supplementary materials


lr2104 scheme

Acta Cryst. (2013). E69, o843    [ doi:10.1107/S1600536813012038 ]

3-(Ammoniomethyl)pyridinium bis(perchlorate)

I. Bayar, R. Kefi, P. Sidonio Pereira da Silva, M. Ramos Silva and C. Ben Nasr

Abstract top

In the title molecular salt, C6H10N22+·2ClO4-, the Cl-O bond lengths [anion 1: 1.369 (3)-1.415 (3); anion 2: 1.420 (2)-1.441 (2) Å] and the O-Cl-O angles [anion 1: 105.4 (2)-111.8 (4); anion 2: 107.8 (1)-110.3 (1)°] indicate a slight distortion of the perchlorate anions from regular tetrahedral symmetry. In the crystal, the components are linked into columns along the a-axis direction via N-H...O and C-H...O hydrogen bonds, with stacks of the organic molecules being surrounded by stacks of perchlorate anions.

Comment top

Studies of perchlorate salts containing organic cations have had a great deal of attention in recent years, because of their ferroelectric and dielectric behaviour (Czupinski et al., 2002; Czupinski et al., 2006). It was shown that dynamics of pyridinium cations contributes mainly to the mecanism of solid-solid phase transition and leads ferroelectricity in these molecular-ionic crystals (Czarnecki et al., 1994) Here, we report the synthesis and the crystal structure of the title compound (I), (C6H10N2)(ClO4)2.

The structure consists of one 3-ammoniomethylpyrinidinium dication and two perchlorate anions (Fig. 1). In the crystal, the three H atoms of the ammonium group are involved into N—H···Cl and N—H···O hydrogen bonds: N2—H2C···Cl1(v), N2—H2B···Cl2(ii), N2—H2C···O1(v), N2—H2A··· (O6vi, O2iv) and N2—H2B··· (O6iv, O3vii), the two laters are bifurcated (for the symmetry codes, see Table 1). These hydrogen bonds link the ionic units (NH3+ and [ClO4]-) to form columns running along the a-axis direction (Fig.2) and situated at y = z = 1/2 (Fig.3). The organic groups are located between these columns via two kinds of hydrogen bonds: a bifurcated N—H···O and two C—H···O: N1—H1 (O5, O7viii), C6—H6A···O8(iii) and C5—H5···O1(vi) (Fig. 3, Table 1). No π-π stacking interactions between the organic rings or C—H··· π interactions towards them are observed. It is worth noting that the C—N—C angles of pyridine are very sensitive to protonation: a pyridinium cation always has an expanded angle of the C—N—C in comparison with the parent pydidine. The angle C(5)—N(1)—C(1) [123.4 (2)°] is consistent with the type of pyridinium cation. The hydrogen atom HN(1), which is deprived from its parent, attaches the nitrogen atom. As expected, the [ClO4]- anion has typical tetrahedral geometry where the Cl—O bond lengths and O—Cl—O angles are not equal to one another but vary with the environment around the O atoms. In the title compound, the Cl—O bond lengths vary from 1.369 (3) to 1.415 (3) Å for [Cl(1)O4]- anion and from 1.420 (2) to 1.440 (2) Å for [Cl(2)O4]- anion are comparable to that previuosly reported for the perchlorate anions (Kapplinger & Keutel, 1999). The O—Cl—O angles range from 105.4 (2) to 111.8 (4)° for the first anion and from 109.04 (15) to 110.33 (13)° for the second one. These values, which are characteristic of perchlorate anions (Ye et al., 2002), clearly indicate that the coordination geometry of the Cl(2) atom can be regarded as being a less distorted tetrahedron than the one of the Cl(1). However, for the Cl(2)O4 tetrahedron, all the oxygen atoms are involved in hydrogen bonds, while only three oxygen atoms act as acceptors of hydrogen bonds for the [Cl(1)O4] tetrahedron.

Related literature top

For general background to perchlorate salts with organic cations, see: Czarnecki et al. (1994); Czupinski et al. (2002, 2006). For related structures, see: Kapplinger & Keutel (1999); Ye et al. (2002)

Experimental top

3-ammoniomethylpyrinidinium (1 mmol, 0.108 g) was dissolved in a mixture of distilled water (10 ml) and perchloric acid (0.5 ml).The resultant solution was evaporated at room temperature. Crystals of the title compound, which remained stable under normal conditions of temperature and humidity, were isolated after several days and subjected to X-ray diffraction analysis (yield 64%).

Refinement top

All the H-atoms were located in difference Fourier synthesis maps and refined as riding on their parent atoms, using SHELXL97(Sheldrick, 2008) defaults.

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound, showing 50% probability displacement ellipsoids and arbitrary spheres for the H atoms.
[Figure 2] Fig. 2. Partial packing of the title compound, viewed down the b axis, showing columns formed between perchlorate anions and ammonium groups.
[Figure 3] Fig. 3. The crystal packing of the title compound viewed along the a axis.
3-(Ammoniomethyl)pyridinium bis(perchlorate) top
Crystal data top
C6H10N22+·2ClO4F(000) = 632
Mr = 309.06Dx = 1.802 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5314 reflections
a = 5.1947 (1) Åθ = 2.3–30.6°
b = 12.1221 (3) ŵ = 0.61 mm1
c = 18.2724 (5) ÅT = 293 K
β = 98.067 (1)°Block, colourless
V = 1139.24 (5) Å30.44 × 0.33 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3509 independent reflections
Radiation source: fine-focus sealed tube3007 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 30.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 77
Tmin = 0.765, Tmax = 0.875k = 1717
26338 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0782P)2 + 0.9452P]
where P = (Fo2 + 2Fc2)/3
3509 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.75 e Å3
Crystal data top
C6H10N22+·2ClO4V = 1139.24 (5) Å3
Mr = 309.06Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.1947 (1) ŵ = 0.61 mm1
b = 12.1221 (3) ÅT = 293 K
c = 18.2724 (5) Å0.44 × 0.33 × 0.22 mm
β = 98.067 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3509 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3007 reflections with I > 2σ(I)
Tmin = 0.765, Tmax = 0.875Rint = 0.032
26338 measured reflectionsθmax = 30.6°
Refinement top
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.148Δρmax = 0.70 e Å3
S = 1.06Δρmin = 0.75 e Å3
3509 reflectionsAbsolute structure: ?
163 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.11942 (12)0.50919 (5)0.12761 (3)0.04193 (16)
Cl20.82533 (9)0.14688 (4)0.09563 (2)0.03098 (14)
O10.1534 (5)0.4964 (2)0.1114 (2)0.0912 (10)
O20.2513 (6)0.4146 (3)0.10993 (17)0.0916 (10)
O30.1869 (7)0.5993 (4)0.0893 (4)0.172 (3)
O40.1865 (11)0.5226 (5)0.2043 (2)0.169 (2)
O50.5608 (3)0.16338 (19)0.10859 (10)0.0499 (5)
O60.8768 (4)0.22306 (18)0.03930 (11)0.0523 (5)
O70.9987 (4)0.16608 (18)0.16220 (10)0.0530 (5)
O80.8562 (5)0.03757 (18)0.07037 (15)0.0673 (6)
N10.4671 (4)0.26538 (17)0.24604 (10)0.0400 (4)
H10.42410.22660.20680.048*
N20.3730 (4)0.18501 (18)0.47673 (11)0.0429 (5)
H2A0.28680.17680.51520.064*
H2B0.54210.19170.49280.064*
H2C0.34660.12630.44740.064*
C10.3473 (5)0.24549 (19)0.30466 (12)0.0377 (4)
H1A0.21820.19190.30220.045*
C20.4155 (4)0.30457 (18)0.36882 (10)0.0318 (4)
C30.6048 (5)0.38511 (19)0.36950 (12)0.0385 (4)
H30.65290.42690.41190.046*
C40.7224 (5)0.4036 (2)0.30740 (14)0.0417 (5)
H40.85010.45750.30790.050*
C50.6497 (5)0.3420 (2)0.24510 (12)0.0392 (5)
H50.72670.35370.20280.047*
C60.2791 (5)0.2852 (2)0.43480 (13)0.0443 (5)
H6A0.30510.34870.46730.053*
H6B0.09390.27810.41850.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0443 (3)0.0361 (3)0.0473 (3)0.0052 (2)0.0129 (2)0.0049 (2)
Cl20.0309 (2)0.0361 (3)0.0261 (2)0.00110 (17)0.00438 (16)0.00042 (15)
O10.0420 (11)0.0839 (18)0.152 (3)0.0086 (11)0.0271 (14)0.0586 (18)
O20.0762 (17)0.104 (2)0.0872 (19)0.0430 (16)0.0138 (14)0.0469 (16)
O30.078 (2)0.132 (3)0.295 (6)0.031 (2)0.009 (3)0.148 (4)
O40.190 (5)0.245 (6)0.066 (2)0.104 (4)0.003 (2)0.048 (3)
O50.0325 (8)0.0816 (14)0.0368 (8)0.0027 (8)0.0089 (6)0.0020 (8)
O60.0490 (10)0.0643 (12)0.0455 (9)0.0003 (9)0.0130 (8)0.0202 (9)
O70.0437 (9)0.0765 (13)0.0356 (8)0.0043 (9)0.0061 (7)0.0026 (8)
O80.0796 (16)0.0426 (11)0.0782 (15)0.0089 (10)0.0055 (12)0.0173 (10)
N10.0520 (11)0.0437 (10)0.0241 (7)0.0097 (8)0.0048 (7)0.0045 (7)
N20.0466 (11)0.0530 (12)0.0296 (8)0.0131 (9)0.0066 (7)0.0008 (8)
C10.0407 (11)0.0434 (11)0.0284 (9)0.0099 (9)0.0028 (8)0.0009 (8)
C20.0318 (9)0.0379 (10)0.0256 (8)0.0052 (7)0.0037 (7)0.0005 (7)
C30.0416 (11)0.0383 (10)0.0337 (10)0.0002 (9)0.0009 (8)0.0066 (8)
C40.0400 (11)0.0409 (11)0.0430 (11)0.0087 (9)0.0016 (9)0.0012 (9)
C50.0428 (11)0.0441 (12)0.0318 (9)0.0024 (9)0.0089 (8)0.0049 (8)
C60.0426 (12)0.0597 (14)0.0325 (10)0.0077 (10)0.0116 (9)0.0003 (10)
Geometric parameters (Å, º) top
Cl1—O31.369 (3)N2—H2B0.8900
Cl1—O21.397 (2)N2—H2C0.8900
Cl1—O41.405 (4)C1—C21.377 (3)
Cl1—O11.415 (3)C1—H1A0.9300
Cl2—O81.420 (2)C2—C31.385 (3)
Cl2—O71.4272 (18)C2—C61.500 (3)
Cl2—O61.4357 (18)C3—C41.380 (3)
Cl2—O51.4406 (18)C3—H30.9300
N1—C51.329 (3)C4—C51.369 (3)
N1—C11.334 (3)C4—H40.9300
N1—H10.8600C5—H50.9300
N2—C61.482 (3)C6—H6A0.9700
N2—H2A0.8900C6—H6B0.9700
O3—Cl1—O2111.6 (3)N1—C1—C2119.7 (2)
O3—Cl1—O4111.8 (4)N1—C1—H1A120.1
O2—Cl1—O4105.4 (2)C2—C1—H1A120.1
O3—Cl1—O1107.49 (19)C1—C2—C3118.16 (19)
O2—Cl1—O1111.8 (2)C1—C2—C6120.6 (2)
O4—Cl1—O1108.8 (3)C3—C2—C6121.2 (2)
O8—Cl2—O7110.04 (14)C4—C3—C2120.2 (2)
O8—Cl2—O6109.04 (15)C4—C3—H3119.9
O7—Cl2—O6110.33 (13)C2—C3—H3119.9
O8—Cl2—O5109.69 (14)C5—C4—C3119.5 (2)
O7—Cl2—O5109.86 (11)C5—C4—H4120.2
O6—Cl2—O5107.84 (12)C3—C4—H4120.2
C5—N1—C1123.42 (19)N1—C5—C4119.0 (2)
C5—N1—H1118.3N1—C5—H5120.5
C1—N1—H1118.3C4—C5—H5120.5
C6—N2—H2A109.5N2—C6—C2112.65 (19)
C6—N2—H2B109.5N2—C6—H6A109.1
H2A—N2—H2B109.5C2—C6—H6A109.1
C6—N2—H2C109.5N2—C6—H6B109.1
H2A—N2—H2C109.5C2—C6—H6B109.1
H2B—N2—H2C109.5H6A—C6—H6B107.8
C5—N1—C1—C21.3 (4)C2—C3—C4—C50.3 (4)
N1—C1—C2—C31.3 (3)C1—N1—C5—C40.7 (4)
N1—C1—C2—C6178.6 (2)C3—C4—C5—N10.2 (4)
C1—C2—C3—C40.8 (3)C1—C2—C6—N278.7 (3)
C6—C2—C3—C4178.1 (2)C3—C2—C6—N2104.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O50.862.162.901 (3)144
N1—H1···O7i0.862.362.945 (3)125
N2—H2A···O2ii0.892.092.866 (3)146
N2—H2A···O6iii0.892.543.166 (3)128
N2—H2B···O6ii0.892.102.925 (3)155
N2—H2B···O3iv0.892.472.922 (4)112
N2—H2B···Cl2ii0.892.963.600 (2)131
N2—H2C···O1v0.892.082.933 (3)160
N2—H2C···Cl1v0.892.973.654 (2)135
C5—H5···O1vi0.932.543.350 (4)145
C6—H6A···O8vii0.972.503.137 (3)123
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z+1/2; (iii) x1, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2; (v) x, y1/2, z+1/2; (vi) x+1, y, z; (vii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O50.862.162.901 (3)143.9
N1—H1···O7i0.862.362.945 (3)125.4
N2—H2A···O2ii0.892.092.866 (3)145.8
N2—H2A···O6iii0.892.543.166 (3)127.6
N2—H2B···O6ii0.892.102.925 (3)154.5
N2—H2B···O3iv0.892.472.922 (4)112.3
N2—H2B···Cl2ii0.892.963.600 (2)130.5
N2—H2C···O1v0.892.082.933 (3)159.7
N2—H2C···Cl1v0.892.973.654 (2)135.0
C5—H5···O1vi0.932.543.350 (4)145
C6—H6A···O8vii0.972.503.137 (3)123
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z+1/2; (iii) x1, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2; (v) x, y1/2, z+1/2; (vi) x+1, y, z; (vii) x+1, y+1/2, z+1/2.
Acknowledgements top

We would like to acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia. PSPS acknowledges support by the Fundação para a Ciência e a Tecnologia (FCT), under scholarship SFRH/BPD/84173/2012.

references
References top

Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Czarnecki, P., Nawrocik, W., Pajaxk, Z. & Nawrocik, J. (1994). J. Phys. Condens. Matter, 6, 4955–4960.

Czupinski, O., Bator, G., Ciunik, Z., Jakubas, R., Medycki, W. & Wiergiel, J. S. (2002). J. Phys. Condens. Matter, 14, 8497–8512.

Czupinski, O., Wojtas, M., Zaleski, J., Jakubas, R. & Medycki, W. (2006). J. Phys. Condens. Matter, 88, 3307–3324.

Kapplinger, E.-G. J. I. & Keutel, H. (1999). Inorg. Chim. Acta, C291, 190–206.

Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Ye, M.-D., Hu, M.-L. & Ye, C.-P. (2002). Z. Kristallogr. New Cryst. Struct. 217, 501–502.