supplementary materials


hy2626 scheme

Acta Cryst. (2013). E69, m341    [ doi:10.1107/S1600536813014141 ]

Tris(diisopropyl dithiophosphato-[kappa]2S,S')ruthenium(III)

G.-P. Chao, X. Wu, H.-T. Shi, Q. Chen and Q.-F. Zhang

Abstract top

In the title complex, [Ru(C6H14O2PS2)3], the coordination environment of the RuIII atom is distorted octahedral, defined by six S atoms from three S,S'-bidentate diisopropyl dithiophosphate ligands. The average Ru-S bond length is 2.41 (1) Å and the average S-Ru-S bite angle is 81.13 (19)°.

Comment top

In recent years there has been an increased interest in ruthenium complexes with sulfur-donor ligands, in part because of the high catalytic activity of RuS2 unit in various hydrogenation processes (Castillo-Villalón et al., 2008; Chianelli et al., 2009). In the course of our continuous study on ruthenium complexes in a sulfur-rich coordination environment (Leung et al., 2000), we are interested in the homoleptic ruthenium complexes with thiolate ligands, which may be probably designed as processors for the binary RuS2 nanoparticles (David et al., 2005). Although the ruthenium chemistry of dithio acidic ligands such as dithiocarbamate and dithiocarbonate has been the subject of continuous study, the corresponding ruthenium dithiophosphate chemistry has not been developed much (Wu et al., 2009). Here we report the crystal structure of the title compound, a homoleptic ruthenium complex.

The molecular structure of the title complex is depicted in Fig. 1. The complex is mononuclear and the RuIII atom displays a distorted octahedral RuS6 coordination geometry. Each of dithiophosphate ligands binds to the RuIII atom in an S,S'-bidentate mode, forming a four-membered ring with an average S—Ru—S bite angle of 81.31 (2)°, which is comparable with those in [Ru{S2P(OMe)2}3] [av. 81.54 (8)°] and [Ru{S2P(OEt)2}3] [av. 81.84 (6)°] (Jain et al., 2000). Each four-membered RuS2P ring is nonplanar and contains a pair of nearly equal Ru—S bonds (Table 1). The average Ru—S bond length of 2.4092 (7) Å in the title complex is compatible to those in [Ru{S2P(OMe)2}3] [av. 2.413 (13) Å] and [Ru{S2P(OEt)2}3] [av. 2.424 (3) Å] (Jain et al., 2000), but is obviously shorter than those in [Ru{S2P(OEt)2}2(PPh3)2] [av. 2.4974 (11) Å] and [RuH(CO){S2P(OEt)2}(PPh3)2] [av. 2.5474 (12) Å] (Liu et al., 2005). The bond distances within the di-iso-proposaldithiophosphate ligands of the title complex agree well with those found in the analogous dimethyl- and diethyldithiophosphate complexes of ruthenium (Jain et al., 2000).

Related literature top

For background to ruthenium complexes, see: Castillo-Villalón et al. (2008); Chianelli et al. (2009); David et al. (2005); Leung et al. (2000); Wu et al. (2009). For related structures, see: Jain et al. (2000); Liu et al. (2005).

Experimental top

A mixture of RuCl3.H2O (209 mg, 0.80 mmol) and KS2P(OiPr)2 (606 mg, 2.40 mmol) was dissolved in 25 ml of methanol and then heated at reflux for 8 h. During this time the color of the reaction solution was changed from brown to bright red. The solvent was evaporated in vacuo and the residue was redissolved in dichloromethane and then filtered. The filtrate was dried and then recrystallized from diethyl ether/hexane. The red plate-shaped crystals of the title complex were obtained within a week. Yield: 260 mg, 44% (based on Ru). Analysis, calculated for C18H42O6P3RuS6: C 29.18, H 5.71%; found: C 29.25, H 5.67%.

Refinement top

H atoms were placed in geometrically idealized positions and refined as riding atoms, with C—H = 0.98 (CH) and 0.96 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Tris(diisopropyl dithiophosphato-κ2S,S')ruthenium(III) top
Crystal data top
[Ru(C6H14O2PS2)3]Z = 2
Mr = 740.92F(000) = 766
Triclinic, P1Dx = 1.396 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9676 (8) ÅCell parameters from 2994 reflections
b = 10.5073 (9) Åθ = 2.6–25.7°
c = 19.1085 (17) ŵ = 0.96 mm1
α = 81.281 (2)°T = 296 K
β = 88.678 (2)°Block, red
γ = 82.175 (2)°0.14 × 0.11 × 0.10 mm
V = 1763.1 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
7478 independent reflections
Radiation source: fine-focus sealed tube6083 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 27.2°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.877, Tmax = 0.910k = 1312
11411 measured reflectionsl = 2417
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0341P)2 + 0.2818P]
where P = (Fo2 + 2Fc2)/3
7478 reflections(Δ/σ)max = 0.001
319 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Ru(C6H14O2PS2)3]γ = 82.175 (2)°
Mr = 740.92V = 1763.1 (3) Å3
Triclinic, P1Z = 2
a = 8.9676 (8) ÅMo Kα radiation
b = 10.5073 (9) ŵ = 0.96 mm1
c = 19.1085 (17) ÅT = 296 K
α = 81.281 (2)°0.14 × 0.11 × 0.10 mm
β = 88.678 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
7478 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6083 reflections with I > 2σ(I)
Tmin = 0.877, Tmax = 0.910Rint = 0.022
11411 measured reflectionsθmax = 27.2°
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.083Δρmax = 0.47 e Å3
S = 1.02Δρmin = 0.32 e Å3
7478 reflectionsAbsolute structure: ?
319 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.73359 (2)0.556490 (18)0.733889 (10)0.04029 (7)
S10.76352 (8)0.32294 (7)0.76690 (4)0.05468 (17)
S20.94238 (8)0.50082 (7)0.65811 (4)0.05370 (17)
S30.53460 (8)0.54659 (6)0.65399 (4)0.05063 (16)
S40.70241 (8)0.77884 (6)0.67808 (4)0.04961 (16)
S50.55622 (7)0.59086 (7)0.82845 (4)0.05446 (17)
S60.90545 (7)0.59914 (7)0.82065 (4)0.05280 (17)
P10.93826 (8)0.31504 (7)0.69980 (4)0.05098 (17)
P20.53435 (7)0.73678 (6)0.62205 (3)0.04477 (15)
P30.72941 (8)0.61841 (7)0.88599 (4)0.05070 (17)
O11.0904 (2)0.2439 (2)0.73416 (11)0.0644 (5)
O20.9293 (2)0.2225 (2)0.64323 (11)0.0645 (5)
O30.5505 (2)0.7768 (2)0.54005 (9)0.0563 (5)
O40.37794 (19)0.82026 (18)0.62947 (9)0.0551 (5)
O50.7094 (2)0.74961 (19)0.91720 (10)0.0644 (5)
O60.7469 (2)0.5263 (2)0.95902 (10)0.0624 (5)
C11.1586 (4)0.2919 (3)0.79194 (19)0.0748 (9)
H11.09950.37270.80190.090*
C21.3140 (5)0.3157 (6)0.7684 (3)0.151 (2)
H2A1.36450.24060.75050.226*
H2B1.36910.33210.80780.226*
H2C1.30800.38960.73180.226*
C31.1601 (5)0.1891 (5)0.8553 (2)0.1150 (16)
H3A1.05980.16850.86480.172*
H3B1.19680.22010.89550.172*
H3C1.22460.11260.84630.172*
C40.7981 (4)0.2394 (3)0.5962 (2)0.0735 (9)
H40.72450.31100.60790.088*
C50.7314 (6)0.1163 (5)0.6098 (4)0.167 (3)
H5A0.80430.04600.59920.251*
H5B0.64450.12310.58040.251*
H5C0.70240.10010.65870.251*
C60.8515 (5)0.2709 (6)0.5218 (2)0.149 (2)
H6A0.91040.34140.51850.224*
H6B0.76640.29560.49080.224*
H6C0.91210.19600.50820.224*
C70.6915 (3)0.7423 (3)0.50207 (15)0.0623 (8)
H70.77290.70800.53590.075*
C80.6647 (6)0.6420 (5)0.4587 (3)0.1266 (18)
H8A0.61940.57460.48750.190*
H8B0.75880.60570.44020.190*
H8C0.59870.68090.42020.190*
C90.7253 (5)0.8642 (4)0.4591 (3)0.1215 (17)
H9A0.64310.89880.42740.182*
H9B0.81550.84690.43220.182*
H9C0.73910.92610.48970.182*
C100.2862 (4)0.8074 (3)0.69364 (16)0.0675 (8)
H100.32350.72710.72490.081*
C110.1293 (5)0.8026 (6)0.6708 (3)0.141 (2)
H11A0.09660.87840.63730.212*
H11B0.06370.80000.71130.212*
H11C0.12670.72620.64920.212*
C120.2940 (5)0.9204 (5)0.7298 (3)0.1266 (18)
H12A0.39740.93170.73490.190*
H12B0.24810.90630.77570.190*
H12C0.24170.99680.70230.190*
C130.6915 (4)0.8748 (3)0.87079 (19)0.0766 (9)
H130.67630.86000.82220.092*
C140.8314 (6)0.9343 (5)0.8733 (3)0.148 (2)
H14A0.84320.95530.91990.222*
H14B0.82551.01200.83930.222*
H14C0.91600.87410.86250.222*
C150.5537 (5)0.9537 (5)0.8945 (3)0.1347 (19)
H15A0.46840.90830.89210.202*
H15B0.53711.03600.86420.202*
H15C0.56680.96760.94230.202*
C160.7732 (4)0.3847 (3)0.96155 (16)0.0659 (8)
H160.79690.36540.91360.079*
C170.6338 (5)0.3299 (5)0.9858 (3)0.1299 (18)
H17A0.60920.34801.03280.195*
H17B0.64920.23760.98610.195*
H17C0.55270.36850.95440.195*
C180.9062 (5)0.3339 (5)1.0075 (3)0.138 (2)
H18A0.99100.37540.98930.207*
H18B0.92920.24171.00810.207*
H18C0.88430.35161.05470.207*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.04333 (12)0.03643 (11)0.04021 (12)0.00469 (8)0.00048 (8)0.00357 (8)
S10.0558 (4)0.0391 (4)0.0658 (4)0.0044 (3)0.0055 (3)0.0006 (3)
S20.0540 (4)0.0504 (4)0.0555 (4)0.0055 (3)0.0117 (3)0.0071 (3)
S30.0542 (4)0.0429 (4)0.0563 (4)0.0088 (3)0.0084 (3)0.0091 (3)
S40.0585 (4)0.0386 (3)0.0517 (4)0.0116 (3)0.0064 (3)0.0013 (3)
S50.0491 (4)0.0671 (5)0.0463 (4)0.0058 (3)0.0055 (3)0.0083 (3)
S60.0497 (4)0.0619 (4)0.0478 (4)0.0078 (3)0.0042 (3)0.0107 (3)
P10.0486 (4)0.0443 (4)0.0592 (4)0.0025 (3)0.0037 (3)0.0123 (3)
P20.0481 (4)0.0438 (4)0.0402 (3)0.0021 (3)0.0014 (3)0.0030 (3)
P30.0603 (4)0.0498 (4)0.0400 (4)0.0007 (3)0.0017 (3)0.0061 (3)
O10.0550 (11)0.0601 (13)0.0764 (14)0.0102 (9)0.0149 (10)0.0183 (10)
O20.0603 (11)0.0594 (13)0.0755 (14)0.0092 (9)0.0128 (10)0.0292 (10)
O30.0535 (10)0.0707 (13)0.0399 (10)0.0003 (9)0.0003 (8)0.0008 (8)
O40.0541 (10)0.0539 (11)0.0507 (10)0.0060 (8)0.0039 (8)0.0005 (8)
O50.0869 (14)0.0532 (12)0.0512 (11)0.0021 (10)0.0025 (10)0.0116 (9)
O60.0852 (14)0.0580 (12)0.0409 (10)0.0009 (10)0.0023 (9)0.0052 (8)
C10.069 (2)0.068 (2)0.087 (2)0.0054 (16)0.0263 (18)0.0192 (18)
C20.122 (4)0.197 (6)0.139 (5)0.095 (4)0.040 (3)0.029 (4)
C30.108 (3)0.148 (5)0.082 (3)0.012 (3)0.015 (2)0.002 (3)
C40.0653 (19)0.062 (2)0.095 (3)0.0054 (15)0.0227 (18)0.0271 (18)
C50.167 (5)0.085 (3)0.257 (7)0.045 (3)0.107 (5)0.007 (4)
C60.118 (4)0.250 (8)0.081 (3)0.007 (4)0.022 (3)0.041 (4)
C70.0580 (16)0.077 (2)0.0490 (16)0.0018 (15)0.0072 (13)0.0101 (14)
C80.140 (4)0.133 (4)0.124 (4)0.028 (3)0.050 (3)0.075 (3)
C90.122 (3)0.104 (4)0.126 (4)0.015 (3)0.063 (3)0.009 (3)
C100.076 (2)0.0612 (19)0.0558 (17)0.0121 (16)0.0166 (15)0.0008 (14)
C110.100 (3)0.206 (6)0.143 (5)0.072 (4)0.053 (3)0.068 (4)
C120.131 (4)0.146 (5)0.114 (4)0.004 (3)0.020 (3)0.072 (3)
C130.103 (3)0.0522 (19)0.071 (2)0.0045 (18)0.0121 (19)0.0085 (15)
C140.132 (4)0.073 (3)0.232 (7)0.026 (3)0.018 (4)0.013 (4)
C150.142 (4)0.085 (3)0.163 (5)0.037 (3)0.005 (4)0.021 (3)
C160.083 (2)0.0575 (19)0.0513 (17)0.0013 (16)0.0020 (15)0.0002 (13)
C170.126 (4)0.092 (3)0.163 (5)0.028 (3)0.040 (3)0.012 (3)
C180.164 (4)0.082 (3)0.155 (5)0.013 (3)0.083 (4)0.007 (3)
Geometric parameters (Å, º) top
Ru1—S12.4189 (7)C6—H6A0.9600
Ru1—S22.4037 (7)C6—H6B0.9600
Ru1—S32.3981 (7)C6—H6C0.9600
Ru1—S42.3988 (7)C7—C91.477 (5)
Ru1—S52.4155 (7)C7—C81.483 (5)
Ru1—S62.4199 (7)C7—H70.9800
S1—P12.0027 (10)C8—H8A0.9600
S2—P11.9983 (10)C8—H8B0.9600
S3—P21.9988 (9)C8—H8C0.9600
S4—P22.0030 (9)C9—H9A0.9600
S5—P32.0007 (10)C9—H9B0.9600
S6—P31.9976 (10)C9—H9C0.9600
P1—O21.570 (2)C10—C121.471 (5)
P1—O11.5706 (19)C10—C111.493 (5)
P2—O41.5653 (18)C10—H100.9800
P2—O31.5681 (18)C11—H11A0.9600
P3—O51.570 (2)C11—H11B0.9600
P3—O61.5709 (19)C11—H11C0.9600
O1—C11.459 (4)C12—H12A0.9600
O2—C41.472 (4)C12—H12B0.9600
O3—C71.473 (3)C12—H12C0.9600
O4—C101.460 (3)C13—C141.480 (5)
O5—C131.462 (4)C13—C151.493 (5)
O6—C161.468 (4)C13—H130.9800
C1—C31.494 (5)C14—H14A0.9600
C1—C21.496 (5)C14—H14B0.9600
C1—H10.9800C14—H14C0.9600
C2—H2A0.9600C15—H15A0.9600
C2—H2B0.9600C15—H15B0.9600
C2—H2C0.9600C15—H15C0.9600
C3—H3A0.9600C16—C171.483 (5)
C3—H3B0.9600C16—C181.487 (5)
C3—H3C0.9600C16—H160.9800
C4—C51.483 (5)C17—H17A0.9600
C4—C61.494 (5)C17—H17B0.9600
C4—H40.9800C17—H17C0.9600
C5—H5A0.9600C18—H18A0.9600
C5—H5B0.9600C18—H18B0.9600
C5—H5C0.9600C18—H18C0.9600
S3—Ru1—S481.50 (2)H6A—C6—H6B109.5
S3—Ru1—S298.00 (3)C4—C6—H6C109.5
S4—Ru1—S291.82 (2)H6A—C6—H6C109.5
S3—Ru1—S591.52 (3)H6B—C6—H6C109.5
S4—Ru1—S595.44 (3)O3—C7—C9105.9 (3)
S2—Ru1—S5168.80 (3)O3—C7—C8107.4 (3)
S3—Ru1—S190.71 (3)C9—C7—C8113.0 (4)
S4—Ru1—S1168.84 (3)O3—C7—H7110.1
S2—Ru1—S181.31 (2)C9—C7—H7110.1
S5—Ru1—S192.73 (3)C8—C7—H7110.1
S3—Ru1—S6169.79 (2)C7—C8—H8A109.5
S4—Ru1—S692.10 (2)C7—C8—H8B109.5
S2—Ru1—S690.11 (3)H8A—C8—H8B109.5
S5—Ru1—S681.12 (3)C7—C8—H8C109.5
S1—Ru1—S696.67 (3)H8A—C8—H8C109.5
P1—S1—Ru187.31 (3)H8B—C8—H8C109.5
P1—S2—Ru187.83 (3)C7—C9—H9A109.5
P2—S3—Ru187.78 (3)C7—C9—H9B109.5
P2—S4—Ru187.67 (3)H9A—C9—H9B109.5
P3—S5—Ru187.61 (3)C7—C9—H9C109.5
P3—S6—Ru187.56 (3)H9A—C9—H9C109.5
O2—P1—O196.41 (11)H9B—C9—H9C109.5
O2—P1—S2113.86 (9)O4—C10—C12108.7 (3)
O1—P1—S2114.71 (9)O4—C10—C11106.8 (3)
O2—P1—S1114.42 (9)C12—C10—C11111.2 (4)
O1—P1—S1114.49 (9)O4—C10—H10110.0
S2—P1—S1103.50 (4)C12—C10—H10110.0
O4—P2—O396.25 (10)C11—C10—H10110.0
O4—P2—S3113.93 (8)C10—C11—H11A109.5
O3—P2—S3114.89 (9)C10—C11—H11B109.5
O4—P2—S4115.64 (8)H11A—C11—H11B109.5
O3—P2—S4113.79 (8)C10—C11—H11C109.5
S3—P2—S4102.97 (4)H11A—C11—H11C109.5
O5—P3—O696.44 (11)H11B—C11—H11C109.5
O5—P3—S6113.64 (9)C10—C12—H12A109.5
O6—P3—S6114.96 (9)C10—C12—H12B109.5
O5—P3—S5115.12 (9)H12A—C12—H12B109.5
O6—P3—S5113.51 (9)C10—C12—H12C109.5
S6—P3—S5103.70 (4)H12A—C12—H12C109.5
C1—O1—P1121.08 (19)H12B—C12—H12C109.5
C4—O2—P1120.73 (18)O5—C13—C14108.5 (3)
C7—O3—P2122.02 (16)O5—C13—C15107.3 (3)
C10—O4—P2123.28 (17)C14—C13—C15114.4 (4)
C13—O5—P3121.11 (19)O5—C13—H13108.8
C16—O6—P3120.41 (17)C14—C13—H13108.8
O1—C1—C3107.1 (3)C15—C13—H13108.8
O1—C1—C2106.9 (3)C13—C14—H14A109.5
C3—C1—C2112.1 (3)C13—C14—H14B109.5
O1—C1—H1110.2H14A—C14—H14B109.5
C3—C1—H1110.2C13—C14—H14C109.5
C2—C1—H1110.2H14A—C14—H14C109.5
C1—C2—H2A109.5H14B—C14—H14C109.5
C1—C2—H2B109.5C13—C15—H15A109.5
H2A—C2—H2B109.5C13—C15—H15B109.5
C1—C2—H2C109.5H15A—C15—H15B109.5
H2A—C2—H2C109.5C13—C15—H15C109.5
H2B—C2—H2C109.5H15A—C15—H15C109.5
C1—C3—H3A109.5H15B—C15—H15C109.5
C1—C3—H3B109.5O6—C16—C17109.1 (3)
H3A—C3—H3B109.5O6—C16—C18107.7 (3)
C1—C3—H3C109.5C17—C16—C18114.2 (3)
H3A—C3—H3C109.5O6—C16—H16108.6
H3B—C3—H3C109.5C17—C16—H16108.6
O2—C4—C5106.5 (3)C18—C16—H16108.6
O2—C4—C6107.9 (3)C16—C17—H17A109.5
C5—C4—C6113.4 (4)C16—C17—H17B109.5
O2—C4—H4109.6H17A—C17—H17B109.5
C5—C4—H4109.6C16—C17—H17C109.5
C6—C4—H4109.6H17A—C17—H17C109.5
C4—C5—H5A109.5H17B—C17—H17C109.5
C4—C5—H5B109.5C16—C18—H18A109.5
H5A—C5—H5B109.5C16—C18—H18B109.5
C4—C5—H5C109.5H18A—C18—H18B109.5
H5A—C5—H5C109.5C16—C18—H18C109.5
H5B—C5—H5C109.5H18A—C18—H18C109.5
C4—C6—H6A109.5H18B—C18—H18C109.5
C4—C6—H6B109.5
Selected bond lengths (Å) top
Ru1—S12.4189 (7)Ru1—S42.3988 (7)
Ru1—S22.4037 (7)Ru1—S52.4155 (7)
Ru1—S32.3981 (7)Ru1—S62.4199 (7)
Acknowledgements top

This project was supported by the Natural Science Foundation of China (grant No. 20771003).

references
References top

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Castillo-Villalón, P., Ramírez, J. & Maugé, F. (2008). J. Catal. 260, 65–74.

Chianelli, R. R., Berhault, G. & Torres, B. (2009). Catal. Today, 147, 275–286.

David, D., Silvia, E. & Castillo, B. (2005). J. Phys. Chem. B, 109, 22715–22724.

Jain, P. U., Munshi, P., Walawalkar, M. G., Rath, S. P., Rajak, K. K. & Lahiri, G. K. (2000). Polyhedron, 19, 801–808.

Leung, W. H., Lau, K. K., Zhang, Q. F., Wong, W. T. & Tang, B. (2000). Organometallics, 19, 2084–2089.

Liu, X., Zhang, Q. F. & Leung, W. H. (2005). J. Coord. Chem. 58, 1299–1305.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wu, F. H., Duan, T., Lu, L., Zhang, Q. F. & Leung, W. H. (2009). J. Organomet. Chem. 694, 3844–3851.