—C13—C14—C90.2 (2)
C8—N1—C6—C56.9 (2)C10—C9—C14—C130.4 (2)
C8—N1—C6—C1173.46 (14)C8—C9—C14—C13179.91 (13)
C6—N1—C8—C9179.98 (13)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1ii0.952.673.618 (2)174
C8—H8···O1ii0.952.653.562 (2)162
O1—H1···N10.812.162.6612 (17)121
Symmetry code: (ii) x+1/2, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.952.673.618 (2)174.0
C8—H8···O1i0.952.653.562 (2)161.6
O1—H1···N10.812.162.6612 (17)120.7
Symmetry code: (i) x+1/2, y+3/2, z+1/2.
Acknowledgements top

We are grateful to Loughborough University for the data collection and Cukurova University for financial support (to IG).

references
References top

Akine, S. & Nabeshima, T. (2009). Dalton Trans. pp. 10395–10408.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bruker (1998). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Efil, K., Şen, F., Bekdemir, Y. & Büyükgüngör, O. (2012). Acta Cryst. E68, o1696.

Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Fridman, N. & Kaftory, M. (2007). Pol. J. Chem. 81, 825–832.

Jiao, Y.-H., Zhang, Q. & Ng, S. W. (2006). Acta Cryst. E62, o3614–o3615.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sheldrick, G. M. (2009). SADABS. University of Göttingen, Germany.

Vigato, P. A. & Tamburini, S. (2004). Coord. Chem. Rev. 248, 1717–2128.

Wang, Q. & Wang, D.-Q. (2007). Acta Cryst. E63, o4838.