supplementary materials


hy2611 scheme

Acta Cryst. (2013). E69, m325    [ doi:10.1107/S1600536813012968 ]

Bis(2,2',2''-nitrilotriacetamide-[kappa]3O,N,O')cobalt(II) dinitrate tetrahydrate

J.-W. Ran and J. Pei

Abstract top

In the centrosymmetric title compound, [Co(C6H12N4O3)2](NO3)2·4H2O, the CoII ion, lying on an inversion center, is O,N,O'-chelated by two nitrilotriacetamide molecules, forming a distorted octahedral geometry. In the crystal, extensive O-H...O and N-H...O hydrogen bonds link the complex cations, nitrate anions and lattice water molecules into a three-dimensional network.

Comment top

Transition metal compounds have been of great interest for many years. They are very important in the development of coordination chemistry. As an extension of work on the structural characterization of Co compounds, we report here the crystal structure of a new mononuclear cobalt(II) compound.

The title compound consists of a [Co(NTA)2]2+ cation (NTA = nitrilotriacetamide), two nitrate anions and four solvent water molecules. The CoII atom has a distorted octahedral coordination environment (Fig. 1), which is centrosymmetric as the CoII atom occupies an inversion center. In the equatorial plane, the Co—N1 distance is 2.1696 (16) Å and the Co—O1 distance is 2.1057 (14) Å. The axial Co—O2 bond is appreciably shortened, which is 2.0329 (14) Å. In the crystal, extensive O—H···O and N—H···O hydrogen bonds (Table 1) link the complex cations, nitrate anions and lattice water molecules into a three-dimensional network (Fig. 2).

Related literature top

For related structures, see: Kumari et al. (2012). For the synthesis of the ligand, see: Smith et al. (1995).

Experimental top

The ligand was prepared according to the literature method (Smith et al., 1995). The title compound was synthesized by adding water solution of Co(NO3)2.6H2O (291 mg, 2 mmol) to a solution of the ligand (752 mg, 4 mmol) in methanol/water (v/v 3:1, 20 ml). The mixture was stirred for 30 min at room temperature. The solution was filtered and the filtrate was allowed to stand in air for 1 week, and pink crystals were formed at the bottom of the vessel on slow evaporation of the solvent at room temperature (yield: 30%).

Refinement top

H atoms on C and N atoms were positioned geometrically and refined as riding atoms, with C—H = 0.97, N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C,N). The water H atoms were located from a difference Fourier map and refined with restraints of O—H = 0.86 (1) Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS (Siemens, 1994); data reduction: XSCANS (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the complex cation in the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (A) 2-x, 1-y, 2-z.]
[Figure 2] Fig. 2. The packing diagram for the title compound, viewed down the a axis, with hydrogen bonds drawn as dashed lines.
Bis(2,2',2''-nitrilotriacetamide-κ3O,N,O')cobalt(II) dinitrate tetrahydrate top
Crystal data top
[Co(C6H12N4O3)2](NO3)2·4H2OZ = 1
Mr = 631.41F(000) = 329
Triclinic, P1Dx = 1.572 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4910 (17) ÅCell parameters from 4804 reflections
b = 9.1410 (18) Åθ = 2.4–28.3°
c = 9.2580 (19) ŵ = 0.73 mm1
α = 91.55 (3)°T = 293 K
β = 96.03 (3)°Block, pink
γ = 110.68 (3)°0.36 × 0.32 × 0.25 mm
V = 667.0 (2) Å3
Data collection top
Siemens P4
diffractometer
2185 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 25.0°, θmin = 2.2°
ω scansh = 810
Absorption correction: ψ scan
(XSCANS; Siemens, 1994)
k = 106
Tmin = 0.779, Tmax = 0.838l = 1111
3692 measured reflections2 standard reflections every 150 reflections
2301 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0402P)2 + 0.3421P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2301 reflectionsΔρmax = 0.32 e Å3
191 parametersΔρmin = 0.22 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.036 (4)
Crystal data top
[Co(C6H12N4O3)2](NO3)2·4H2Oγ = 110.68 (3)°
Mr = 631.41V = 667.0 (2) Å3
Triclinic, P1Z = 1
a = 8.4910 (17) ÅMo Kα radiation
b = 9.1410 (18) ŵ = 0.73 mm1
c = 9.2580 (19) ÅT = 293 K
α = 91.55 (3)°0.36 × 0.32 × 0.25 mm
β = 96.03 (3)°
Data collection top
Siemens P4
diffractometer
2185 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XSCANS; Siemens, 1994)
Rint = 0.016
Tmin = 0.779, Tmax = 0.838θmax = 25.0°
3692 measured reflections2 standard reflections every 150 reflections
2301 independent reflections intensity decay: none
Refinement top
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080Δρmax = 0.32 e Å3
S = 1.05Δρmin = 0.22 e Å3
2301 reflectionsAbsolute structure: ?
191 parametersFlack parameter: ?
6 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co11.00000.50001.00000.02488 (14)
O11.04636 (18)0.42993 (15)1.21011 (14)0.0357 (3)
N10.84838 (18)0.25174 (17)0.97367 (17)0.0255 (3)
O20.77965 (17)0.51316 (15)1.05517 (16)0.0358 (3)
N20.5284 (2)0.37589 (19)1.1249 (2)0.0385 (4)
H2A0.51400.46021.15310.046*
H2B0.45200.28601.13350.046*
C20.6662 (2)0.3843 (2)1.0691 (2)0.0279 (4)
C40.7310 (2)0.0285 (2)0.7776 (2)0.0309 (4)
C10.6803 (2)0.2307 (2)1.0199 (2)0.0344 (5)
H1A0.66070.16161.09900.041*
H1B0.59290.18100.93930.041*
C50.9455 (3)0.1821 (2)1.0737 (2)0.0311 (4)
H5A1.04170.17521.02980.037*
H5B0.87410.07721.09310.037*
C61.0065 (2)0.2848 (2)1.2144 (2)0.0320 (4)
C30.8369 (3)0.2003 (2)0.8196 (2)0.0319 (4)
H3A0.95080.22040.79570.038*
H3B0.78940.26420.76040.038*
O30.7098 (2)0.07085 (16)0.86712 (17)0.0436 (4)
N31.0164 (3)0.2180 (2)1.3353 (2)0.0498 (5)
H3C1.05140.27391.41650.060*
H3D0.98780.11781.33420.060*
N40.6714 (3)0.0027 (2)0.6381 (2)0.0481 (5)
H4A0.61380.09760.60530.058*
H4B0.69030.07200.58020.058*
O40.3650 (3)0.0756 (2)0.7431 (3)0.0729 (6)
N50.3013 (3)0.1744 (2)0.7124 (2)0.0490 (5)
O60.3922 (3)0.3140 (2)0.7051 (3)0.0790 (7)
O50.1443 (3)0.1328 (2)0.6828 (3)0.0753 (6)
O80.1387 (2)0.4513 (2)0.58788 (17)0.0494 (4)
O70.6172 (3)0.2799 (2)0.5059 (2)0.0606 (5)
H8A0.072 (4)0.470 (4)0.642 (3)0.091*
H8B0.195 (4)0.405 (4)0.637 (3)0.091*
H7A0.566 (4)0.319 (4)0.566 (3)0.091*
H7B0.689 (4)0.364 (3)0.475 (4)0.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0248 (2)0.0160 (2)0.0289 (2)0.00148 (14)0.00284 (14)0.00066 (13)
O10.0466 (8)0.0217 (7)0.0305 (7)0.0042 (6)0.0021 (6)0.0001 (5)
N10.0247 (8)0.0181 (7)0.0304 (8)0.0039 (6)0.0024 (6)0.0002 (6)
O20.0316 (7)0.0186 (7)0.0550 (9)0.0044 (6)0.0126 (6)0.0028 (6)
N20.0346 (9)0.0217 (8)0.0584 (11)0.0066 (7)0.0156 (8)0.0010 (8)
C20.0262 (9)0.0220 (9)0.0330 (10)0.0064 (8)0.0018 (7)0.0018 (7)
C40.0296 (10)0.0236 (9)0.0357 (11)0.0052 (8)0.0043 (8)0.0038 (8)
C10.0269 (10)0.0204 (9)0.0521 (12)0.0030 (8)0.0085 (9)0.0014 (8)
C50.0367 (10)0.0199 (9)0.0347 (10)0.0091 (8)0.0002 (8)0.0008 (7)
C60.0331 (10)0.0254 (10)0.0334 (10)0.0069 (8)0.0013 (8)0.0026 (8)
C30.0374 (11)0.0220 (9)0.0291 (10)0.0025 (8)0.0027 (8)0.0003 (7)
O30.0528 (9)0.0226 (7)0.0426 (9)0.0009 (6)0.0011 (7)0.0011 (6)
N30.0765 (14)0.0299 (9)0.0343 (10)0.0119 (9)0.0060 (9)0.0041 (8)
N40.0604 (12)0.0313 (9)0.0387 (10)0.0034 (9)0.0061 (9)0.0075 (8)
O40.0603 (12)0.0588 (12)0.1021 (17)0.0247 (10)0.0046 (11)0.0217 (11)
N50.0592 (13)0.0371 (11)0.0523 (12)0.0154 (10)0.0204 (10)0.0052 (9)
O60.0978 (16)0.0309 (9)0.0995 (16)0.0039 (10)0.0445 (13)0.0050 (10)
O50.0557 (12)0.0608 (12)0.1194 (19)0.0294 (10)0.0200 (12)0.0227 (12)
O80.0611 (11)0.0471 (10)0.0394 (9)0.0186 (8)0.0064 (8)0.0022 (7)
O70.0692 (13)0.0430 (10)0.0559 (11)0.0022 (9)0.0120 (9)0.0010 (8)
Geometric parameters (Å, º) top
Co1—O22.0329 (14)C5—C61.516 (3)
Co1—O12.1057 (14)C5—H5A0.9700
Co1—N12.1696 (16)C5—H5B0.9700
O1—C61.250 (2)C6—N31.299 (3)
N1—C31.472 (2)C3—H3A0.9700
N1—C51.478 (2)C3—H3B0.9700
N1—C11.482 (2)N3—H3C0.8600
O2—C21.251 (2)N3—H3D0.8600
N2—C21.307 (3)N4—H4A0.8600
N2—H2A0.8600N4—H4B0.8600
N2—H2B0.8600O4—N51.231 (3)
C2—C11.513 (3)N5—O61.245 (3)
C4—O31.225 (3)N5—O51.247 (3)
C4—N41.321 (3)O8—H8A0.85 (2)
C4—C31.524 (3)O8—H8B0.85 (2)
C1—H1A0.9700O7—H7A0.88 (2)
C1—H1B0.9700O7—H7B0.87 (2)
O2i—Co1—O2180.0N1—C1—C2112.43 (15)
O2i—Co1—O191.39 (7)N1—C1—H1A109.1
O2—Co1—O188.61 (7)C2—C1—H1A109.1
O2i—Co1—O1i88.61 (7)N1—C1—H1B109.1
O2—Co1—O1i91.39 (7)C2—C1—H1B109.1
O1—Co1—O1i180.0H1A—C1—H1B107.9
O2i—Co1—N198.08 (6)N1—C5—C6108.58 (15)
O2—Co1—N181.92 (6)N1—C5—H5A110.0
O1—Co1—N178.83 (6)C6—C5—H5A110.0
O1i—Co1—N1101.17 (6)N1—C5—H5B110.0
O2i—Co1—N1i81.92 (6)C6—C5—H5B110.0
O2—Co1—N1i98.08 (6)H5A—C5—H5B108.4
O1—Co1—N1i101.17 (6)O1—C6—N3122.53 (19)
O1i—Co1—N1i78.83 (6)O1—C6—C5119.19 (17)
N1—Co1—N1i180.00 (8)N3—C6—C5118.28 (17)
C6—O1—Co1113.26 (12)N1—C3—C4115.74 (16)
C3—N1—C5113.47 (15)N1—C3—H3A108.3
C3—N1—C1112.51 (15)C4—C3—H3A108.3
C5—N1—C1111.69 (16)N1—C3—H3B108.3
C3—N1—Co1107.54 (11)C4—C3—H3B108.3
C5—N1—Co1103.12 (11)H3A—C3—H3B107.4
C1—N1—Co1107.83 (11)C6—N3—H3C120.0
C2—O2—Co1115.18 (12)C6—N3—H3D120.0
C2—N2—H2A120.0H3C—N3—H3D120.0
C2—N2—H2B120.0C4—N4—H4A120.0
H2A—N2—H2B120.0C4—N4—H4B120.0
O2—C2—N2121.59 (17)H4A—N4—H4B120.0
O2—C2—C1121.70 (17)O4—N5—O6120.7 (2)
N2—C2—C1116.70 (16)O4—N5—O5119.5 (2)
O3—C4—N4124.06 (18)O6—N5—O5119.7 (2)
O3—C4—C3121.43 (17)H8A—O8—H8B108 (2)
N4—C4—C3114.46 (18)H7A—O7—H7B102 (2)
O2i—Co1—O1—C681.44 (15)Co1—O2—C2—N2169.65 (15)
O2—Co1—O1—C698.56 (15)Co1—O2—C2—C111.4 (2)
N1—Co1—O1—C616.52 (14)C3—N1—C1—C2118.18 (18)
N1i—Co1—O1—C6163.48 (14)C5—N1—C1—C2112.86 (18)
O2i—Co1—N1—C362.62 (13)Co1—N1—C1—C20.2 (2)
O2—Co1—N1—C3117.38 (13)O2—C2—C1—N17.4 (3)
O1—Co1—N1—C3152.44 (13)N2—C2—C1—N1173.64 (17)
O1i—Co1—N1—C327.56 (13)C3—N1—C5—C6158.56 (16)
O2i—Co1—N1—C557.55 (12)C1—N1—C5—C672.98 (19)
O2—Co1—N1—C5122.45 (12)Co1—N1—C5—C642.55 (17)
O1—Co1—N1—C532.27 (12)Co1—O1—C6—N3175.96 (18)
O1i—Co1—N1—C5147.73 (12)Co1—O1—C6—C54.6 (2)
O2i—Co1—N1—C1175.82 (12)N1—C5—C6—O134.3 (3)
O2—Co1—N1—C14.18 (12)N1—C5—C6—N3146.2 (2)
O1—Co1—N1—C186.00 (13)C5—N1—C3—C468.0 (2)
O1i—Co1—N1—C194.00 (13)C1—N1—C3—C460.0 (2)
O1—Co1—O2—C270.37 (14)Co1—N1—C3—C4178.61 (13)
O1i—Co1—O2—C2109.63 (14)O3—C4—C3—N125.6 (3)
N1—Co1—O2—C28.54 (14)N4—C4—C3—N1156.74 (18)
N1i—Co1—O2—C2171.46 (14)
Symmetry code: (i) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O6ii0.862.263.026 (3)149
N2—H2B···O3iii0.861.962.816 (2)173
N3—H3C···O8iv0.862.112.958 (3)168
N3—H3D···O5iii0.862.163.001 (3)166
N4—H4A···O7v0.862.202.992 (3)152
N4—H4B···O70.862.303.045 (3)145
O7—H7A···O60.88 (2)2.05 (2)2.877 (3)156 (3)
O7—H7B···O8vi0.87 (2)1.96 (2)2.826 (3)176 (3)
O8—H8A···O1ii0.85 (2)2.14 (2)2.976 (2)166 (3)
O8—H8B···O60.85 (2)2.16 (2)2.980 (3)161 (3)
O8—H8B···O50.85 (2)2.42 (3)3.078 (3)134 (3)
Symmetry codes: (ii) x+1, y+1, z+2; (iii) x+1, y, z+2; (iv) x+1, y, z+1; (v) x+1, y, z+1; (vi) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O6i0.862.263.026 (3)149
N2—H2B···O3ii0.861.962.816 (2)173
N3—H3C···O8iii0.862.112.958 (3)168
N3—H3D···O5ii0.862.163.001 (3)166
N4—H4A···O7iv0.862.202.992 (3)152
N4—H4B···O70.862.303.045 (3)145
O7—H7A···O60.88 (2)2.05 (2)2.877 (3)156 (3)
O7—H7B···O8v0.87 (2)1.96 (2)2.826 (3)176 (3)
O8—H8A···O1i0.85 (2)2.14 (2)2.976 (2)166 (3)
O8—H8B···O60.85 (2)2.16 (2)2.980 (3)161 (3)
O8—H8B···O50.85 (2)2.42 (3)3.078 (3)134 (3)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+2; (iii) x+1, y, z+1; (iv) x+1, y, z+1; (v) x+1, y+1, z+1.
Acknowledgements top

This research was supported by the Huangzhou Scholar Fund (2012).

references
References top

Kumari, N., Ward, B. D., Kar, S. & Mishra, L. (2012). Polyhedron, 33, 425–434.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Siemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Smith, D. A., Sucheck, S., Cramer, S. & Baker, D. (1995). Synth. Commun. 25, 4123–4132.