supplementary materials


nc2309 scheme

Acta Cryst. (2013). E69, o987    [ doi:10.1107/S160053681301427X ]

Ethyl 5-methyl-3-phenylisoxazole-4-carboxylate

Chandra, K. Raghu, S. Jeyaseelan, K. B. Umesha and M. Mahendra

Abstract top

In the title compound, C13H13NO3, the dihedral angle between the phenyl and isoxazole rings is 43.40 (13)°. The ethoxycarbonyl group is rotated out of the plane of the isoxazole ring by 16.2 (13)°.

Comment top

Isoxazole and its derivatives are of well known heterocyclic compounds, which have a variety of biologically activities; such as anti-convulsant, antibacterial, antiasthmatic, and other pharmacological activities (Lin et al., 1997). In view of their importance we have special interest in the synthesis and structural studies of isoxazole derivatives (Chandra et al., 2013). Within this project, the title compound was prepared and characterized by single-crystal X-ray diffraction.

In the molecular structure of the title compound (Fig. 1), the dihedral angle between the phenyl ring (C1/C2/C3/C4/C5/C6) and the isoxazole ring (C7/N8/O9/C10/C12) amount to 43.40 (13)°. The ethoxycarbonyl unit is not in same plane with the isoxazole ring, as indicated by the torsion angle of 16.2 (13)°.

Related literature top

For the biological and pharmacological importance of isoxazoles, see: Lin et al. (1997). For the synthesis of isoxazole derivatives and a related structure, see: Chandra et al. (2013).

Experimental top

A mixture of benzaldehyde oxime (1 g, 8.33 mmol), chloramine-T (2.33 g, 8.33 mmol) and freshly distilled ethyl acetoacetate (2.16 g, 16.6 mmol) in ethyl alcohol (20 ml) were stirred at 10°C about 6 h. The progress of the reaction was monitored by TLC. After the completion of the reaction the solvent was evaporated in vacuum. The solids thus obtained were recrystalized from hot ethanol to get single crystals of the title compound.

Refinement top

The H atoms were placed in idealized positions and allowed to ride on their parent atoms with C–H distances in the range of 0.93 to 0.97 Å and Uiso(H) = 1.2Ueq(C) (1.5 for methyl H atoms).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective diagram of the title molecule with labeling and displacement ellipsoids drawn at the 50% probability level.
Ethyl 5-methyl-3-phenylisoxazole-4-carboxylate top
Crystal data top
C13H13NO3F(000) = 488
Mr = 231.24Dx = 1.288 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2060 reflections
a = 9.750 (8) Åθ = 2.3–25.0°
b = 14.589 (13) ŵ = 0.09 mm1
c = 9.397 (8) ÅT = 273 K
β = 116.872 (13)°Block, yellow
V = 1192.3 (18) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
Rint = 0.039
ω and φ scansθmax = 25.0°, θmin = 2.3°
10036 measured reflectionsh = 1111
2060 independent reflectionsk = 1717
1340 reflections with I > 2σ(I)l = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.1145P)2]
where P = (Fo2 + 2Fc2)/3
2060 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C13H13NO3V = 1192.3 (18) Å3
Mr = 231.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.750 (8) ŵ = 0.09 mm1
b = 14.589 (13) ÅT = 273 K
c = 9.397 (8) Å0.30 × 0.25 × 0.20 mm
β = 116.872 (13)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1340 reflections with I > 2σ(I)
10036 measured reflectionsRint = 0.039
2060 independent reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.186Δρmax = 0.16 e Å3
S = 0.99Δρmin = 0.17 e Å3
2060 reflectionsAbsolute structure: ?
156 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O90.6154 (2)0.13026 (13)0.1802 (3)0.0780 (8)
O140.6825 (2)0.12137 (19)0.2907 (3)0.1153 (12)
O150.4317 (2)0.09643 (11)0.17563 (19)0.0667 (6)
N80.4554 (3)0.14345 (15)0.2522 (3)0.0747 (9)
C10.1443 (3)0.10417 (18)0.3147 (3)0.0721 (10)
C20.0093 (3)0.1141 (2)0.3603 (4)0.0840 (11)
C30.0594 (3)0.1676 (2)0.2736 (4)0.0861 (11)
C40.0469 (3)0.21272 (19)0.1411 (4)0.0798 (11)
C50.2008 (3)0.20332 (16)0.0937 (3)0.0649 (9)
C60.2520 (3)0.14949 (15)0.1799 (3)0.0571 (8)
C70.4161 (3)0.13941 (14)0.1372 (3)0.0577 (8)
C100.6666 (3)0.11924 (16)0.0234 (3)0.0646 (9)
C110.8327 (3)0.0997 (2)0.0691 (4)0.0865 (11)
C120.5479 (3)0.12501 (14)0.0123 (3)0.0592 (8)
C130.5628 (3)0.11456 (17)0.1739 (3)0.0654 (9)
C160.4341 (4)0.0912 (2)0.3301 (3)0.0824 (11)
C170.2752 (4)0.0730 (2)0.3043 (4)0.0957 (14)
H10.177100.067000.373800.0870*
H20.080400.084200.451100.1010*
H30.164000.173400.303900.1030*
H40.013500.250200.082900.0950*
H50.271200.233500.002800.0780*
H11A0.851200.036000.058500.1300*
H11B0.865400.113800.179500.1300*
H11C0.889400.136500.029200.1300*
H16A0.471000.148500.387200.0990*
H16B0.502100.042400.392600.0990*
H17A0.208800.121400.241500.1430*
H17B0.273300.069900.405500.1430*
H17C0.240400.015700.249300.1430*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O90.0756 (13)0.0937 (13)0.0679 (14)0.0024 (9)0.0352 (11)0.0109 (10)
O140.0684 (14)0.196 (3)0.0521 (14)0.0009 (13)0.0015 (11)0.0013 (13)
O150.0746 (12)0.0772 (11)0.0415 (10)0.0015 (8)0.0203 (9)0.0048 (7)
N80.0768 (16)0.0898 (15)0.0555 (15)0.0044 (11)0.0281 (12)0.0099 (11)
C10.0728 (18)0.0765 (16)0.0501 (16)0.0049 (12)0.0129 (13)0.0015 (12)
C20.072 (2)0.091 (2)0.0633 (19)0.0137 (15)0.0079 (16)0.0049 (15)
C30.0632 (18)0.091 (2)0.092 (2)0.0039 (15)0.0245 (18)0.0233 (18)
C40.081 (2)0.0796 (17)0.076 (2)0.0125 (14)0.0329 (16)0.0104 (15)
C50.0744 (17)0.0609 (14)0.0497 (15)0.0009 (11)0.0195 (13)0.0038 (11)
C60.0634 (15)0.0558 (12)0.0411 (14)0.0012 (10)0.0139 (12)0.0063 (10)
C70.0676 (16)0.0533 (13)0.0445 (15)0.0043 (10)0.0186 (12)0.0011 (10)
C100.0661 (16)0.0592 (13)0.0621 (18)0.0047 (11)0.0234 (14)0.0014 (11)
C110.0643 (18)0.096 (2)0.091 (2)0.0043 (14)0.0279 (16)0.0033 (16)
C120.0619 (15)0.0555 (12)0.0494 (15)0.0033 (10)0.0157 (12)0.0027 (10)
C130.0633 (17)0.0723 (15)0.0466 (16)0.0026 (12)0.0126 (13)0.0014 (11)
C160.110 (2)0.090 (2)0.0457 (16)0.0163 (16)0.0338 (16)0.0099 (13)
C170.121 (3)0.098 (2)0.090 (2)0.0003 (18)0.067 (2)0.0064 (18)
Geometric parameters (Å, º) top
O9—N81.405 (4)C12—C131.467 (4)
O9—C101.335 (4)C16—C171.480 (6)
O14—C131.191 (4)C1—H10.9300
O15—C131.313 (4)C2—H20.9300
O15—C161.443 (4)C3—H30.9300
N8—C71.301 (4)C4—H40.9300
C1—C21.367 (5)C5—H50.9300
C1—C61.394 (4)C11—H11A0.9600
C2—C31.368 (5)C11—H11B0.9600
C3—C41.375 (5)C11—H11C0.9600
C4—C51.366 (5)C16—H16A0.9700
C5—C61.374 (4)C16—H16B0.9700
C6—C71.470 (5)C17—H17A0.9600
C7—C121.427 (4)C17—H17B0.9600
C10—C111.479 (5)C17—H17C0.9600
C10—C121.345 (5)
O14···C2i3.300 (5)C5···H17Aiii3.0100
O14···C113.056 (5)C12···H53.0800
O15···C52.959 (4)C13···H11B2.9300
O15···C10ii3.410 (4)C13···H53.1000
O15···C63.089 (4)C16···H16Bvii3.0800
O9···H17Cii2.7900H1···N82.6700
O14···H16B2.6200H2···O14iv2.5400
O14···H11B2.4400H4···H11Cvi2.5500
O14···H16A2.6300H4···C1v3.1000
O14···H2i2.5400H4···C2v2.9600
O15···H52.6200H5···O152.6200
N8···H12.6700H5···C123.0800
N8···H5iii2.8600H5···C133.1000
C2···O14iv3.300 (5)H5···N8v2.8600
C5···C17iii3.567 (5)H11B···O142.4400
C5···C133.526 (5)H11B···C132.9300
C5···O152.959 (4)H11C···C4viii2.8900
C6···O153.089 (4)H11C···H4viii2.5500
C10···O15ii3.410 (4)H16A···O142.6300
C11···O143.056 (5)H16B···O142.6200
C13···C53.526 (5)H16B···C16vii3.0800
C17···C5v3.567 (5)H16B···H16Bvii2.3800
C1···H4iii3.1000H17A···C5v3.0100
C2···H4iii2.9600H17C···O9ii2.7900
C4···H11Cvi2.8900
N8—O9—C10109.1 (2)C1—C2—H2120.00
C13—O15—C16116.7 (2)C3—C2—H2120.00
O9—N8—C7105.9 (2)C2—C3—H3120.00
C2—C1—C6120.2 (3)C4—C3—H3120.00
C1—C2—C3120.6 (3)C3—C4—H4120.00
C2—C3—C4119.1 (3)C5—C4—H4119.00
C3—C4—C5121.0 (3)C4—C5—H5120.00
C4—C5—C6120.2 (3)C6—C5—H5120.00
C1—C6—C5118.8 (3)C10—C11—H11A109.00
C1—C6—C7118.7 (2)C10—C11—H11B110.00
C5—C6—C7122.5 (2)C10—C11—H11C109.00
N8—C7—C6117.5 (2)H11A—C11—H11B109.00
N8—C7—C12110.6 (3)H11A—C11—H11C109.00
C6—C7—C12131.9 (3)H11B—C11—H11C109.00
O9—C10—C11115.8 (3)O15—C16—H16A110.00
O9—C10—C12109.5 (3)O15—C16—H16B110.00
C11—C10—C12134.6 (3)C17—C16—H16A110.00
C7—C12—C10104.9 (2)C17—C16—H16B110.00
C7—C12—C13131.2 (3)H16A—C16—H16B108.00
C10—C12—C13123.9 (3)C16—C17—H17A110.00
O14—C13—O15124.0 (3)C16—C17—H17B109.00
O14—C13—C12122.9 (3)C16—C17—H17C109.00
O15—C13—C12113.1 (2)H17A—C17—H17B110.00
O15—C16—C17107.8 (2)H17A—C17—H17C109.00
C2—C1—H1120.00H17B—C17—H17C109.00
C6—C1—H1120.00
C10—O9—N8—C70.4 (3)C1—C6—C7—N842.7 (3)
N8—O9—C10—C11176.9 (2)C1—C6—C7—C12137.0 (3)
N8—O9—C10—C120.3 (3)C5—C6—C7—N8136.0 (3)
C16—O15—C13—O144.6 (4)C5—C6—C7—C1244.3 (4)
C16—O15—C13—C12175.9 (2)N8—C7—C12—C101.1 (3)
C13—O15—C16—C17178.4 (2)N8—C7—C12—C13179.1 (2)
O9—N8—C7—C6178.90 (18)C6—C7—C12—C10178.7 (2)
O9—N8—C7—C120.9 (2)C6—C7—C12—C130.7 (4)
C6—C1—C2—C30.8 (4)O9—C10—C12—C70.8 (3)
C2—C1—C6—C50.6 (4)O9—C10—C12—C13179.0 (2)
C2—C1—C6—C7178.2 (2)C11—C10—C12—C7175.7 (3)
C1—C2—C3—C41.1 (5)C11—C10—C12—C132.4 (4)
C2—C3—C4—C51.3 (5)C7—C12—C13—O14164.3 (3)
C3—C4—C5—C61.1 (4)C7—C12—C13—O1516.2 (3)
C4—C5—C6—C10.7 (4)C10—C12—C13—O1418.0 (4)
C4—C5—C6—C7178.0 (2)C10—C12—C13—O15161.5 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x, y+1/2, z1/2; (iv) x1, y, z1; (v) x, y+1/2, z+1/2; (vi) x1, y, z; (vii) x+1, y, z+1; (viii) x+1, y, z.
Acknowledgements top

The author [which one?] would like to thank the University of Mysore for awarding an RFSMS fellowship under the head DV5/Physics/389/RFSMS/2009–2010/10.07.2012.

references
References top

Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chandra, Raghu, K., Srikantamurthy, N., Umesha, K. B., Palani, K. & Mahendra, M. (2013). Acta Cryst. E69, o388.

Lin, S. T., Kuo, S. H. & Yang, F. M. (1997). J. Org. Chem. 62, 5229–5231.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.