metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Cyclo­butane-1,1-di­carboxyl­ato-κ2O,O′)(1,10-phenanthroline-κ2N,N′)platinum(II) dihydrate

aDepartment of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic
*Correspondence e-mail: zdenek.travnicek@upol.cz

(Received 13 May 2013; accepted 15 May 2013; online 18 May 2013)

The title compound, [Pt(C6H6O4)(C12H8N2)]·2H2O, which crystallizes as two independent formula units, has the metal atom in a square-planar geometry defined by two O atoms of the chelating cyclo­butane-1,1-di­carboxyl­ate dianion and two N atoms of the chelating 1,10-phenanthroline mol­ecule (r.m.s. deviations of the PtO2N2 units = 0.026 and 0.026 Å). Adjacent complex and water mol­ecules are connected through inter­molecular O—H⋯O hydrogen bonds and C—H⋯O, C⋯O [shortest C⋯O distance = 3.140 (5) Å], ππ [shortest C⋯C distances = 3.234 (6) and 3.347 (6) Å] and Pt⋯π [shortest Pt⋯C distance = 3.358 (4) Å] inter­actions into a three-dimensional network.

Related literature

For platinum(II) cyclo­butane-1,1-di­carboxyl­ate complexes of other bidentate heterocyclic N-donor ligands, see: Ferreira et al. (1997[Ferreira, A. D. Q., Bino, A. & Gibson, D. (1997). Inorg. Chim. Acta, 265, 155-161.]); Yoo et al. (1999[Yoo, J., Sohn, Y. S. & Do, Y. (1999). J. Inorg. Biochem. 73, 187-193.]); Tu et al. (2003[Tu, C., Lin, J., Shao, Y. & Guo, Z. (2003). Inorg. Chem. 42, 5795-5797.], 2004[Tu, C., Wu, X., Liu, C., Wang, X., Xu, Q. & Guo, Z. (2004). Inorg. Chim. Acta, 357, 95-102.]).

[Scheme 1]

Experimental

Crystal data
  • [Pt(C6H6O4)(C12H8N2)]·2H2O

  • Mr = 553.43

  • Triclinic, [P \overline 1]

  • a = 10.93439 (14) Å

  • b = 11.83205 (18) Å

  • c = 13.51039 (19) Å

  • α = 84.7158 (12)°

  • β = 84.3918 (11)°

  • γ = 85.6240 (11)°

  • V = 1728.17 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.16 mm−1

  • T = 100 K

  • 0.30 × 0.30 × 0.25 mm

Data collection
  • Agilent Xcalibur Sapphire2 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Santa Clara, CA, USA.]) Tmin = 0.193, Tmax = 0.235

  • 13766 measured reflections

  • 6042 independent reflections

  • 5691 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.058

  • S = 1.12

  • 6042 reflections

  • 519 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.27 e Å−3

  • Δρmin = −0.89 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5W⋯O6 0.84 1.97 2.802 (5) 170
O6—H6W⋯O3 0.83 2.03 2.842 (4) 165
O7—H7W⋯O3A 0.83 1.93 2.753 (4) 169
O8—H8V⋯O7 0.85 1.95 2.806 (5) 175
O5—H5V⋯O8i 0.85 1.98 2.821 (5) 169
O6—H6V⋯O4ii 0.84 2.00 2.839 (4) 173
O7—H7V⋯O4Aiii 0.83 2.00 2.828 (4) 176
O8—H8W⋯O1iv 0.84 2.43 3.125 (4) 142
O8—H8W⋯O3iv 0.84 2.17 2.971 (4) 160
C7A—H7AA⋯O3iv 0.95 2.55 3.376 (5) 146
C7—H7A⋯O7iv 0.95 2.49 3.145 (5) 126
C8—H8A⋯O5v 0.95 2.59 3.259 (6) 128
C9—H9A⋯O6v 0.95 2.51 3.436 (6) 165
C14A—H14A⋯O8vi 0.95 2.35 3.230 (6) 154
C14—H14B⋯O5vii 0.95 2.36 3.309 (6) 174
C18A—H18A⋯O4Av 0.95 2.38 3.196 (5) 144
C18—H18B⋯O4v 0.95 2.55 3.151 (5) 121
Symmetry codes: (i) x+1, y, z-1; (ii) -x+1, -y+1, -z; (iii) -x, -y+2, -z+1; (iv) -x+1, -y+1, -z+1; (v) x, y-1, z; (vi) -x, -y+1, -z+1; (vii) x-1, y-1, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Santa Clara, CA, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2011[Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The asymmetric unit of the title complex, [Pt(cbdc)(phen)].2H2O, (I), (Figure 1), contains two independent molecules of the complex and four water molecules of crystallization. The PtII atom is four-coordinated by two oxygen (cyclobutane-1,1-dicarboxylate dianion; cbdc) and two nitrogen (1,10-phenathroline; phen) atoms. The geometry is distorted square-planar with the N–Pt–O angles equalled to 92.64 (12)° and 93.57 (12)° for Pt1-molecule, and 93.18 (11)° and 93.25 (12)° for Pt2-molecule. The planes fitted through the Pt1O2N2 (r.m.s. deviation 0.026 Å) and Pt2O2N2 (r.m.s. deviation 0.026 Å) units form the dihedral angle of 61.42 (8)°, while the dihedral angle formed by both phen molecules is 63.34 (4)°. This corresponds with nearly coplanar orientation of the phen molecule and PtO2N2 unit (a dihedral angle of 3.57 (7)° for Pt1-molecule, and 2.58 (8)° for Pt2-molecule). The crystal structure contains O—H···O hydrogen bonds and C—H···O, C···O, ππ (the shortest C···C distances equal 3.234 (6) Å for C8···C16viii and 3.347 (6) Å for C8A···C16Avi; symmetry codes: viii) –x+1, –y, –z; vi) –x, –y+1, –z+1) and Pt···π (the shortest Pt···C distance equals 3.358 (4) Å for Pt1···C10viii) types of the non-covalent contacts, which connect the molecules into a three-dimensional architecture (Figure 2, Table 1). The Pt1···Pt2, Pt1···Pt1viii and Pt2···Pt2vi distances are 7.8526 (2) Å, 5.2788 (2) Å, and 4.9992 (2) Å, respectively.

Related literature top

For platinum(II) cyclobutane-1,1-dicarboxylate complexes of other bidentate heterocyclic N-donor ligands, see: Ferreira et al. (1997); Yoo et al. (1999); Tu et al. (2003, 2004).

Experimental top

Warm (60 °C) distilled-water solutions of [Pt(cbdc)(dmso)2] (0.25 mmol) and 1,10-phenanthroline (0.25 mmol) were mixed together and stirred at 60 °C for 24 h. After that, the mixture was filtered and left to crystallize. The crystalline product, which formed in two weeks, was filtered off and washed with distilled water and methanol. Several crystals were collected for a single-crystal X-ray analysis. CH&N analysis calculated for C18H18N2O6Pt1: C 39.1, H 3.3, N 5.1%; found: C 39.2, H 3.3, N 5.3%. Elemental analysis (CH&N) was performed on a Thermo Scientific Flash 2000 CHNO-S Analyzer.

Refinement top

Non-hydrogen atoms were refined anisotropically and hydrogen atoms were located in difference maps and refined using the riding model with C—H = 0.95 (CH), C—H = 0.99 (CH2) Å, with Uiso(H) = 1.2Ueq(CH, CH2). The maximum and minimum residual electron density peaks of 1.27 and -0.89 e Å-3 were located 0.94 Å, and 0.78 Å from the Pt1, and Pt2 atoms, respectively.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure (one of two independent molecules within the asymmetric unit) of the title complex with the non-hydrogen atoms depicted as thermal ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing the selected O5—H5W···O6, O6—H6W···O3, O7—H7W···O3A, O8—H8V···O7, O8—H8W···O1iv and O8—H8W···O3iv hydrogen bonds, and C7—H7A···O7iv (D—H, H···A, D···A (Å)and <DHA (°): 0.95, 2.49, 3.145 (6), 126), C7A—H7AA···O3iv (0.95, 2.55, 3.376 (6), 146) and C15A···O4 (D···A (Å): 3.140 (5)) non-covalent contacts (dashed orange lines); symmetry code: iv) –x+1, –y+1, –z+1; (see Table 1 for the parameters of O—H···O hydrogen bonds).
(Cyclobutane-1,1-dicarboxylato-κ2O,O')(1,10-phenanthroline-κ2N,N')platinum(II) dihydrate top
Crystal data top
[Pt(C6H6O4)(C12H8N2)]·2H2OZ = 4
Mr = 553.43F(000) = 1064
Triclinic, P1Dx = 2.127 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.93439 (14) ÅCell parameters from 17004 reflections
b = 11.83205 (18) Åθ = 3.0–31.9°
c = 13.51039 (19) ŵ = 8.16 mm1
α = 84.7158 (12)°T = 100 K
β = 84.3918 (11)°Prism, yellow
γ = 85.6240 (11)°0.30 × 0.30 × 0.25 mm
V = 1728.17 (4) Å3
Data collection top
Agilent Xcalibur Sapphire2
diffractometer
6042 independent reflections
Radiation source: Enhance (Mo) X-ray Source5691 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 8.3611 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = 1211
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1414
Tmin = 0.193, Tmax = 0.235l = 1416
13766 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0336P)2 + 3.750P]
where P = (Fo2 + 2Fc2)/3
6042 reflections(Δ/σ)max = 0.002
519 parametersΔρmax = 1.27 e Å3
8 restraintsΔρmin = 0.89 e Å3
Crystal data top
[Pt(C6H6O4)(C12H8N2)]·2H2Oγ = 85.6240 (11)°
Mr = 553.43V = 1728.17 (4) Å3
Triclinic, P1Z = 4
a = 10.93439 (14) ÅMo Kα radiation
b = 11.83205 (18) ŵ = 8.16 mm1
c = 13.51039 (19) ÅT = 100 K
α = 84.7158 (12)°0.30 × 0.30 × 0.25 mm
β = 84.3918 (11)°
Data collection top
Agilent Xcalibur Sapphire2
diffractometer
6042 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
5691 reflections with I > 2σ(I)
Tmin = 0.193, Tmax = 0.235Rint = 0.019
13766 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0218 restraints
wR(F2) = 0.058H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 1.27 e Å3
6042 reflectionsΔρmin = 0.89 e Å3
519 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.1984 (3)0.7390 (2)0.5535 (2)0.0159 (6)
N1A0.1813 (3)0.4983 (3)0.5337 (2)0.0129 (7)
C1A0.2499 (4)0.8338 (4)0.5299 (3)0.0148 (9)
Pt10.453703 (13)0.146225 (12)0.137337 (10)0.00981 (6)
O10.6022 (2)0.2325 (2)0.1494 (2)0.0142 (6)
N10.5504 (3)0.0034 (3)0.1351 (2)0.0117 (7)
C10.5956 (4)0.3279 (3)0.1894 (3)0.0119 (8)
Pt20.156255 (13)0.642655 (12)0.448083 (10)0.01040 (6)
O2A0.1157 (3)0.7813 (2)0.3578 (2)0.0146 (6)
N2A0.1119 (3)0.5367 (3)0.3526 (2)0.0139 (7)
C2A0.1688 (4)0.8749 (3)0.3638 (3)0.0124 (8)
N20.3162 (3)0.0506 (3)0.1192 (2)0.0117 (7)
O20.3455 (2)0.2901 (2)0.1274 (2)0.0144 (6)
C20.3757 (4)0.3818 (4)0.1618 (3)0.0138 (8)
C3A0.2857 (4)0.8653 (4)0.4187 (3)0.0150 (9)
O3A0.2689 (3)0.8974 (3)0.5925 (2)0.0224 (7)
O30.6886 (3)0.3818 (3)0.1888 (2)0.0184 (6)
C30.4711 (4)0.3702 (3)0.2382 (3)0.0119 (8)
O4A0.1305 (3)0.9664 (2)0.3257 (2)0.0194 (6)
C4A0.3951 (4)0.7854 (4)0.3772 (3)0.0160 (9)
H4AA0.40940.71390.41980.019*
H4AB0.39150.77020.30670.019*
O40.3279 (3)0.4755 (2)0.1359 (2)0.0197 (7)
C40.4412 (4)0.2950 (4)0.3374 (3)0.0144 (8)
H4A0.35280.28180.35240.017*
H4B0.49290.22270.34330.017*
C5A0.4822 (4)0.8787 (4)0.3913 (3)0.0199 (9)
H5AA0.52460.86490.45320.024*
H5AB0.54150.89560.33260.024*
C50.4845 (4)0.3897 (4)0.3947 (3)0.0194 (9)
H5A0.56920.37450.41490.023*
H5B0.42620.41100.45180.023*
O50.9600 (3)0.7036 (3)0.0445 (3)0.0242 (7)
C6A0.3696 (4)0.9654 (4)0.3991 (3)0.0189 (9)
H6AA0.36741.01290.45600.023*
H6AB0.35721.01300.33630.023*
C60.4756 (4)0.4727 (4)0.2997 (3)0.0184 (9)
H6A0.39960.52380.30110.022*
H6B0.54950.51620.28150.022*
O60.8025 (3)0.5297 (3)0.0351 (2)0.0258 (7)
C7A0.2141 (4)0.4841 (4)0.6263 (3)0.0165 (9)
H7AA0.23120.54860.65840.020*
C70.6712 (4)0.0248 (4)0.1398 (3)0.0146 (8)
H7A0.72040.03500.15050.017*
O70.1062 (3)0.9814 (3)0.7410 (2)0.0262 (8)
C80.7264 (4)0.1337 (4)0.1292 (3)0.0167 (9)
H8A0.81280.14700.13250.020*
C8A0.2239 (4)0.3760 (4)0.6776 (3)0.0224 (10)
H8AA0.24660.36790.74410.027*
O80.1100 (3)0.7860 (3)0.8755 (3)0.0251 (7)
C9A0.2008 (4)0.2815 (4)0.6324 (3)0.0217 (10)
H9AA0.20820.20830.66750.026*
C90.6574 (4)0.2223 (4)0.1142 (3)0.0167 (9)
H9A0.69570.29600.10560.020*
C10A0.1663 (4)0.2928 (4)0.5345 (3)0.0175 (9)
C100.5291 (4)0.2017 (3)0.1117 (3)0.0140 (8)
C11A0.1572 (3)0.4046 (3)0.4885 (3)0.0123 (8)
C110.4803 (4)0.0907 (3)0.1219 (3)0.0099 (8)
C12A0.1200 (3)0.4261 (3)0.3902 (3)0.0122 (8)
C120.3531 (4)0.0603 (3)0.1137 (3)0.0122 (8)
C13A0.0898 (4)0.3367 (4)0.3380 (3)0.0172 (9)
C130.2739 (4)0.1442 (4)0.0995 (3)0.0151 (9)
C14A0.0511 (4)0.3660 (4)0.2424 (3)0.0200 (9)
H14A0.02910.30860.20400.024*
C140.1496 (4)0.1059 (4)0.0891 (3)0.0161 (9)
H14B0.09080.15850.08050.019*
C15A0.0451 (4)0.4774 (4)0.2046 (3)0.0202 (10)
H15A0.01960.49720.13970.024*
C150.1151 (4)0.0079 (4)0.0915 (3)0.0165 (9)
H15B0.03250.03450.08200.020*
C16A0.0763 (4)0.5623 (4)0.2614 (3)0.0158 (9)
H16A0.07190.63930.23440.019*
C160.1994 (4)0.0843 (4)0.1076 (3)0.0131 (8)
H16B0.17320.16250.11040.016*
C17A0.1382 (4)0.2005 (4)0.4768 (3)0.0197 (9)
H17A0.14660.12400.50480.024*
C170.4475 (4)0.2880 (4)0.1002 (3)0.0156 (9)
H17B0.47820.36500.09690.019*
C18A0.1011 (4)0.2228 (4)0.3857 (3)0.0210 (10)
H18A0.08120.16150.35090.025*
C180.3240 (4)0.2579 (4)0.0939 (3)0.0169 (9)
H18B0.27060.31520.08550.020*
H5V0.996 (5)0.731 (5)0.010 (3)0.05 (2)*
H5W0.919 (4)0.649 (3)0.036 (4)0.028 (14)*
H6V0.759 (5)0.526 (6)0.012 (3)0.06 (2)*
H6W0.776 (4)0.477 (3)0.074 (3)0.024 (14)*
H7V0.038 (3)0.996 (5)0.718 (4)0.038 (16)*
H7W0.151 (4)0.948 (4)0.698 (3)0.030 (15)*
H8V0.109 (6)0.843 (4)0.832 (4)0.05 (2)*
H8W0.177 (3)0.753 (5)0.856 (4)0.042 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0166 (15)0.0163 (16)0.0153 (14)0.0036 (12)0.0017 (11)0.0012 (12)
N1A0.0088 (16)0.0150 (19)0.0144 (17)0.0021 (13)0.0003 (13)0.0013 (14)
C1A0.013 (2)0.014 (2)0.017 (2)0.0004 (16)0.0020 (16)0.0025 (17)
Pt10.00974 (9)0.00862 (10)0.01139 (9)0.00119 (6)0.00273 (6)0.00017 (6)
O10.0094 (14)0.0170 (16)0.0171 (14)0.0038 (11)0.0001 (11)0.0043 (12)
N10.0152 (17)0.0113 (18)0.0082 (15)0.0010 (13)0.0008 (13)0.0017 (13)
C10.013 (2)0.015 (2)0.0076 (18)0.0016 (16)0.0038 (15)0.0031 (16)
Pt20.01050 (9)0.00972 (10)0.01119 (9)0.00181 (6)0.00188 (6)0.00010 (6)
O2A0.0183 (15)0.0101 (15)0.0158 (14)0.0003 (12)0.0065 (11)0.0017 (11)
N2A0.0095 (16)0.0140 (19)0.0178 (18)0.0016 (13)0.0003 (13)0.0008 (14)
C2A0.015 (2)0.007 (2)0.0144 (19)0.0029 (16)0.0002 (16)0.0007 (16)
N20.0115 (17)0.0108 (18)0.0132 (16)0.0028 (13)0.0016 (13)0.0009 (13)
O20.0139 (14)0.0098 (15)0.0205 (15)0.0016 (11)0.0080 (12)0.0010 (12)
C20.013 (2)0.014 (2)0.015 (2)0.0046 (16)0.0009 (16)0.0032 (17)
C3A0.019 (2)0.014 (2)0.013 (2)0.0034 (17)0.0032 (16)0.0013 (16)
O3A0.0259 (17)0.0258 (18)0.0175 (15)0.0096 (14)0.0030 (13)0.0103 (13)
O30.0155 (15)0.0225 (17)0.0182 (15)0.0089 (13)0.0013 (12)0.0013 (12)
C30.0105 (19)0.009 (2)0.017 (2)0.0030 (15)0.0038 (16)0.0001 (16)
O4A0.0216 (16)0.0119 (16)0.0257 (16)0.0004 (12)0.0080 (13)0.0019 (13)
C4A0.014 (2)0.020 (2)0.014 (2)0.0002 (17)0.0005 (16)0.0025 (17)
O40.0226 (16)0.0088 (16)0.0288 (17)0.0007 (12)0.0121 (13)0.0030 (12)
C40.014 (2)0.017 (2)0.0122 (19)0.0004 (16)0.0015 (16)0.0007 (16)
C5A0.018 (2)0.025 (3)0.018 (2)0.0067 (18)0.0035 (17)0.0012 (18)
C50.017 (2)0.029 (3)0.013 (2)0.0005 (18)0.0033 (17)0.0067 (18)
O50.0225 (17)0.0217 (19)0.0295 (19)0.0084 (14)0.0011 (14)0.0052 (15)
C6A0.022 (2)0.017 (2)0.019 (2)0.0072 (18)0.0057 (18)0.0005 (18)
C60.020 (2)0.017 (2)0.020 (2)0.0005 (17)0.0083 (18)0.0037 (18)
O60.0273 (18)0.027 (2)0.0249 (18)0.0142 (15)0.0095 (15)0.0045 (15)
C7A0.012 (2)0.022 (2)0.016 (2)0.0033 (17)0.0019 (16)0.0016 (17)
C70.014 (2)0.016 (2)0.014 (2)0.0013 (16)0.0036 (16)0.0006 (16)
O70.0158 (17)0.044 (2)0.0187 (17)0.0070 (15)0.0038 (14)0.0091 (15)
C80.016 (2)0.019 (2)0.014 (2)0.0022 (17)0.0025 (16)0.0017 (17)
C8A0.017 (2)0.029 (3)0.020 (2)0.0005 (19)0.0056 (18)0.0079 (19)
O80.0190 (18)0.027 (2)0.0301 (19)0.0022 (15)0.0001 (14)0.0068 (16)
C9A0.017 (2)0.017 (2)0.029 (2)0.0001 (18)0.0030 (18)0.0074 (19)
C90.022 (2)0.015 (2)0.0115 (19)0.0080 (17)0.0041 (17)0.0019 (16)
C10A0.009 (2)0.018 (2)0.023 (2)0.0026 (16)0.0033 (16)0.0033 (18)
C100.021 (2)0.012 (2)0.0087 (19)0.0015 (16)0.0000 (16)0.0003 (15)
C11A0.0083 (18)0.007 (2)0.021 (2)0.0011 (15)0.0011 (16)0.0002 (16)
C110.015 (2)0.0052 (19)0.0086 (18)0.0006 (15)0.0012 (15)0.0012 (14)
C12A0.0066 (18)0.015 (2)0.015 (2)0.0026 (15)0.0013 (15)0.0007 (16)
C120.015 (2)0.014 (2)0.0080 (18)0.0002 (16)0.0008 (15)0.0003 (16)
C13A0.010 (2)0.017 (2)0.024 (2)0.0034 (16)0.0036 (17)0.0067 (18)
C130.019 (2)0.017 (2)0.0111 (19)0.0051 (17)0.0016 (16)0.0018 (16)
C14A0.015 (2)0.021 (2)0.026 (2)0.0024 (17)0.0017 (18)0.0123 (19)
C140.020 (2)0.017 (2)0.013 (2)0.0074 (17)0.0010 (16)0.0027 (16)
C15A0.017 (2)0.029 (3)0.016 (2)0.0014 (18)0.0031 (17)0.0067 (19)
C150.010 (2)0.026 (3)0.014 (2)0.0007 (17)0.0029 (16)0.0034 (17)
C16A0.013 (2)0.019 (2)0.016 (2)0.0009 (17)0.0011 (16)0.0015 (17)
C160.014 (2)0.013 (2)0.0121 (19)0.0029 (16)0.0009 (15)0.0017 (16)
C17A0.0064 (19)0.019 (2)0.031 (2)0.0013 (16)0.0015 (17)0.0135 (19)
C170.026 (2)0.012 (2)0.0102 (19)0.0051 (17)0.0010 (17)0.0039 (16)
C18A0.015 (2)0.013 (2)0.036 (3)0.0026 (17)0.0033 (19)0.0094 (19)
C180.024 (2)0.013 (2)0.015 (2)0.0076 (17)0.0043 (17)0.0015 (17)
Geometric parameters (Å, º) top
O1A—C1A1.294 (5)C6—H6A0.9900
O1A—Pt22.012 (3)C6—H6B0.9900
N1A—C7A1.328 (5)O6—H6V0.84 (2)
N1A—C11A1.368 (5)O6—H6W0.83 (2)
N1A—Pt21.989 (3)C7A—C8A1.400 (6)
C1A—O3A1.225 (5)C7A—H7AA0.9500
C1A—C3A1.534 (6)C7—C81.394 (6)
Pt1—N11.992 (3)C7—H7A0.9500
Pt1—N21.996 (3)O7—H7V0.83 (2)
Pt1—O22.000 (3)O7—H7W0.83 (2)
Pt1—O12.010 (3)C8—C91.378 (6)
O1—C11.290 (5)C8—H8A0.9500
N1—C71.333 (5)C8A—C9A1.373 (7)
N1—C111.366 (5)C8A—H8AA0.9500
C1—O31.240 (5)O8—H8V0.85 (2)
C1—C31.524 (5)O8—H8W0.84 (2)
Pt2—N2A1.996 (3)C9A—C10A1.402 (6)
Pt2—O2A2.000 (3)C9A—H9AA0.9500
O2A—C2A1.303 (5)C9—C101.409 (6)
N2A—C16A1.330 (5)C9—H9A0.9500
N2A—C12A1.359 (5)C10A—C11A1.410 (6)
C2A—O4A1.217 (5)C10A—C17A1.466 (6)
C2A—C3A1.532 (6)C10—C111.393 (6)
N2—C161.328 (5)C10—C171.434 (6)
N2—C121.349 (5)C11A—C12A1.422 (6)
O2—C21.296 (5)C11—C121.423 (5)
C2—O41.224 (5)C12A—C13A1.400 (6)
C2—C31.528 (5)C12—C131.403 (6)
C3A—C6A1.541 (6)C13A—C14A1.404 (6)
C3A—C4A1.560 (6)C13A—C18A1.440 (6)
C3—C61.538 (6)C13—C141.415 (6)
C3—C41.560 (5)C13—C181.419 (6)
C4A—C5A1.548 (6)C14A—C15A1.367 (6)
C4A—H4AA0.9900C14A—H14A0.9500
C4A—H4AB0.9900C14—C151.374 (6)
C4—C51.545 (6)C14—H14B0.9500
C4—H4A0.9900C15A—C16A1.400 (6)
C4—H4B0.9900C15A—H15A0.9500
C5A—C6A1.544 (6)C15—C161.385 (6)
C5A—H5AA0.9900C15—H15B0.9500
C5A—H5AB0.9900C16A—H16A0.9500
C5—C61.548 (6)C16—H16B0.9500
C5—H5A0.9900C17A—C18A1.331 (6)
C5—H5B0.9900C17A—H17A0.9500
O5—H5V0.85 (2)C17—C181.379 (6)
O5—H5W0.84 (2)C17—H17B0.9500
C6A—H6AA0.9900C18A—H18A0.9500
C6A—H6AB0.9900C18—H18B0.9500
C1A—O1A—Pt2121.2 (2)H6AA—C6A—H6AB111.1
C7A—N1A—C11A118.6 (4)C3—C6—C589.3 (3)
C7A—N1A—Pt2128.4 (3)C3—C6—H6A113.8
C11A—N1A—Pt2112.9 (3)C5—C6—H6A113.8
O3A—C1A—O1A122.3 (4)C3—C6—H6B113.8
O3A—C1A—C3A120.5 (4)C5—C6—H6B113.8
O1A—C1A—C3A117.2 (3)H6A—C6—H6B111.0
N1—Pt1—N281.97 (13)H6V—O6—H6W100 (6)
N1—Pt1—O2173.29 (12)N1A—C7A—C8A121.2 (4)
N2—Pt1—O292.66 (12)N1A—C7A—H7AA119.4
N1—Pt1—O193.57 (12)C8A—C7A—H7AA119.4
N2—Pt1—O1174.96 (12)N1—C7—C8120.9 (4)
O2—Pt1—O191.63 (11)N1—C7—H7A119.6
C1—O1—Pt1122.9 (2)C8—C7—H7A119.6
C7—N1—C11118.9 (3)H7V—O7—H7W107 (5)
C7—N1—Pt1128.1 (3)C9—C8—C7120.9 (4)
C11—N1—Pt1112.9 (3)C9—C8—H8A119.5
O3—C1—O1120.5 (4)C7—C8—H8A119.5
O3—C1—C3121.7 (4)C9A—C8A—C7A120.4 (4)
O1—C1—C3117.8 (3)C9A—C8A—H8AA119.8
N1A—Pt2—N2A82.27 (14)C7A—C8A—H8AA119.8
N1A—Pt2—O2A174.10 (12)H8V—O8—H8W99 (6)
N2A—Pt2—O2A93.23 (12)C8A—C9A—C10A120.2 (4)
N1A—Pt2—O1A93.17 (13)C8A—C9A—H9AA119.9
N2A—Pt2—O1A175.17 (12)C10A—C9A—H9AA119.9
O2A—Pt2—O1A91.21 (11)C8—C9—C10118.9 (4)
C2A—O2A—Pt2120.2 (2)C8—C9—H9A120.6
C16A—N2A—C12A119.2 (4)C10—C9—H9A120.6
C16A—N2A—Pt2128.1 (3)C9A—C10A—C11A115.9 (4)
C12A—N2A—Pt2112.6 (3)C9A—C10A—C17A126.4 (4)
O4A—C2A—O2A122.4 (4)C11A—C10A—C17A117.6 (4)
O4A—C2A—C3A120.5 (4)C11—C10—C9117.1 (4)
O2A—C2A—C3A117.0 (3)C11—C10—C17119.1 (4)
C16—N2—C12119.0 (3)C9—C10—C17123.8 (4)
C16—N2—Pt1128.0 (3)N1A—C11A—C10A123.7 (4)
C12—N2—Pt1113.0 (3)N1A—C11A—C12A115.8 (4)
C2—O2—Pt1121.2 (2)C10A—C11A—C12A120.6 (4)
O4—C2—O2121.5 (4)N1—C11—C10123.2 (4)
O4—C2—C3120.3 (3)N1—C11—C12115.6 (3)
O2—C2—C3118.2 (4)C10—C11—C12121.1 (4)
C2A—C3A—C1A108.4 (3)N2A—C12A—C13A123.0 (4)
C2A—C3A—C6A116.8 (3)N2A—C12A—C11A116.4 (3)
C1A—C3A—C6A113.5 (3)C13A—C12A—C11A120.5 (4)
C2A—C3A—C4A116.7 (3)N2—C12—C13123.7 (4)
C1A—C3A—C4A111.6 (3)N2—C12—C11116.5 (3)
C6A—C3A—C4A88.8 (3)C13—C12—C11119.7 (4)
C1—C3—C2109.7 (3)C12A—C13A—C14A116.7 (4)
C1—C3—C6114.4 (3)C12A—C13A—C18A118.1 (4)
C2—C3—C6116.1 (3)C14A—C13A—C18A125.2 (4)
C1—C3—C4109.0 (3)C12—C13—C14116.0 (4)
C2—C3—C4117.5 (3)C12—C13—C18118.5 (4)
C6—C3—C488.8 (3)C14—C13—C18125.5 (4)
C5A—C4A—C3A88.0 (3)C15A—C14A—C13A119.9 (4)
C5A—C4A—H4AA114.0C15A—C14A—H14A120.1
C3A—C4A—H4AA114.0C13A—C14A—H14A120.1
C5A—C4A—H4AB114.0C15—C14—C13119.3 (4)
C3A—C4A—H4AB114.0C15—C14—H14B120.4
H4AA—C4A—H4AB111.2C13—C14—H14B120.4
C5—C4—C388.5 (3)C14A—C15A—C16A120.2 (4)
C5—C4—H4A113.9C14A—C15A—H15A119.9
C3—C4—H4A113.9C16A—C15A—H15A119.9
C5—C4—H4B113.9C14—C15—C16120.6 (4)
C3—C4—H4B113.9C14—C15—H15B119.7
H4A—C4—H4B111.1C16—C15—H15B119.7
C6A—C5A—C4A89.2 (3)N2A—C16A—C15A121.0 (4)
C6A—C5A—H5AA113.8N2A—C16A—H16A119.5
C4A—C5A—H5AA113.8C15A—C16A—H16A119.5
C6A—C5A—H5AB113.8N2—C16—C15121.3 (4)
C4A—C5A—H5AB113.8N2—C16—H16B119.3
H5AA—C5A—H5AB111.0C15—C16—H16B119.3
C4—C5—C689.0 (3)C18A—C17A—C10A120.7 (4)
C4—C5—H5A113.8C18A—C17A—H17A119.7
C6—C5—H5A113.8C10A—C17A—H17A119.7
C4—C5—H5B113.8C18—C17—C10119.2 (4)
C6—C5—H5B113.8C18—C17—H17B120.4
H5A—C5—H5B111.0C10—C17—H17B120.4
H5V—O5—H5W112 (6)C17A—C18A—C13A122.4 (4)
C3A—C6A—C5A88.9 (3)C17A—C18A—H18A118.8
C3A—C6A—H6AA113.8C13A—C18A—H18A118.8
C5A—C6A—H6AA113.8C17—C18—C13122.3 (4)
C3A—C6A—H6AB113.8C17—C18—H18B118.8
C5A—C6A—H6AB113.8C13—C18—H18B118.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5W···O60.841.972.802 (5)170
O6—H6W···O30.832.032.842 (4)165
O7—H7W···O3A0.831.932.753 (4)169
O8—H8V···O70.851.952.806 (5)175
O5—H5V···O8i0.851.982.821 (5)169
O6—H6V···O4ii0.842.002.839 (4)173
O7—H7V···O4Aiii0.832.002.828 (4)176
O8—H8W···O1iv0.842.433.125 (4)142
O8—H8W···O3iv0.842.172.971 (4)160
C7A—H7AA···O3iv0.952.553.376 (5)146
C7—H7A···O7iv0.952.493.145 (5)126
C8—H8A···O5v0.952.593.259 (6)128
C9—H9A···O6v0.952.513.436 (6)165
C14A—H14A···O8vi0.952.353.230 (6)154
C14—H14B···O5vii0.952.363.309 (6)174
C18A—H18A···O4Av0.952.383.196 (5)144
C18—H18B···O4v0.952.553.151 (5)121
Symmetry codes: (i) x+1, y, z1; (ii) x+1, y+1, z; (iii) x, y+2, z+1; (iv) x+1, y+1, z+1; (v) x, y1, z; (vi) x, y+1, z+1; (vii) x1, y1, z.

Experimental details

Crystal data
Chemical formula[Pt(C6H6O4)(C12H8N2)]·2H2O
Mr553.43
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.93439 (14), 11.83205 (18), 13.51039 (19)
α, β, γ (°)84.7158 (12), 84.3918 (11), 85.6240 (11)
V3)1728.17 (4)
Z4
Radiation typeMo Kα
µ (mm1)8.16
Crystal size (mm)0.30 × 0.30 × 0.25
Data collection
DiffractometerAgilent Xcalibur Sapphire2
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.193, 0.235
No. of measured, independent and
observed [I > 2σ(I)] reflections
13766, 6042, 5691
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.058, 1.12
No. of reflections6042
No. of parameters519
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.27, 0.89

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2011), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5W···O60.841.972.802 (5)170
O6—H6W···O30.832.032.842 (4)165
O7—H7W···O3A0.831.932.753 (4)169
O8—H8V···O70.851.952.806 (5)175
O5—H5V···O8i0.851.982.821 (5)169
O6—H6V···O4ii0.842.002.839 (4)173
O7—H7V···O4Aiii0.832.002.828 (4)176
O8—H8W···O1iv0.842.433.125 (4)142
O8—H8W···O3iv0.842.172.971 (4)160
C7A—H7AA···O3iv0.952.553.376 (5)146
C7—H7A···O7iv0.952.493.145 (5)126
C8—H8A···O5v0.952.593.259 (6)128
C9—H9A···O6v0.952.513.436 (6)165
C14A—H14A···O8vi0.952.353.230 (6)154
C14—H14B···O5vii0.952.363.309 (6)174
C18A—H18A···O4Av0.952.383.196 (5)144
C18—H18B···O4v0.952.553.151 (5)121
Symmetry codes: (i) x+1, y, z1; (ii) x+1, y+1, z; (iii) x, y+2, z+1; (iv) x+1, y+1, z+1; (v) x, y1, z; (vi) x, y+1, z+1; (vii) x1, y1, z.
 

Acknowledgements

This work was supported by Palacký University (grant No. PrF_2013_015). The authors wish to thank Mr Tomáš Šilha for performing the CHN elemental analysis.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Santa Clara, CA, USA.  Google Scholar
First citationBrandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFerreira, A. D. Q., Bino, A. & Gibson, D. (1997). Inorg. Chim. Acta, 265, 155–161.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTu, C., Lin, J., Shao, Y. & Guo, Z. (2003). Inorg. Chem. 42, 5795–5797.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationTu, C., Wu, X., Liu, C., Wang, X., Xu, Q. & Guo, Z. (2004). Inorg. Chim. Acta, 357, 95–102.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoo, J., Sohn, Y. S. & Do, Y. (1999). J. Inorg. Biochem. 73, 187–193.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds