supplementary materials


gk2566 scheme

Acta Cryst. (2013). E69, o972-o973    [ doi:10.1107/S1600536813013950 ]

6-[3-(p-Tolylsulfonylamino)propyl]diquinothiazine

M. Jelen, A. Shkurenko, K. Suwinska, K. Pluta and B. Morak-Mlodawska

Abstract top

In the title molecule {systematic name: N-[3-(diquino[3,2-b;2',3'-e][1,4]thiazin-6-yl)propyl]-4-methylbenzenesulfonamide}, C28H24N4O2S2, the pentacyclic system is relatively planar [maximum deviation from the mean plane = 0.242 (1) Å]. The dihedral angle between two quinoline ring systems is 8.23 (2)° and that between the two halves of the 1,4-thiazine ring is 5.68 (3)°. The conformation adopted by the 3-(p-tolylsulfonylamino)propyl substituent allows for the formation of an intramolecular N-H...N hydrogen bond and places the benzene ring of this substituent above one of the quinoline fragments of the pentacyclic system. In the crystal, molecules are arranged via [pi]-[pi] stacking interactions into (0-11) layers [centroid-centroid distances = 3.981 (1)-4.320 (1) Å for the rings in the pentacyclic system and 3.645 (1) Å for the tolyl benzene rings]. In addition, molecules are involved in weak C-H...O, which connect the layers, and C-H...S hydrogen bonds. The title compound shows promising anticancer activity against renal cancer cell line UO-31.

Comment top

Heteropentacenes, mainly aza-, thia- and azathiapentacenes, are considered as polyheterocyclic donor molecules to form organic semiconductors (Anthony, 2006). We obtained heteropentacenes containing nitrogen, sulfur, oxygen and selenium via the annulation reactions (Nowak et al., 2002). One of this type was 6H-5,6,7-triaza-13-thiapentacene (II, Figure 2) which can be regarded as a new modified phenothiazine system, pentacyclic diquinothiazine, where two quinoline rings were incorporated in the ring system instead of benzene rings. This compound was further transformed by introduction of 6-alkyl, aryl, heteroaryl and aminoalkyl substituents at the thiazine nitrogen atoms. It is well known that neuroleptic phenothiazines have tricyclic dibenzothiazine ring system and the aminoalkyl substituent at the thiazine nitrogen atom in position 10. All these compounds are folded and have the central thiazine ring in a boat conformation with the aminoalkyl group in the equatorial position. 6-Substituted diquinothiazines with the aminoalkyl groups and their acyl and sulfonyl derivatives exhibit promising anticancer activities against the cell lines of 9 types of human cancer: leukemia, melanoma, non-small cell lung cancer, colon cancer, CNS cancer, ovarian cancer, renal cancer, prostate cancer and breast cancer (Pluta et al., 2010). None of phenothiazines or azaphenothiazine with the p-tolylsulfonylaminopropyl substituent have been examined by X-ray crystallography so far. The title compound (I) was obtained in a few step synthesis starting from the reactions of heteropentacenes, 6H-5,6,7-triaza-13-thiapentacene (II) and 5,7-diaza-6,13-dithiapentacene (III), with appropriate reagents (see Experimental). The structure of the title compound was assigned by spectroscopic (1H NMR and MS) analysis. The diquinothiazine structure of C2v symmetry shows a lack of the Smiles rearrangement during thiazine ring closure (Jeleń & Pluta, 2009). X-ray analysis fully confirmed this structure as 6-[3(p-tolylsulfonylamino)propyl]diquino[3,2 - b;2',3'-e][1,4]thiazine. All the classical neuroleptic phenothiazines are folded along the N–S axis with the dihedral angle of 134.0–153.6° and with the aminoalkyl group in equatorial positions (Chu, 1988). The title molecule is close to planar with the dihedral angle between the quinoline rings of 171.77 (2)° and the angle between two halves of the thiazine ring of 174.32 (3)°. The S13···N6–C15 angle is 176.70 (6)°. The endocyclic bond angles at heteroatoms in the central ring (C12A–S13–C13A and C5A–N6–C6A) are quite large, 102.56 (4)° and 125.04 (8)° in accord with the thiazine ring flat conformation. It is interesting that the planarity of the triazathiapentacene system is dependent on the substituent nature at the thiazine nitrogen atom. When the substituent was an electron-donating group (phenyl in compound IV; Pluta et al., 2000), the ring system was folded, when electron-deficient ( p-nitrophenyl group in compound V; Nowak et al., 2007) the system was almost planar. The bonds around the sulfur atom S19 of the sulfonamide group show a distortion from tetrahedral geometry. Whereas the O22—S19—O21 bond angle is 119.98 (5)°, three other O–S19–X (N18 or C22) bond angles are 106.68 (4)–107.48 (5)°. The bonds around thiazine N6 and sulfonamide N18 atoms show planar and pyramidal arrangement, respectively, as shown by the sum bond angles (359.97 (8)° and 340.25 (9)°, repectively). The p-tolylsulfonylaminopropyl substituent is not coplanar with pentacyclic ring system and shows unexpectedly U-conformation with the benzene ring placed over the pentacene system, with the dihedral angle between the C22–C26 and N6/C5A/C6A/C12A/C13A/S13 planes of 30.15 (3)°. The torsion angles including the propyl group (C15–C16–C17) show the synclinal/synclinal arrangement of the carbon chain. The torsion angles involving the sulfonamide group (C17–N18–S19–C22) show antiperiplanar/synclinal/synclinal arrangement. There is intramolecular N18–H18···N5 hydrogen bond which stabilizes the U shape of the p-tolylsulfonylaminopropyl substituent. Three intermolecular C–H···O hydrogen bonds involving the sulfonamide group and one C–H···S hydrogen bond involving the thiazine sulfur atom exist in the crystal. The molecules which are related via centers of symmetry at 0,1/2,1/2 and 1/2,1/2,1/2 stack in ribbons along the a direction via ππ interactions of the pentacyclic systems. The ribbons are further arranged into (0 -1 1) layers via another ππ interactions between benzene rings of toluene substituents (Figure 3). Layers are glued together by the mentioned above C–H···O hydrogen bonds between aromatic carbon atoms of pentacyclic systems of one layer and sulfonamide oxygen atoms of the neighbouring layer.

The title compound shows promising anticancer activity against renal cancer cell line UO-31.

Related literature top

For the structures of heteropentacenes, see: Anthony (2006); Isaia et al. (2009); Yoshida et al. (1994). For recent literature on the biological activity of phenothiazines, see: Aaron et al. (2009); Pluta et al. (2011). For the synthesis and biological activity of 6-substituted diquinothiazines, see: Nowak et al. (2007); Jeleń & Pluta (2009); Pluta et al. (2010). For crystal structures of phenothiazines, see: Chu (1988). For information on azaphenothiazines, their nomenclature and synthesis, see: Pluta et al. (2009). For heteropentacenes with quinoline moieties containing nitrogen, sulfur, oxygen and selenium, see: Nowak et al. (2002); Pluta et al. (2000).

Experimental top

The title compound was obtained in a few step synthesis as described by Jeleń et al. (2009) starting from the reactions of 6H-5,6,7-triaza-13-thiapentacene (II) with phthalimidopropyl bromide (followed by hydrolysis) or 5,7-diaza-6,13-dithiapentacene (III) with 1,3-diaminopropane to obtain aminopropyldiquinothiazine (IV). Compound (IV) was sulfonylated with p-toluenesulfonyl chloride. The title compound has melting point 439–440 K. X-ray quality crystals were grown from chloroform-ethanol mixture by slow evaporation.

Refinement top

All H atoms were treated as riding atoms in geometrically calculated positions, with d(C–H) = 0.95, 0.99 and 0.98 Å for aromatic, methylene and methyl hydrogens, respectively, except of the H atom in the N–H group of which positional parameters were refined freely, Uiso(H) = kUeq(C,N), where k = 1.5 for the methyl group and k = 1.2 otherwise.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure with displacement ellipsoids shown at the 50% probability level.
[Figure 2] Fig. 2. Related compounds.
[Figure 3] Fig. 3. Structure of the (0 -1 1) layer: the ππ stacking interactions between pentacyclic systems are 3.589 (1) and 3.841 (1) Å [distance measured between r.m.s. planes of fully eclipsed and partially eclipsed benzene rings of pentacyclic systems, respectively] and 3.453 (1) Å between r.m.s. planes of benzene rings of toluene substituents.
N-[3-(Diquino[3,2-b;2',3'-e][1,4]thiazin-6-yl)propyl]-4-methylbenzenesulfonamide top
Crystal data top
C28H24N4O2S2Z = 2
Mr = 512.63F(000) = 536
Triclinic, P1Dx = 1.441 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3986 (3) ÅCell parameters from 16661 reflections
b = 10.3793 (3) Åθ = 3.3–32.2°
c = 12.6207 (3) ŵ = 0.26 mm1
α = 80.735 (2)°T = 100 K
β = 81.959 (2)°Block, yellow
γ = 77.999 (2)°0.39 × 0.34 × 0.23 mm
V = 1181.30 (6) Å3
Data collection top
Agilent SuperNova Dual (Cu at zero, Eos)
diffractometer
7396 independent reflections
Radiation source: SuperNova (Mo) X-ray Source6770 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.015
Detector resolution: 16.2974 pixels mm-1θmax = 31.0°, θmin = 3.3°
ω scansh = 1313
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012) and Clark & Reid (1995)]
k = 1515
Tmin = 0.937, Tmax = 0.965l = 1818
24091 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.437P]
where P = (Fo2 + 2Fc2)/3
7396 reflections(Δ/σ)max = 0.002
329 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C28H24N4O2S2γ = 77.999 (2)°
Mr = 512.63V = 1181.30 (6) Å3
Triclinic, P1Z = 2
a = 9.3986 (3) ÅMo Kα radiation
b = 10.3793 (3) ŵ = 0.26 mm1
c = 12.6207 (3) ÅT = 100 K
α = 80.735 (2)°0.39 × 0.34 × 0.23 mm
β = 81.959 (2)°
Data collection top
Agilent SuperNova Dual (Cu at zero, Eos)
diffractometer
7396 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012) and Clark & Reid (1995)]
6770 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.965Rint = 0.015
24091 measured reflectionsθmax = 31.0°
Refinement top
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093Δρmax = 0.42 e Å3
S = 1.04Δρmin = 0.40 e Å3
7396 reflectionsAbsolute structure: ?
329 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.49893 (13)1.01160 (10)0.71760 (9)0.0272 (2)
H10.47591.09110.66910.033*
C20.55824 (14)1.01426 (11)0.81047 (10)0.0316 (2)
H20.57501.09580.82660.038*
C30.59430 (13)0.89597 (11)0.88211 (10)0.0284 (2)
H30.63540.89870.94620.034*
C40.57070 (11)0.77664 (10)0.86036 (8)0.02243 (18)
H40.59720.69750.90850.027*
C4A0.50694 (10)0.77236 (9)0.76632 (8)0.01797 (16)
N50.47657 (8)0.65388 (8)0.75030 (6)0.01707 (14)
C5A0.41609 (9)0.64626 (9)0.66422 (7)0.01604 (16)
N60.38838 (9)0.52185 (8)0.65386 (7)0.01928 (15)
C6A0.31384 (10)0.49652 (9)0.57300 (8)0.01871 (17)
N70.28831 (10)0.37503 (8)0.58262 (7)0.02115 (16)
C7A0.21392 (11)0.34230 (10)0.50797 (8)0.02097 (18)
C80.18288 (13)0.21269 (10)0.52247 (9)0.0270 (2)
H80.21610.15000.58160.032*
C90.10458 (14)0.17702 (11)0.45114 (10)0.0307 (2)
H90.08410.08970.46130.037*
C100.05463 (14)0.26913 (12)0.36322 (9)0.0301 (2)
H100.00110.24400.31540.036*
C110.08566 (12)0.39472 (11)0.34607 (9)0.0264 (2)
H110.05360.45550.28560.032*
C11A0.16556 (11)0.43355 (10)0.41872 (8)0.02102 (18)
C120.19770 (11)0.56268 (10)0.40906 (8)0.02207 (18)
H120.16970.62670.34920.026*
C12A0.26858 (11)0.59588 (9)0.48515 (8)0.01975 (17)
S130.30095 (3)0.75808 (3)0.46855 (2)0.02831 (7)
C13A0.37960 (10)0.76078 (9)0.58521 (7)0.01722 (16)
C140.40755 (10)0.87994 (9)0.60157 (8)0.01950 (17)
H140.38340.95650.55030.023*
C14A0.47201 (11)0.89058 (9)0.69388 (8)0.01988 (17)
C150.43639 (12)0.40812 (9)0.73615 (8)0.02281 (19)
H15A0.51340.42940.77280.027*
H15B0.48030.32950.69940.027*
C160.31325 (14)0.37268 (10)0.82111 (9)0.0278 (2)
H16A0.24560.33600.78590.033*
H16B0.35610.30150.87610.033*
C170.22489 (12)0.48651 (11)0.87824 (8)0.02409 (19)
H17A0.18970.56230.82390.029*
H17B0.13830.45780.92220.029*
S190.22842 (3)0.62938 (3)1.034198 (18)0.02204 (6)
O200.33837 (9)0.65975 (8)1.08936 (6)0.02723 (16)
O210.11287 (9)0.56819 (11)1.09446 (7)0.0372 (2)
C220.14699 (11)0.77850 (11)0.95968 (8)0.02354 (19)
C230.01915 (12)0.78269 (14)0.91344 (9)0.0304 (2)
H230.02680.70750.92450.036*
C240.03909 (13)0.89937 (15)0.85096 (9)0.0369 (3)
H240.12540.90300.81850.044*
C250.02520 (14)1.01107 (14)0.83459 (9)0.0362 (3)
C260.15136 (14)1.00516 (13)0.88263 (9)0.0333 (3)
H260.19591.08110.87300.040*
C270.21278 (12)0.88873 (11)0.94467 (9)0.0267 (2)
H270.29950.88490.97660.032*
C280.04257 (19)1.13661 (16)0.76733 (10)0.0514 (4)
H28A0.03951.11990.69270.077*
H28B0.01221.20690.76870.077*
H28C0.14451.16460.79690.077*
N180.31353 (9)0.52970 (8)0.94864 (7)0.01995 (15)
H180.3886 (16)0.5609 (14)0.9126 (12)0.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0354 (5)0.0178 (4)0.0308 (5)0.0121 (4)0.0060 (4)0.0007 (4)
C20.0432 (6)0.0208 (5)0.0365 (6)0.0153 (4)0.0099 (5)0.0036 (4)
C30.0364 (6)0.0247 (5)0.0287 (5)0.0130 (4)0.0091 (4)0.0036 (4)
C40.0260 (4)0.0203 (4)0.0232 (4)0.0087 (4)0.0054 (4)0.0016 (3)
C4A0.0181 (4)0.0161 (4)0.0200 (4)0.0056 (3)0.0007 (3)0.0017 (3)
N50.0176 (3)0.0150 (3)0.0190 (3)0.0036 (3)0.0033 (3)0.0016 (3)
C5A0.0156 (4)0.0133 (4)0.0186 (4)0.0022 (3)0.0027 (3)0.0006 (3)
N60.0259 (4)0.0122 (3)0.0209 (4)0.0029 (3)0.0114 (3)0.0011 (3)
C6A0.0212 (4)0.0156 (4)0.0197 (4)0.0018 (3)0.0078 (3)0.0010 (3)
N70.0264 (4)0.0150 (3)0.0237 (4)0.0026 (3)0.0111 (3)0.0019 (3)
C7A0.0241 (4)0.0182 (4)0.0219 (4)0.0021 (3)0.0083 (3)0.0040 (3)
C80.0350 (5)0.0179 (4)0.0307 (5)0.0035 (4)0.0140 (4)0.0039 (4)
C90.0391 (6)0.0228 (5)0.0351 (6)0.0074 (4)0.0132 (5)0.0083 (4)
C100.0360 (6)0.0325 (6)0.0268 (5)0.0084 (5)0.0110 (4)0.0098 (4)
C110.0310 (5)0.0312 (5)0.0197 (4)0.0075 (4)0.0088 (4)0.0040 (4)
C11A0.0230 (4)0.0231 (4)0.0180 (4)0.0041 (3)0.0055 (3)0.0032 (3)
C120.0249 (4)0.0227 (4)0.0187 (4)0.0048 (4)0.0076 (3)0.0018 (3)
C12A0.0226 (4)0.0168 (4)0.0195 (4)0.0034 (3)0.0065 (3)0.0017 (3)
S130.04278 (16)0.01844 (12)0.02660 (13)0.01033 (10)0.01874 (11)0.00722 (9)
C13A0.0170 (4)0.0157 (4)0.0179 (4)0.0031 (3)0.0020 (3)0.0011 (3)
C140.0209 (4)0.0157 (4)0.0208 (4)0.0053 (3)0.0008 (3)0.0020 (3)
C14A0.0217 (4)0.0166 (4)0.0217 (4)0.0074 (3)0.0005 (3)0.0005 (3)
C150.0339 (5)0.0117 (4)0.0240 (4)0.0009 (3)0.0167 (4)0.0013 (3)
C160.0453 (6)0.0167 (4)0.0254 (5)0.0128 (4)0.0162 (4)0.0049 (4)
C170.0271 (5)0.0251 (5)0.0229 (4)0.0127 (4)0.0096 (4)0.0044 (4)
S190.01835 (11)0.03176 (13)0.01380 (10)0.00181 (9)0.00435 (8)0.00184 (8)
O200.0256 (4)0.0342 (4)0.0215 (3)0.0027 (3)0.0122 (3)0.0053 (3)
O210.0277 (4)0.0619 (6)0.0180 (3)0.0125 (4)0.0001 (3)0.0093 (4)
C220.0180 (4)0.0338 (5)0.0146 (4)0.0056 (4)0.0031 (3)0.0036 (4)
C230.0186 (4)0.0486 (7)0.0199 (4)0.0054 (4)0.0045 (4)0.0059 (4)
C240.0257 (5)0.0564 (8)0.0206 (5)0.0174 (5)0.0085 (4)0.0093 (5)
C250.0381 (6)0.0426 (7)0.0156 (4)0.0209 (5)0.0028 (4)0.0052 (4)
C260.0376 (6)0.0310 (6)0.0231 (5)0.0113 (5)0.0010 (4)0.0044 (4)
C270.0252 (5)0.0290 (5)0.0222 (4)0.0066 (4)0.0048 (4)0.0055 (4)
C280.0593 (9)0.0539 (9)0.0213 (5)0.0314 (7)0.0067 (5)0.0004 (5)
N180.0201 (4)0.0214 (4)0.0187 (4)0.0059 (3)0.0051 (3)0.0011 (3)
Geometric parameters (Å, º) top
C1—C21.3730 (16)S13—C13A1.7440 (10)
C1—C14A1.4163 (13)C13A—C141.3689 (13)
C1—H10.9500C14—C14A1.4152 (14)
C2—C31.4124 (16)C14—H140.9500
C2—H20.9500C15—C161.5256 (17)
C3—C41.3782 (14)C15—H15A0.9900
C3—H30.9500C15—H15B0.9900
C4—C4A1.4130 (13)C16—C171.5179 (16)
C4—H40.9500C16—H16A0.9900
C4A—N51.3699 (11)C16—H16B0.9900
C4A—C14A1.4158 (13)C17—N181.4748 (13)
N5—C5A1.3149 (12)C17—H17A0.9900
C5A—N61.3986 (11)C17—H17B0.9900
C5A—C13A1.4384 (12)S19—O201.4351 (8)
N6—C6A1.4016 (12)S19—O211.4357 (9)
N6—C151.4800 (12)S19—N181.6279 (9)
C6A—N71.3156 (12)S19—C221.7623 (11)
C6A—C12A1.4335 (13)C22—C271.3852 (17)
N7—C7A1.3704 (12)C22—C231.3974 (14)
C7A—C11A1.4118 (14)C23—C241.3877 (17)
C7A—C81.4133 (14)C23—H230.9500
C8—C91.3765 (15)C24—C251.390 (2)
C8—H80.9500C24—H240.9500
C9—C101.4082 (17)C25—C261.3914 (19)
C9—H90.9500C25—C281.5080 (17)
C10—C111.3714 (16)C26—C271.3923 (15)
C10—H100.9500C26—H260.9500
C11—C11A1.4158 (13)C27—H270.9500
C11—H110.9500C28—H28A0.9800
C11A—C121.4170 (14)C28—H28B0.9800
C12—C12A1.3660 (13)C28—H28C0.9800
C12—H120.9500N18—H180.876 (15)
C12A—S131.7471 (10)
C2—C1—C14A120.16 (10)C14A—C14—H14119.6
C2—C1—H1119.9C14—C14A—C4A116.65 (8)
C14A—C1—H1119.9C14—C14A—C1123.70 (9)
C1—C2—C3120.11 (10)C4A—C14A—C1119.63 (9)
C1—C2—H2119.9N6—C15—C16113.75 (9)
C3—C2—H2119.9N6—C15—H15A108.8
C4—C3—C2120.90 (10)C16—C15—H15A108.8
C4—C3—H3119.6N6—C15—H15B108.8
C2—C3—H3119.6C16—C15—H15B108.8
C3—C4—C4A119.82 (10)H15A—C15—H15B107.7
C3—C4—H4120.1C17—C16—C15115.55 (8)
C4A—C4—H4120.1C17—C16—H16A108.4
N5—C4A—C4118.46 (8)C15—C16—H16A108.4
N5—C4A—C14A122.16 (9)C17—C16—H16B108.4
C4—C4A—C14A119.35 (8)C15—C16—H16B108.4
C5A—N5—C4A120.21 (8)H16A—C16—H16B107.5
N5—C5A—N6116.71 (8)N18—C17—C16111.15 (9)
N5—C5A—C13A121.40 (8)N18—C17—H17A109.4
N6—C5A—C13A121.88 (8)C16—C17—H17A109.4
C5A—N6—C6A125.03 (8)N18—C17—H17B109.4
C5A—N6—C15118.16 (8)C16—C17—H17B109.4
C6A—N6—C15116.78 (7)H17A—C17—H17B108.0
N7—C6A—N6115.61 (8)O20—S19—O21119.96 (5)
N7—C6A—C12A121.93 (8)O20—S19—N18106.67 (5)
N6—C6A—C12A122.46 (8)O21—S19—N18106.71 (6)
C6A—N7—C7A119.45 (8)O20—S19—C22107.48 (5)
N7—C7A—C11A122.50 (9)O21—S19—C22107.68 (5)
N7—C7A—C8118.34 (9)N18—S19—C22107.82 (4)
C11A—C7A—C8119.15 (9)C27—C22—C23120.77 (10)
C9—C8—C7A120.19 (10)C27—C22—S19119.75 (8)
C9—C8—H8119.9C23—C22—S19119.44 (9)
C7A—C8—H8119.9C24—C23—C22118.36 (13)
C8—C9—C10120.41 (10)C24—C23—H23120.8
C8—C9—H9119.8C22—C23—H23120.8
C10—C9—H9119.8C23—C24—C25121.87 (11)
C11—C10—C9120.59 (10)C23—C24—H24119.1
C11—C10—H10119.7C25—C24—H24119.1
C9—C10—H10119.7C24—C25—C26118.76 (11)
C10—C11—C11A119.87 (10)C24—C25—C28120.26 (13)
C10—C11—H11120.1C26—C25—C28120.97 (15)
C11A—C11—H11120.1C25—C26—C27120.43 (13)
C7A—C11A—C11119.76 (9)C25—C26—H26119.8
C7A—C11A—C12116.77 (9)C27—C26—H26119.8
C11—C11A—C12123.45 (9)C22—C27—C26119.80 (11)
C12A—C12—C11A120.52 (9)C22—C27—H27120.1
C12A—C12—H12119.7C26—C27—H27120.1
C11A—C12—H12119.7C25—C28—H28A109.5
C12—C12A—C6A118.79 (9)C25—C28—H28B109.5
C12—C12A—S13117.62 (7)H28A—C28—H28B109.5
C6A—C12A—S13123.58 (7)C25—C28—H28C109.5
C13A—S13—C12A102.57 (4)H28A—C28—H28C109.5
C14—C13A—C5A118.69 (8)H28B—C28—H28C109.5
C14—C13A—S13117.28 (7)C17—N18—S19117.64 (7)
C5A—C13A—S13124.04 (7)C17—N18—H18112.7 (9)
C13A—C14—C14A120.87 (9)S19—N18—H18109.9 (9)
C13A—C14—H14119.6
C14A—C1—C2—C30.77 (19)C6A—C12A—S13—C13A4.78 (10)
C1—C2—C3—C40.06 (19)N5—C5A—C13A—C140.73 (14)
C2—C3—C4—C4A1.26 (17)N6—C5A—C13A—C14178.87 (8)
C3—C4—C4A—N5176.04 (10)N5—C5A—C13A—S13179.35 (7)
C3—C4—C4A—C14A1.85 (15)N6—C5A—C13A—S131.05 (13)
C4—C4A—N5—C5A179.42 (9)C12A—S13—C13A—C14174.70 (8)
C14A—C4A—N5—C5A1.59 (14)C12A—S13—C13A—C5A5.22 (9)
C4A—N5—C5A—N6179.91 (8)C5A—C13A—C14—C14A0.45 (14)
C4A—N5—C5A—C13A0.29 (13)S13—C13A—C14—C14A179.63 (7)
N5—C5A—N6—C6A174.38 (9)C13A—C14—C14A—C4A0.75 (14)
C13A—C5A—N6—C6A5.24 (15)C13A—C14—C14A—C1177.64 (10)
N5—C5A—N6—C153.43 (13)N5—C4A—C14A—C141.80 (14)
C13A—C5A—N6—C15176.96 (9)C4—C4A—C14A—C14179.61 (9)
C5A—N6—C6A—N7174.51 (9)N5—C4A—C14A—C1176.66 (9)
C15—N6—C6A—N73.32 (13)C4—C4A—C14A—C11.14 (14)
C5A—N6—C6A—C12A5.71 (15)C2—C1—C14A—C14178.19 (11)
C15—N6—C6A—C12A176.46 (9)C2—C1—C14A—C4A0.16 (16)
N6—C6A—N7—C7A178.97 (9)C5A—N6—C15—C16100.99 (10)
C12A—C6A—N7—C7A1.25 (15)C6A—N6—C15—C1676.99 (11)
C6A—N7—C7A—C11A1.42 (15)N6—C15—C16—C1753.22 (11)
C6A—N7—C7A—C8177.56 (10)C15—C16—C17—N1868.56 (11)
N7—C7A—C8—C9178.05 (11)O20—S19—C22—C2713.31 (10)
C11A—C7A—C8—C90.96 (17)O21—S19—C22—C27143.85 (9)
C7A—C8—C9—C100.04 (19)N18—S19—C22—C27101.35 (9)
C8—C9—C10—C111.32 (19)O20—S19—C22—C23168.77 (8)
C9—C10—C11—C11A1.55 (18)O21—S19—C22—C2338.23 (10)
N7—C7A—C11A—C11178.25 (10)N18—S19—C22—C2376.58 (9)
C8—C7A—C11A—C110.72 (15)C27—C22—C23—C240.85 (15)
N7—C7A—C11A—C120.08 (15)S19—C22—C23—C24177.05 (8)
C8—C7A—C11A—C12179.05 (10)C22—C23—C24—C250.71 (16)
C10—C11—C11A—C7A0.53 (16)C23—C24—C25—C260.14 (17)
C10—C11—C11A—C12177.68 (11)C23—C24—C25—C28179.19 (10)
C7A—C11A—C12—C12A1.76 (15)C24—C25—C26—C270.86 (16)
C11—C11A—C12—C12A176.50 (10)C28—C25—C26—C27179.91 (10)
C11A—C12—C12A—C6A1.94 (15)C23—C22—C27—C260.16 (16)
C11A—C12—C12A—S13178.82 (8)S19—C22—C27—C26177.74 (8)
N7—C6A—C12A—C120.41 (15)C25—C26—C27—C220.72 (16)
N6—C6A—C12A—C12179.35 (9)C16—C17—N18—S19167.83 (7)
N7—C6A—C12A—S13179.61 (8)O20—S19—N18—C17177.97 (7)
N6—C6A—C12A—S130.16 (14)O21—S19—N18—C1752.66 (8)
C12—C12A—S13—C13A176.02 (8)C22—S19—N18—C1762.78 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N18—H18···N50.876 (14)2.243 (15)2.9973 (12)144.1 (12)
C15—H15A···O20i0.992.333.1641 (12)141
C11—H11···O21ii0.952.553.3933 (13)149
C15—H15B···S13iii0.992.863.6912 (11)142
C17—H17B···O21iv0.992.473.3013 (13)141
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y, z1; (iii) x+1, y+1, z+1; (iv) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N18—H18···N50.876 (14)2.243 (15)2.9973 (12)144.1 (12)
C15—H15A···O20i0.992.333.1641 (12)141
C11—H11···O21ii0.952.553.3933 (13)149
C15—H15B···S13iii0.992.863.6912 (11)142
C17—H17B···O21iv0.992.473.3013 (13)141
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y, z1; (iii) x+1, y+1, z+1; (iv) x, y+1, z+2.
Acknowledgements top

The work was supported by the Medical University of Silesia (grant KNW-1–006/P/2/0).

references
References top

Aaron, J. J., Gaye Seye, M. D., Trajkovska, S. & Motohashi, N. (2009). Top. Heterocycl. Chem. 16, 153–231.

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Anthony, J. E. (2006). Chem. Rev. 106, 5028–5048.

Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Chu, S. S. C. (1988). Phenothiazines and 1,4-Benzothiazines – Chemical and Biological Aspects, edited by R. R. Gupta, pp. 475–526. Amsterdam: Elsevier.

Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.

Isaia, F., Aragoni, M. C., Arca, M., Demartin, F., Devillanova, F. A., Ennas, G., Garau, A., Lippolis, V., Mancini, A. & Verani, G. (2009). Eur. J. Inorg. Chem. pp. 3667–3672.

Jeleń, M. & Pluta, K. (2009). Heterocycles, 78, 2325–2336.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Nowak, M., Pluta, K. & Suwińska, K. (2002). New J. Chem. 26, 1216–1220.

Nowak, M., Pluta, K., Suwińska, K. & Straver, L. (2007). J. Heterocycl. Chem. 44, 543–550.

Pluta, K., Jeleń, M., Morak-Młodawska, B., Zimecki, M., Artym, J. & Kocięba, M. (2010). Pharmacol. Rep. 62, 319–332.

Pluta, K., Morak-Młodawska, B. & Jeleń, M. (2009). J. Heterocycl. Chem. 46, 355–391.

Pluta, K., Morak-Młodawska, B. & Jeleń, M. (2011). Eur. J. Med. Chem. 46, 3179–3189.

Pluta, K., Nowak, M. & Suwińska, K. (2000). J. Chem. Crystallogr. 30, 479–482.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Yoshida, S., Kozawa, K., Sato, N. & Uchida, T. (1994). Bull. Chem. Soc. Jpn, 67, 2017–2023.