supplementary materials


hb7079 scheme

Acta Cryst. (2013). E69, m332    [ doi:10.1107/S1600536813013135 ]

Tris(ethylenediamine)cobalt(II) dichloride

K. Cooke, A. V. Olenev and K. Kovnir

Abstract top

The title compound, [CoII(C2H8N2)3]Cl2, was obtained unexpectedly as the product of an attempted solvothermal synthesis of cobalt selenide from the elements in the presence of NH4Cl in ethylenediamine solvent. The three chelate rings of the distorted octahedral [Co(C2H8N2)3]2+ complex cation adopt twisted conformations about their C-C bonds. The spread of cis-N-Co-N bond angles [80.17 (6)-98.10 (6)°] in the title compound is considerably greater than the equivalent data for [CoIII(C2H8N2)3]Cl3 [Takamizawa et al. (2008). Angew. Chem. Int. Ed. 47, 1689-1692]. In the crystal, the components are linked by numerous N-H...Cl hydrogen bonds, generating a three-dimensional network in which the cationic complexes are stacked in columns along [010] and separated by columns of chloride anions.

Comment top

In the chiral Co(II)(en)3 cationic complex (Fig. 1) N atoms form distorted octahedron around central Co atom, cis angles deviate from 90° by less than 10°. Both Λ and Δ isomers are present in equal amounts in the centrosymmetric crystal structure.

Co(en)3 cationic complexes are stacked in columns along [010] direction (Figure 2) and separated by the columns of Cl anions. There two types of chlorine anions in the crystal structure. Cl1 has distorted octahedral coordination by 6 hydrogen atoms from 4 different Co(en)3 complexes. Cl2 has distorted trigonal bipyramid coordination by 5 hydrogen atoms from 2 different Co(en)3 complexes. H···Cl distances vary from 2.45 to 2.70 Å.

The corresponding Co(III) trisethylenediamine complex with chloride counter-anions has been reported. (Takamizawa et al., 2008). The Co(III)(en)3 cationic complex is more regular: cis angles deviate from 90° by less than 4°.

Related literature top

The corresponding CoIII–tris-ethylenediamine complex with chloride counter-anions has been reported by Takamizawa et al. (2008).

Experimental top

The title compound, [Co(C2N2H8)3]Cl2, was obtained unintentionally as the product of an attempted synthesis of cobalt selenide. Co (64 mg), Se (86 mg), and NH4Cl (100 mg) were reacted in ethylenediamine (en) solvent (30 ml). Reaction was performed in closed hydrothermal vessel at 180°C for 48 h. Degree of the vessel filling was 70%. Irregular moisture-sensitive yellow crystals of the title compound were recovered.

Refinement top

H atoms bonded to N and C atoms were located in a difference Fourier maps and refined without any restraints.

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Packing of the molecules in the crystal structure of (I) along (top) [100] and (bottom) [010] crystallographic directions. Cl–H distances in the range from 2.45 to 2.70 Å are shown with dashed lines.
Tris(ethylenediamine)cobalt(II) dichloride' top
Crystal data top
[Co(C2H8N2)3]Cl2Dx = 1.451 Mg m3
Mr = 310.14Melting point: not measured K
Orthorhombic, PbcaCu Kα radiation, λ = 1.54178 Å
a = 8.1590 (8) ÅCell parameters from 6618 reflections
b = 17.047 (3) Åθ = 4.3–71.0°
c = 20.3974 (14) ŵ = 12.81 mm1
V = 2837.0 (6) Å3T = 90 K
Z = 8Irregular, yellow
F(000) = 13040.31 × 0.17 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
2700 independent reflections
Radiation source: fine-focus sealed tube2437 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
φ and ω scansθmax = 72.0°, θmin = 4.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 99
Tmin = 0.109, Tmax = 0.243k = 1920
17930 measured reflectionsl = 2418
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0273P)2 + 1.3198P]
where P = (Fo2 + 2Fc2)/3
2700 reflections(Δ/σ)max = 0.001
232 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Co(C2H8N2)3]Cl2V = 2837.0 (6) Å3
Mr = 310.14Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 8.1590 (8) ŵ = 12.81 mm1
b = 17.047 (3) ÅT = 90 K
c = 20.3974 (14) Å0.31 × 0.17 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
2700 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2437 reflections with I > 2σ(I)
Tmin = 0.109, Tmax = 0.243Rint = 0.042
17930 measured reflectionsθmax = 72.0°
Refinement top
R[F2 > 2σ(F2)] = 0.024All H-atom parameters refined
wR(F2) = 0.059Δρmax = 0.26 e Å3
S = 1.06Δρmin = 0.37 e Å3
2700 reflectionsAbsolute structure: ?
232 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.22206 (3)0.636475 (16)0.101937 (14)0.01130 (9)
Cl10.22916 (5)0.38557 (2)0.02211 (2)0.01517 (10)
Cl20.19514 (5)0.63342 (2)0.32464 (2)0.01878 (11)
N10.31525 (19)0.56644 (9)0.18154 (8)0.0144 (3)
H1A0.419 (3)0.5613 (12)0.1780 (10)0.021 (6)*
H1B0.297 (3)0.5888 (15)0.2164 (12)0.023 (6)*
N20.04364 (19)0.54264 (9)0.09943 (8)0.0155 (3)
H2A0.051 (3)0.5597 (13)0.0934 (10)0.019 (6)*
H2B0.068 (3)0.5088 (13)0.0683 (11)0.023 (6)*
C10.2324 (2)0.48967 (10)0.18119 (9)0.0169 (4)
H1C0.238 (2)0.4648 (12)0.2236 (10)0.014 (5)*
H1D0.285 (2)0.4581 (12)0.1472 (10)0.016 (5)*
C20.0533 (2)0.50142 (11)0.16281 (9)0.0167 (4)
H2C0.003 (2)0.5343 (12)0.1971 (10)0.020 (5)*
H2D0.001 (2)0.4511 (12)0.1614 (10)0.018 (5)*
N60.37572 (19)0.57543 (9)0.03100 (8)0.0156 (3)
H5B0.044 (3)0.6765 (13)0.0010 (10)0.023 (6)*
H5A0.135 (3)0.7409 (15)0.0172 (10)0.024 (6)*
N50.14074 (19)0.69328 (9)0.01218 (8)0.0152 (3)
H6A0.474 (3)0.5868 (13)0.0328 (10)0.020 (5)*
H6B0.372 (3)0.5247 (15)0.0387 (11)0.029 (6)*
C50.2573 (2)0.67473 (11)0.04124 (9)0.0179 (4)
H5D0.351 (2)0.7073 (12)0.0344 (9)0.016 (5)*
H5C0.211 (2)0.6829 (13)0.0850 (11)0.021 (5)*
C60.3113 (2)0.59006 (11)0.03548 (9)0.0182 (4)
H6D0.217 (2)0.5559 (11)0.0402 (9)0.008 (4)*
H6C0.391 (3)0.5790 (12)0.0690 (10)0.019 (5)*
N30.38406 (18)0.73377 (9)0.12091 (8)0.0146 (3)
H3A0.385 (2)0.7681 (13)0.0886 (10)0.016 (5)*
H3B0.478 (3)0.7190 (13)0.1278 (11)0.023 (6)*
N40.07178 (18)0.70245 (9)0.17074 (8)0.0155 (3)
H4B0.032 (3)0.7045 (13)0.1610 (10)0.027 (6)*
H4A0.079 (3)0.6796 (14)0.2080 (11)0.026 (6)*
C30.3253 (2)0.77480 (11)0.17991 (9)0.0175 (4)
H3D0.353 (2)0.7452 (12)0.2186 (9)0.011 (5)*
H3C0.374 (2)0.8260 (12)0.1837 (9)0.016 (5)*
C40.1402 (2)0.78212 (10)0.17682 (10)0.0178 (4)
H4C0.109 (2)0.8107 (12)0.1386 (10)0.018 (5)*
H4D0.097 (3)0.8110 (12)0.2159 (10)0.020 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.00953 (15)0.00972 (15)0.01465 (16)0.00031 (10)0.00038 (10)0.00023 (10)
Cl10.0154 (2)0.0123 (2)0.0178 (2)0.00106 (14)0.00053 (15)0.00024 (15)
Cl20.0122 (2)0.0245 (2)0.0197 (2)0.00031 (15)0.00082 (16)0.00254 (17)
N10.0125 (8)0.0140 (7)0.0166 (8)0.0004 (6)0.0007 (6)0.0010 (6)
N20.0127 (8)0.0134 (8)0.0204 (9)0.0004 (6)0.0011 (6)0.0001 (6)
C10.0196 (9)0.0125 (9)0.0186 (9)0.0005 (7)0.0005 (7)0.0022 (7)
C20.0176 (9)0.0119 (8)0.0207 (10)0.0024 (7)0.0022 (7)0.0013 (7)
N60.0120 (8)0.0138 (8)0.0211 (8)0.0009 (6)0.0007 (6)0.0007 (6)
N50.0133 (7)0.0118 (8)0.0204 (8)0.0009 (6)0.0020 (6)0.0005 (6)
C50.0184 (9)0.0175 (9)0.0177 (10)0.0011 (7)0.0012 (7)0.0010 (7)
C60.0189 (9)0.0177 (9)0.0181 (10)0.0006 (7)0.0022 (8)0.0030 (7)
N30.0114 (7)0.0136 (7)0.0189 (8)0.0005 (6)0.0006 (6)0.0020 (6)
N40.0132 (8)0.0129 (7)0.0205 (9)0.0011 (6)0.0019 (6)0.0000 (6)
C30.0201 (9)0.0125 (9)0.0198 (10)0.0034 (7)0.0015 (7)0.0003 (7)
C40.0210 (9)0.0106 (8)0.0217 (10)0.0001 (7)0.0023 (8)0.0001 (7)
Geometric parameters (Å, º) top
Co—N12.1540 (15)N5—C51.480 (2)
Co—N32.1558 (15)N5—H5B0.87 (2)
Co—N22.1635 (15)N5—H5A0.82 (2)
Co—N52.1748 (15)C5—C61.514 (3)
Co—N42.1767 (15)C5—H5D0.95 (2)
Co—N62.1791 (16)C5—H5C0.98 (2)
N1—C11.473 (2)C6—H6D0.967 (19)
N1—H1A0.86 (2)C6—H6C0.96 (2)
N1—H1B0.82 (2)N3—C31.472 (2)
N2—C21.473 (2)N3—H3A0.88 (2)
N2—H2A0.83 (2)N3—H3B0.82 (2)
N2—H2B0.88 (2)N4—C41.474 (2)
C1—C21.522 (2)N4—H4B0.87 (2)
C1—H1C0.96 (2)N4—H4A0.85 (2)
C1—H1D0.98 (2)C3—C41.517 (2)
C2—H2C0.99 (2)C3—H3D0.963 (19)
C2—H2D0.96 (2)C3—H3C0.96 (2)
N6—C61.475 (2)C4—H4C0.95 (2)
N6—H6A0.83 (2)C4—H4D1.00 (2)
N6—H6B0.88 (3)
N1—Co—N394.28 (6)H6A—N6—H6B105 (2)
N1—Co—N281.11 (6)C5—N5—Co109.18 (11)
N3—Co—N2170.27 (6)C5—N5—H5B108.7 (14)
N1—Co—N5171.51 (6)Co—N5—H5B110.5 (14)
N3—Co—N589.75 (6)C5—N5—H5A109.8 (15)
N2—Co—N595.97 (6)Co—N5—H5A110.6 (15)
N1—Co—N489.95 (6)H5B—N5—H5A108 (2)
N3—Co—N480.33 (6)N5—C5—C6109.49 (15)
N2—Co—N491.05 (6)N5—C5—H5D106.3 (12)
N5—Co—N498.10 (6)C6—C5—H5D108.2 (12)
N1—Co—N691.88 (6)N5—C5—H5C113.1 (12)
N3—Co—N697.69 (6)C6—C5—H5C108.5 (13)
N2—Co—N691.05 (6)H5D—C5—H5C111.1 (17)
N5—Co—N680.17 (6)N6—C6—C5109.64 (15)
N4—Co—N6177.41 (6)N6—C6—H6D105.8 (11)
C1—N1—Co109.07 (11)C5—C6—H6D109.6 (11)
C1—N1—H1A111.3 (14)N6—C6—H6C112.2 (12)
Co—N1—H1A110.0 (14)C5—C6—H6C109.1 (13)
C1—N1—H1B109.6 (16)H6D—C6—H6C110.4 (16)
Co—N1—H1B109.5 (16)C3—N3—Co108.21 (11)
H1A—N1—H1B107 (2)C3—N3—H3A107.4 (13)
C2—N2—Co107.21 (11)Co—N3—H3A112.6 (13)
C2—N2—H2A110.2 (14)C3—N3—H3B108.1 (16)
Co—N2—H2A111.6 (15)Co—N3—H3B111.7 (15)
C2—N2—H2B108.0 (14)H3A—N3—H3B109 (2)
Co—N2—H2B110.4 (14)C4—N4—Co108.49 (11)
H2A—N2—H2B109 (2)C4—N4—H4B110.5 (15)
N1—C1—C2108.96 (14)Co—N4—H4B114.9 (15)
N1—C1—H1C111.3 (12)C4—N4—H4A108.7 (16)
C2—C1—H1C109.1 (12)Co—N4—H4A107.5 (15)
N1—C1—H1D106.9 (12)H4B—N4—H4A107 (2)
C2—C1—H1D108.7 (11)N3—C3—C4109.24 (15)
H1C—C1—H1D111.9 (16)N3—C3—H3D110.2 (11)
N2—C2—C1109.29 (15)C4—C3—H3D108.0 (11)
N2—C2—H2C109.2 (12)N3—C3—H3C111.2 (12)
C1—C2—H2C107.6 (12)C4—C3—H3C110.0 (12)
N2—C2—H2D112.1 (12)H3D—C3—H3C108.2 (16)
C1—C2—H2D108.4 (12)N4—C4—C3107.74 (14)
H2C—C2—H2D110.2 (17)N4—C4—H4C107.6 (12)
C6—N6—Co108.95 (11)C3—C4—H4C109.8 (12)
C6—N6—H6A110.3 (15)N4—C4—H4D112.8 (12)
Co—N6—H6A114.7 (15)C3—C4—H4D110.8 (12)
C6—N6—H6B108.5 (14)H4C—C4—H4D108.0 (16)
Co—N6—H6B109.3 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···Cl20.82 (2)2.48 (3)3.2839 (17)167 (2)
N1—H1A···Cl2i0.86 (2)2.57 (2)3.3056 (16)145.4 (18)
N2—H2A···Cl1ii0.83 (2)2.92 (2)3.5494 (16)133.6 (17)
N2—H2A···Cl2iii0.83 (2)2.94 (2)3.5887 (17)135.8 (17)
N2—H2B···Cl10.88 (2)2.65 (2)3.4566 (17)152.5 (18)
N5—H5B···Cl1ii0.87 (2)2.51 (2)3.3770 (16)173.1 (19)
N5—H5A···Cl1iv0.82 (2)2.70 (2)3.4514 (18)152.4 (19)
N6—H6B···Cl10.88 (3)2.66 (3)3.4552 (18)150.3 (19)
N6—H6A···Cl1v0.83 (2)2.71 (2)3.4653 (16)152.9 (19)
N3—H3A···Cl1iv0.88 (2)2.59 (2)3.4075 (17)154.2 (17)
N3—H3B···Cl2i0.82 (2)2.49 (2)3.2560 (16)156 (2)
N4—H4A···Cl20.85 (2)2.68 (2)3.5003 (17)161 (2)
N4—H4B···Cl2iii0.87 (2)2.55 (2)3.2919 (16)143.5 (19)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x, y+1, z; (iii) x1/2, y, z+1/2; (iv) x+1/2, y+1/2, z; (v) x+1, y+1, z.
Selected bond lengths (Å) top
Co—N12.1540 (15)Co—N52.1748 (15)
Co—N32.1558 (15)Co—N42.1767 (15)
Co—N22.1635 (15)Co—N62.1791 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···Cl20.82 (2)2.48 (3)3.2839 (17)167 (2)
N1—H1A···Cl2i0.86 (2)2.57 (2)3.3056 (16)145.4 (18)
N2—H2A···Cl1ii0.83 (2)2.92 (2)3.5494 (16)133.6 (17)
N2—H2A···Cl2iii0.83 (2)2.94 (2)3.5887 (17)135.8 (17)
N2—H2B···Cl10.88 (2)2.65 (2)3.4566 (17)152.5 (18)
N5—H5B···Cl1ii0.87 (2)2.51 (2)3.3770 (16)173.1 (19)
N5—H5A···Cl1iv0.82 (2)2.70 (2)3.4514 (18)152.4 (19)
N6—H6B···Cl10.88 (3)2.66 (3)3.4552 (18)150.3 (19)
N6—H6A···Cl1v0.83 (2)2.71 (2)3.4653 (16)152.9 (19)
N3—H3A···Cl1iv0.88 (2)2.59 (2)3.4075 (17)154.2 (17)
N3—H3B···Cl2i0.82 (2)2.49 (2)3.2560 (16)156 (2)
N4—H4A···Cl20.85 (2)2.68 (2)3.5003 (17)161 (2)
N4—H4B···Cl2iii0.87 (2)2.55 (2)3.2919 (16)143.5 (19)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x, y+1, z; (iii) x1/2, y, z+1/2; (iv) x+1/2, y+1/2, z; (v) x+1, y+1, z.
Acknowledgements top

The authors thank the UC Davis ChemEnergy NSF REU Grant #CHE-1004925 for financial support.

references
References top

Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Takamizawa, S., Akatsuka, T. & Ueda, T. (2008). Angew. Chem. Int. Ed. 47, 1689–1692.