supplementary materials


Acta Cryst. (2013). E69, i35    [ doi:10.1107/S1600536813012853 ]

Poly[tri-[mu]-aqua-diaqua-[mu]-phosphonoformato-cobalt(II)sodium]

X.-J. Luo and X.-Q. Zhang

Abstract top

The title complex, [CoNa(CO5P)(H2O)5]n, was obtained by reacting sodium phosphonoformate with cobalt nitrate. The complex contains cobalt(II) and sodium ions, which are bridged by the O atoms of two aqua ligands. The CoII ion is octahedrally coordinated by three phosphonoformato ligands (one bi- and the other monodentate) and by two O atoms from the bridging aqua ligands. The sodium cation is hexacoordinated by six O atoms from four bridging and two terminal aqua ligands. The complex molecules are linked to give a three-dimensional structure by phosphonoformate ligands bridging CoII atoms and water molecules establishing cobalt-sodium bridges. O-H...O hydrogen bonding between the aqua ligands and all O atoms of the phosphonoformato ligand and neighbouring aqua ligands help to consolidate the packing.

Comment top

Organophosphates have been widely used in medicinal chemistry and life science. They play an important role in life processes of substance transportation and energy transformation, and are also important for biological substances, such as ATP, DNA, RNA, etc. Bisphosphonates (BPs) are metabolically stable analogues of pyrophosphates. They have a very high affinity to calcium ions and therefore show a very strong inhibitory effect on osteoclastic resorption. They are used as therapeutic agents for several bone-related diseases. Foscarnet and phosphonoacetic acid are known to inhibit viral DNA polymerase, inhibit the replication of herpes viruses, and also inhibit retroviruses (Mesri et al., 1996). Recently, several bifunctional metal-phosphonate complexes have been explored (Galanski et al., 2003; Margiotta et al., 2007; Xue et al., 2010; Torres Martin de Rosales et al., 2009).

The molecular structure of the title compound is shown in Fig. 1. Each Co(II) ion is in an octahedral environment coordinated by two O atoms (O1, O4) from a chelating phosphonoformate ligand, two O atoms (O6, O7) from two bridging water molecules and two O atoms (O2A, O3B) from two other phosphonoformates. Similarly, the Na(I) ion is coordinated by four O atoms (O6, O7, O8, O9) from four bridging water molecules and two O atoms (O9C, O10) from two terminal water ligands. The complex is linked to 3-D structure by phosphonoformate ligands bridging cobalt atoms and water molecules establishing cobalt sodium bridges (Fig. 2).

Related literature top

For biological applications of organophosphorus complexes, see: Xue et al. (2010); Torres Martin de Rosales et al. (2009); Galanski et al. (2003); Margiotta et al. (2007); Mesri et al. (1996).

Experimental top

An aqueous solution (15 ml) of Co(NO3)2 × 6 H2O (0.145 g, 0.5 mmol) was added dropwisely to an aqueous solution (15 ml) of sodium phosphonoformate (0.180 g, 0.6 mmol) at 323 K. The resulting mixture was refluxed for 3 h, and then the aqueous solution was allowed to cool down to room temperature. Pink block shaped crystals suitable for X-ray single diffraction analysis were harvested by slow evaporation (yield, 65%).

Refinement top

H atoms of the water molecules were located in a difference Fourier map and refined, with O—H distances restrained to 0.82 Å.

Computing details top

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear (Rigaku, 1999); data reduction: CrystalStructure (Rigaku/MSC & Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of one repeating unit of the coordination polymer with the atom-numbering scheme displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along c axis.
Poly[tri-µ-aqua-diaqua-µ-phosphonoformato-cobalt(II)sodium] top
Crystal data top
[CoNa(CO5P)(H2O)5]F(000) = 596
Mr = 294.98Dx = 2.135 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 3028 reflections
a = 8.299 (2) Åθ = 3.1–27.5°
b = 11.785 (3) ŵ = 2.13 mm1
c = 9.769 (3) ÅT = 223 K
β = 106.204 (4)°Block, pink
V = 917.5 (4) Å30.30 × 0.14 × 0.05 mm
Z = 4
Data collection top
Rigaku Saturn
diffractometer
1691 independent reflections
Radiation source: fine-focus sealed tube1539 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 14.63 pixels mm-1θmax = 25.5°, θmin = 3.1°
ω scansh = 810
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1214
Tmin = 0.636, Tmax = 0.899l = 117
3715 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066All H-atom parameters refined
S = 1.09 w = 1/[σ2(Fo2) + (0.0277P)2]
where P = (Fo2 + 2Fc2)/3
1691 reflections(Δ/σ)max = 0.001
168 parametersΔρmax = 0.37 e Å3
10 restraintsΔρmin = 0.45 e Å3
Crystal data top
[CoNa(CO5P)(H2O)5]V = 917.5 (4) Å3
Mr = 294.98Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.299 (2) ŵ = 2.13 mm1
b = 11.785 (3) ÅT = 223 K
c = 9.769 (3) Å0.30 × 0.14 × 0.05 mm
β = 106.204 (4)°
Data collection top
Rigaku Saturn
diffractometer
1691 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
1539 reflections with I > 2σ(I)
Tmin = 0.636, Tmax = 0.899Rint = 0.028
3715 measured reflectionsθmax = 25.5°
Refinement top
R[F2 > 2σ(F2)] = 0.035All H-atom parameters refined
wR(F2) = 0.066Δρmax = 0.37 e Å3
S = 1.09Δρmin = 0.45 e Å3
1691 reflectionsAbsolute structure: ?
168 parametersFlack parameter: ?
10 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.08112 (5)0.64526 (3)0.69444 (4)0.01133 (13)
P10.00606 (10)0.38705 (6)0.65570 (8)0.01079 (19)
Na10.49306 (16)0.63218 (10)0.95685 (13)0.0201 (3)
O10.1359 (3)0.47211 (16)0.6737 (2)0.0137 (5)
O20.0139 (3)0.30646 (17)0.7807 (2)0.0146 (5)
O30.0498 (3)0.32183 (16)0.5160 (2)0.0147 (5)
O40.1606 (3)0.58356 (16)0.6816 (2)0.0158 (5)
O50.3256 (3)0.43235 (17)0.6558 (2)0.0189 (5)
O60.1718 (3)0.62170 (19)0.9232 (2)0.0179 (5)
H6A0.139 (5)0.668 (3)0.971 (4)0.047 (14)*
H6B0.164 (4)0.5600 (16)0.960 (3)0.024 (10)*
O70.3298 (3)0.71602 (19)0.7377 (3)0.0171 (5)
H7A0.313 (6)0.777 (2)0.770 (5)0.088 (19)*
H7B0.388 (4)0.706 (3)0.683 (3)0.029 (11)*
O80.7866 (3)0.6010 (2)0.9711 (3)0.0226 (6)
H8A0.850 (4)0.636 (3)1.038 (3)0.048 (14)*
H8B0.816 (4)0.619 (3)0.901 (2)0.027 (11)*
O90.5412 (3)0.5383 (2)1.1731 (3)0.0189 (5)
H9A0.473 (3)0.540 (3)1.220 (3)0.031 (12)*
H9B0.639 (2)0.537 (3)1.221 (4)0.040 (13)*
O100.5291 (3)0.8103 (2)1.0633 (3)0.0219 (6)
H10A0.484 (7)0.866 (3)1.017 (5)0.12 (2)*
H10B0.620 (3)0.839 (3)1.104 (4)0.043 (13)*
C10.1872 (4)0.4775 (2)0.6624 (3)0.0133 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0135 (2)0.0099 (2)0.0113 (2)0.00024 (18)0.00465 (17)0.00001 (17)
P10.0130 (4)0.0095 (4)0.0109 (4)0.0001 (3)0.0048 (3)0.0003 (3)
Na10.0223 (7)0.0168 (6)0.0199 (7)0.0021 (6)0.0037 (6)0.0001 (5)
O10.0123 (11)0.0095 (10)0.0190 (12)0.0013 (9)0.0040 (9)0.0003 (9)
O20.0205 (12)0.0125 (10)0.0101 (11)0.0016 (9)0.0030 (9)0.0013 (9)
O30.0230 (13)0.0117 (10)0.0101 (11)0.0018 (9)0.0055 (10)0.0005 (9)
O40.0170 (12)0.0103 (10)0.0222 (12)0.0006 (9)0.0090 (10)0.0009 (9)
O50.0135 (12)0.0158 (11)0.0286 (14)0.0032 (10)0.0078 (10)0.0000 (10)
O60.0261 (14)0.0141 (12)0.0152 (12)0.0033 (11)0.0085 (11)0.0011 (11)
O70.0197 (14)0.0171 (12)0.0173 (13)0.0003 (11)0.0096 (11)0.0026 (10)
O80.0244 (14)0.0275 (13)0.0157 (14)0.0062 (11)0.0054 (12)0.0047 (12)
O90.0153 (14)0.0238 (13)0.0187 (14)0.0017 (11)0.0065 (12)0.0003 (10)
O100.0221 (15)0.0181 (12)0.0250 (15)0.0031 (11)0.0059 (12)0.0010 (11)
C10.0145 (17)0.0158 (16)0.0098 (17)0.0013 (14)0.0038 (14)0.0018 (13)
Geometric parameters (Å, º) top
Co1—O3i2.036 (2)Na1—H7A2.64 (4)
Co1—O2ii2.097 (2)O2—Co1iv2.097 (2)
Co1—O42.104 (2)O3—Co1i2.036 (2)
Co1—O12.113 (2)O4—C11.274 (3)
Co1—O72.156 (3)O5—C11.251 (4)
Co1—O62.168 (2)O6—H6A0.819 (10)
P1—O11.519 (2)O6—H6B0.820 (10)
P1—O21.519 (2)O7—H7A0.817 (10)
P1—O31.520 (2)O7—H7B0.820 (10)
P1—C11.859 (3)O8—H8A0.821 (10)
Na1—O92.319 (3)O8—H8B0.817 (10)
Na1—O102.325 (3)O9—Na1iii2.351 (3)
Na1—O9iii2.351 (3)O9—H9A0.822 (10)
Na1—O72.404 (3)O9—H9B0.818 (10)
Na1—O82.429 (3)O10—H10A0.822 (10)
Na1—O62.596 (3)O10—H10B0.818 (10)
Na1—Na1iii3.221 (2)
O3i—Co1—O2ii89.89 (8)O8—Na1—Na1iii82.90 (8)
O3i—Co1—O498.89 (9)O6—Na1—Na1iii87.00 (7)
O2ii—Co1—O486.39 (8)O9—Na1—H7A149.2 (10)
O3i—Co1—O193.29 (8)O10—Na1—H7A72.6 (5)
O2ii—Co1—O1169.80 (9)O9iii—Na1—H7A102.7 (5)
O4—Co1—O183.54 (8)O7—Na1—H7A17.9 (5)
O3i—Co1—O788.26 (9)O8—Na1—H7A120.2 (11)
O2ii—Co1—O789.84 (9)O6—Na1—H7A65.1 (11)
O4—Co1—O7171.90 (9)Na1iii—Na1—H7A141.2 (8)
O1—Co1—O799.94 (9)P1—O1—Co1117.89 (13)
O3i—Co1—O6167.17 (9)P1—O2—Co1iv134.36 (12)
O2ii—Co1—O691.74 (8)P1—O3—Co1i137.88 (13)
O4—Co1—O693.92 (9)C1—O4—Co1118.1 (2)
O1—Co1—O687.32 (8)Co1—O6—Na199.98 (10)
O7—Co1—O679.02 (9)Co1—O6—H6A116 (3)
O1—P1—O2114.36 (12)Na1—O6—H6A113 (3)
O1—P1—O3114.88 (13)Co1—O6—H6B121 (2)
O2—P1—O3110.56 (12)Na1—O6—H6B101 (2)
O1—P1—C1103.06 (13)H6A—O6—H6B105 (4)
O2—P1—C1103.76 (14)Co1—O7—Na1106.63 (11)
O3—P1—C1109.21 (12)Co1—O7—H7A99 (4)
O9—Na1—O1093.19 (10)Na1—O7—H7A98 (3)
O9—Na1—O9iii92.76 (10)Co1—O7—H7B121 (3)
O10—Na1—O9iii173.87 (11)Na1—O7—H7B103 (2)
O9—Na1—O7156.76 (11)H7A—O7—H7B125 (4)
O10—Na1—O789.86 (9)Na1—O8—H8A112 (3)
O9iii—Na1—O785.24 (9)Na1—O8—H8B116 (3)
O9—Na1—O887.73 (10)H8A—O8—H8B105 (4)
O10—Na1—O896.27 (10)Na1—O9—Na1iii87.24 (10)
O9iii—Na1—O882.52 (10)Na1—O9—H9A122 (3)
O7—Na1—O8114.84 (10)Na1iii—O9—H9A109 (3)
O9—Na1—O690.14 (9)Na1—O9—H9B115 (3)
O10—Na1—O695.69 (9)Na1iii—O9—H9B104 (3)
O9iii—Na1—O685.74 (9)H9A—O9—H9B114 (4)
O7—Na1—O666.63 (9)Na1—O10—H10A119 (4)
O8—Na1—O6167.95 (9)Na1—O10—H10B125 (3)
O9—Na1—Na1iii46.79 (7)H10A—O10—H10B99 (4)
O10—Na1—Na1iii139.96 (10)O5—C1—O4123.0 (3)
O9iii—Na1—Na1iii45.97 (7)O5—C1—P1119.6 (2)
O7—Na1—Na1iii126.93 (8)O4—C1—P1117.3 (2)
O2—P1—O1—Co1112.78 (14)O7—Na1—O6—Co120.00 (8)
O3—P1—O1—Co1117.81 (14)O8—Na1—O6—Co179.7 (5)
C1—P1—O1—Co10.87 (16)Na1iii—Na1—O6—Co1112.70 (8)
O3i—Co1—O1—P196.88 (14)O3i—Co1—O7—Na1154.99 (11)
O2ii—Co1—O1—P111.0 (5)O2ii—Co1—O7—Na1115.12 (11)
O4—Co1—O1—P11.70 (13)O4—Co1—O7—Na152.9 (6)
O7—Co1—O1—P1174.31 (13)O1—Co1—O7—Na161.95 (11)
O6—Co1—O1—P195.95 (14)O6—Co1—O7—Na123.32 (10)
O1—P1—O2—Co1iv157.24 (16)O9—Na1—O7—Co119.2 (3)
O3—P1—O2—Co1iv25.7 (2)O10—Na1—O7—Co1116.96 (11)
C1—P1—O2—Co1iv91.3 (2)O9iii—Na1—O7—Co166.71 (11)
O1—P1—O3—Co1i43.0 (2)O8—Na1—O7—Co1146.19 (10)
O2—P1—O3—Co1i174.31 (17)O6—Na1—O7—Co120.70 (9)
C1—P1—O3—Co1i72.1 (2)Na1iii—Na1—O7—Co145.96 (16)
O3i—Co1—O4—C189.9 (2)O10—Na1—O9—Na1iii178.55 (11)
O2ii—Co1—O4—C1179.2 (2)O9iii—Na1—O9—Na1iii0.0
O1—Co1—O4—C12.5 (2)O7—Na1—O9—Na1iii84.4 (2)
O7—Co1—O4—C1118.4 (6)O8—Na1—O9—Na1iii82.39 (9)
O6—Co1—O4—C189.3 (2)O6—Na1—O9—Na1iii85.74 (9)
O3i—Co1—O6—Na113.2 (4)Co1—O4—C1—O5178.7 (2)
O2ii—Co1—O6—Na1110.39 (9)Co1—O4—C1—P12.6 (3)
O4—Co1—O6—Na1163.11 (8)O1—P1—C1—O5177.4 (2)
O1—Co1—O6—Na179.78 (9)O2—P1—C1—O557.9 (3)
O7—Co1—O6—Na120.89 (9)O3—P1—C1—O560.1 (3)
O9—Na1—O6—Co1159.41 (9)O1—P1—C1—O41.1 (3)
O10—Na1—O6—Co1107.37 (10)O2—P1—C1—O4118.4 (2)
O9iii—Na1—O6—Co166.65 (10)O3—P1—C1—O4123.7 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1/2, z+3/2; (iii) x+1, y+1, z+2; (iv) x, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10B···O4v0.82 (1)1.99 (1)2.805 (3)173 (4)
O10—H10A···O5ii0.82 (1)1.99 (3)2.736 (3)151 (5)
O9—H9B···O1iii0.82 (1)1.87 (1)2.683 (3)178 (4)
O9—H9A···O5vi0.82 (1)1.98 (1)2.790 (4)171 (4)
O8—H8B···O4vii0.82 (1)2.24 (2)2.988 (4)152 (3)
O8—H8A···O2iii0.82 (1)1.94 (1)2.751 (3)168 (4)
O7—H7B···O10viii0.82 (1)1.88 (1)2.703 (4)177 (4)
O7—H7A···O5ii0.82 (1)1.96 (2)2.757 (3)166 (5)
O6—H6B···O8iii0.82 (1)2.02 (2)2.806 (3)161 (4)
O6—H6A···O3ii0.82 (1)1.97 (2)2.698 (3)148 (4)
Symmetry codes: (ii) x, y+1/2, z+3/2; (iii) x+1, y+1, z+2; (v) x+1, y+3/2, z+1/2; (vi) x, y+1, z+2; (vii) x+1, y, z; (viii) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10B···O4i0.818 (10)1.991 (12)2.805 (3)173 (4)
O10—H10A···O5ii0.822 (10)1.99 (3)2.736 (3)151 (5)
O9—H9B···O1iii0.818 (10)1.865 (11)2.683 (3)178 (4)
O9—H9A···O5iv0.822 (10)1.975 (12)2.790 (4)171 (4)
O8—H8B···O4v0.817 (10)2.243 (19)2.988 (4)152 (3)
O8—H8A···O2iii0.821 (10)1.943 (13)2.751 (3)168 (4)
O7—H7B···O10vi0.820 (10)1.884 (11)2.703 (4)177 (4)
O7—H7A···O5ii0.817 (10)1.957 (16)2.757 (3)166 (5)
O6—H6B···O8iii0.820 (10)2.017 (15)2.806 (3)161 (4)
O6—H6A···O3ii0.819 (10)1.97 (2)2.698 (3)148 (4)
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x, y+1/2, z+3/2; (iii) x+1, y+1, z+2; (iv) x, y+1, z+2; (v) x+1, y, z; (vi) x, y+3/2, z1/2.
Acknowledgements top

The authors thank the Foundation of State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources (CMEMR2012-A11) and the Research Projects of Guangxi Department of Education (201010LX200) for financial support.

references
References top

Galanski, M., Slaby, S., Jakupec, M. A. & Keppler, B. K. (2003). J. Med. Chem. 46, 4946–4951.

Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.

Margiotta, N., Ostuni, R., Teoli, D., Morpurgo, M., Realdon, N., Palazzo, B. & Natile, G. (2007). Dalton Trans. pp. 3131–3139.

Mesri, E. A., Cesarman, E., Arvanitakis, L., Rafii, S., Moore, M. A., Posnett, D. N., Knowles, D. M. & Asch, A. S. (1996). J. Exp. Med. 183, 2385–2390.

Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC & Rigaku (2000). CrystalStructure. Rigaku/MSC, The Woodands, Texas, USA, and Rigaku Coporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Torres Martin de Rosales, R., Finucane, C., Mather, S. J. & Blower, P. J. (2009). Chem. Commun. 32, 4847–4849.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Xue, Z., Lin, M., Zhu, J., Zhang, J., Li, Y. & Guo, Z. (2010). Chem. Commun. 46, 1212–1214.