supplementary materials


ng5330 scheme

Acta Cryst. (2013). E69, m334    [ doi:10.1107/S1600536813013378 ]

(Cyclobutane-1,1-dicarboxylato-[kappa]2O,O')(1,10-phenanthroline-[kappa]2N,N')platinum(II) dihydrate

P. Starha and Z. Trávnícek

Abstract top

The title compound, [Pt(C6H6O4)(C12H8N2)]·2H2O, which crystallizes as two independent formula units, has the metal atom in a square-planar geometry defined by two O atoms of the chelating cyclobutane-1,1-dicarboxylate dianion and two N atoms of the chelating 1,10-phenanthroline molecule (r.m.s. deviations of the PtO2N2 units = 0.026 and 0.026 Å). Adjacent complex and water molecules are connected through intermolecular O-H...O hydrogen bonds and C-H...O, C...O [shortest C...O distance = 3.140 (5) Å], [pi]-[pi] [shortest C...C distances = 3.234 (6) and 3.347 (6) Å] and Pt...[pi] [shortest Pt...C distance = 3.358 (4) Å] interactions into a three-dimensional network.

Comment top

The asymmetric unit of the title complex, [Pt(cbdc)(phen)].2H2O, (I), (Figure 1), contains two independent molecules of the complex and four water molecules of crystallization. The PtII atom is four-coordinated by two oxygen (cyclobutane-1,1-dicarboxylate dianion; cbdc) and two nitrogen (1,10-phenathroline; phen) atoms. The geometry is distorted square-planar with the N–Pt–O angles equalled to 92.64 (12)° and 93.57 (12)° for Pt1-molecule, and 93.18 (11)° and 93.25 (12)° for Pt2-molecule. The planes fitted through the Pt1O2N2 (r.m.s. deviation 0.026 Å) and Pt2O2N2 (r.m.s. deviation 0.026 Å) units form the dihedral angle of 61.42 (8)°, while the dihedral angle formed by both phen molecules is 63.34 (4)°. This corresponds with nearly coplanar orientation of the phen molecule and PtO2N2 unit (a dihedral angle of 3.57 (7)° for Pt1-molecule, and 2.58 (8)° for Pt2-molecule). The crystal structure contains O—H···O hydrogen bonds and C—H···O, C···O, ππ (the shortest C···C distances equal 3.234 (6) Å for C8···C16viii and 3.347 (6) Å for C8A···C16Avi; symmetry codes: viii) –x+1, –y, –z; vi) –x, –y+1, –z+1) and Pt···π (the shortest Pt···C distance equals 3.358 (4) Å for Pt1···C10viii) types of the non-covalent contacts, which connect the molecules into a three-dimensional architecture (Figure 2, Table 1). The Pt1···Pt2, Pt1···Pt1viii and Pt2···Pt2vi distances are 7.8526 (2) Å, 5.2788 (2) Å, and 4.9992 (2) Å, respectively.

Related literature top

For platinum(II) cyclobutane-1,1-dicarboxylate complexes of other bidentate heterocyclic N-donor ligands, see: Ferreira et al. (1997); Yoo et al. (1999); Tu et al. (2003, 2004).

Experimental top

Warm (60 °C) distilled-water solutions of [Pt(cbdc)(dmso)2] (0.25 mmol) and 1,10-phenanthroline (0.25 mmol) were mixed together and stirred at 60 °C for 24 h. After that, the mixture was filtered and left to crystallize. The crystalline product, which formed in two weeks, was filtered off and washed with distilled water and methanol. Several crystals were collected for a single-crystal X-ray analysis. CH&N analysis calculated for C18H18N2O6Pt1: C 39.1, H 3.3, N 5.1%; found: C 39.2, H 3.3, N 5.3%. Elemental analysis (CH&N) was performed on a Thermo Scientific Flash 2000 CHNO-S Analyzer.

Refinement top

Non-hydrogen atoms were refined anisotropically and hydrogen atoms were located in difference maps and refined using the riding model with C—H = 0.95 (CH), C—H = 0.99 (CH2) Å, with Uiso(H) = 1.2Ueq(CH, CH2). The maximum and minimum residual electron density peaks of 1.27 and -0.89 e Å-3 were located 0.94 Å, and 0.78 Å from the Pt1, and Pt2 atoms, respectively.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure (one of two independent molecules within the asymmetric unit) of the title complex with the non-hydrogen atoms depicted as thermal ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing the selected O5—H5W···O6, O6—H6W···O3, O7—H7W···O3A, O8—H8V···O7, O8—H8W···O1iv and O8—H8W···O3iv hydrogen bonds, and C7—H7A···O7iv (D—H, H···A, D···A (Å)and <DHA (°): 0.95, 2.49, 3.145 (6), 126), C7A—H7AA···O3iv (0.95, 2.55, 3.376 (6), 146) and C15A···O4 (D···A (Å): 3.140 (5)) non-covalent contacts (dashed orange lines); symmetry code: iv) –x+1, –y+1, –z+1; (see Table 1 for the parameters of O—H···O hydrogen bonds).
(Cyclobutane-1,1-dicarboxylato-κ2O,O')(1,10-phenanthroline-κ2N,N')platinum(II) dihydrate top
Crystal data top
[Pt(C6H6O4)(C12H8N2)]·2H2OZ = 4
Mr = 553.43F(000) = 1064
Triclinic, P1Dx = 2.127 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.93439 (14) ÅCell parameters from 17004 reflections
b = 11.83205 (18) Åθ = 3.0–31.9°
c = 13.51039 (19) ŵ = 8.16 mm1
α = 84.7158 (12)°T = 100 K
β = 84.3918 (11)°Prism, yellow
γ = 85.6240 (11)°0.30 × 0.30 × 0.25 mm
V = 1728.17 (4) Å3
Data collection top
Agilent Xcalibur Sapphire2
diffractometer
6042 independent reflections
Radiation source: Enhance (Mo) X-ray Source5691 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 8.3611 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = 1211
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1414
Tmin = 0.193, Tmax = 0.235l = 1416
13766 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0336P)2 + 3.750P]
where P = (Fo2 + 2Fc2)/3
6042 reflections(Δ/σ)max = 0.002
519 parametersΔρmax = 1.27 e Å3
8 restraintsΔρmin = 0.89 e Å3
Crystal data top
[Pt(C6H6O4)(C12H8N2)]·2H2Oγ = 85.6240 (11)°
Mr = 553.43V = 1728.17 (4) Å3
Triclinic, P1Z = 4
a = 10.93439 (14) ÅMo Kα radiation
b = 11.83205 (18) ŵ = 8.16 mm1
c = 13.51039 (19) ÅT = 100 K
α = 84.7158 (12)°0.30 × 0.30 × 0.25 mm
β = 84.3918 (11)°
Data collection top
Agilent Xcalibur Sapphire2
diffractometer
6042 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
5691 reflections with I > 2σ(I)
Tmin = 0.193, Tmax = 0.235Rint = 0.019
13766 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.058Δρmax = 1.27 e Å3
S = 1.12Δρmin = 0.89 e Å3
6042 reflectionsAbsolute structure: ?
519 parametersFlack parameter: ?
8 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.1984 (3)0.7390 (2)0.5535 (2)0.0159 (6)
N1A0.1813 (3)0.4983 (3)0.5337 (2)0.0129 (7)
C1A0.2499 (4)0.8338 (4)0.5299 (3)0.0148 (9)
Pt10.453703 (13)0.146225 (12)0.137337 (10)0.00981 (6)
O10.6022 (2)0.2325 (2)0.1494 (2)0.0142 (6)
N10.5504 (3)0.0034 (3)0.1351 (2)0.0117 (7)
C10.5956 (4)0.3279 (3)0.1894 (3)0.0119 (8)
Pt20.156255 (13)0.642655 (12)0.448083 (10)0.01040 (6)
O2A0.1157 (3)0.7813 (2)0.3578 (2)0.0146 (6)
N2A0.1119 (3)0.5367 (3)0.3526 (2)0.0139 (7)
C2A0.1688 (4)0.8749 (3)0.3638 (3)0.0124 (8)
N20.3162 (3)0.0506 (3)0.1192 (2)0.0117 (7)
O20.3455 (2)0.2901 (2)0.1274 (2)0.0144 (6)
C20.3757 (4)0.3818 (4)0.1618 (3)0.0138 (8)
C3A0.2857 (4)0.8653 (4)0.4187 (3)0.0150 (9)
O3A0.2689 (3)0.8974 (3)0.5925 (2)0.0224 (7)
O30.6886 (3)0.3818 (3)0.1888 (2)0.0184 (6)
C30.4711 (4)0.3702 (3)0.2382 (3)0.0119 (8)
O4A0.1305 (3)0.9664 (2)0.3257 (2)0.0194 (6)
C4A0.3951 (4)0.7854 (4)0.3772 (3)0.0160 (9)
H4AA0.40940.71390.41980.019*
H4AB0.39150.77020.30670.019*
O40.3279 (3)0.4755 (2)0.1359 (2)0.0197 (7)
C40.4412 (4)0.2950 (4)0.3374 (3)0.0144 (8)
H4A0.35280.28180.35240.017*
H4B0.49290.22270.34330.017*
C5A0.4822 (4)0.8787 (4)0.3913 (3)0.0199 (9)
H5AA0.52460.86490.45320.024*
H5AB0.54150.89560.33260.024*
C50.4845 (4)0.3897 (4)0.3947 (3)0.0194 (9)
H5A0.56920.37450.41490.023*
H5B0.42620.41100.45180.023*
O50.9600 (3)0.7036 (3)0.0445 (3)0.0242 (7)
C6A0.3696 (4)0.9654 (4)0.3991 (3)0.0189 (9)
H6AA0.36741.01290.45600.023*
H6AB0.35721.01300.33630.023*
C60.4756 (4)0.4727 (4)0.2997 (3)0.0184 (9)
H6A0.39960.52380.30110.022*
H6B0.54950.51620.28150.022*
O60.8025 (3)0.5297 (3)0.0351 (2)0.0258 (7)
C7A0.2141 (4)0.4841 (4)0.6263 (3)0.0165 (9)
H7AA0.23120.54860.65840.020*
C70.6712 (4)0.0248 (4)0.1398 (3)0.0146 (8)
H7A0.72040.03500.15050.017*
O70.1062 (3)0.9814 (3)0.7410 (2)0.0262 (8)
C80.7264 (4)0.1337 (4)0.1292 (3)0.0167 (9)
H8A0.81280.14700.13250.020*
C8A0.2239 (4)0.3760 (4)0.6776 (3)0.0224 (10)
H8AA0.24660.36790.74410.027*
O80.1100 (3)0.7860 (3)0.8755 (3)0.0251 (7)
C9A0.2008 (4)0.2815 (4)0.6324 (3)0.0217 (10)
H9AA0.20820.20830.66750.026*
C90.6574 (4)0.2223 (4)0.1142 (3)0.0167 (9)
H9A0.69570.29600.10560.020*
C10A0.1663 (4)0.2928 (4)0.5345 (3)0.0175 (9)
C100.5291 (4)0.2017 (3)0.1117 (3)0.0140 (8)
C11A0.1572 (3)0.4046 (3)0.4885 (3)0.0123 (8)
C110.4803 (4)0.0907 (3)0.1219 (3)0.0099 (8)
C12A0.1200 (3)0.4261 (3)0.3902 (3)0.0122 (8)
C120.3531 (4)0.0603 (3)0.1137 (3)0.0122 (8)
C13A0.0898 (4)0.3367 (4)0.3380 (3)0.0172 (9)
C130.2739 (4)0.1442 (4)0.0995 (3)0.0151 (9)
C14A0.0511 (4)0.3660 (4)0.2424 (3)0.0200 (9)
H14A0.02910.30860.20400.024*
C140.1496 (4)0.1059 (4)0.0891 (3)0.0161 (9)
H14B0.09080.15850.08050.019*
C15A0.0451 (4)0.4774 (4)0.2046 (3)0.0202 (10)
H15A0.01960.49720.13970.024*
C150.1151 (4)0.0079 (4)0.0915 (3)0.0165 (9)
H15B0.03250.03450.08200.020*
C16A0.0763 (4)0.5623 (4)0.2614 (3)0.0158 (9)
H16A0.07190.63930.23440.019*
C160.1994 (4)0.0843 (4)0.1076 (3)0.0131 (8)
H16B0.17320.16250.11040.016*
C17A0.1382 (4)0.2005 (4)0.4768 (3)0.0197 (9)
H17A0.14660.12400.50480.024*
C170.4475 (4)0.2880 (4)0.1002 (3)0.0156 (9)
H17B0.47820.36500.09690.019*
C18A0.1011 (4)0.2228 (4)0.3857 (3)0.0210 (10)
H18A0.08120.16150.35090.025*
C180.3240 (4)0.2579 (4)0.0939 (3)0.0169 (9)
H18B0.27060.31520.08550.020*
H5V0.996 (5)0.731 (5)0.010 (3)0.05 (2)*
H5W0.919 (4)0.649 (3)0.036 (4)0.028 (14)*
H6V0.759 (5)0.526 (6)0.012 (3)0.06 (2)*
H6W0.776 (4)0.477 (3)0.074 (3)0.024 (14)*
H7V0.038 (3)0.996 (5)0.718 (4)0.038 (16)*
H7W0.151 (4)0.948 (4)0.698 (3)0.030 (15)*
H8V0.109 (6)0.843 (4)0.832 (4)0.05 (2)*
H8W0.177 (3)0.753 (5)0.856 (4)0.042 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0166 (15)0.0163 (16)0.0153 (14)0.0036 (12)0.0017 (11)0.0012 (12)
N1A0.0088 (16)0.0150 (19)0.0144 (17)0.0021 (13)0.0003 (13)0.0013 (14)
C1A0.013 (2)0.014 (2)0.017 (2)0.0004 (16)0.0020 (16)0.0025 (17)
Pt10.00974 (9)0.00862 (10)0.01139 (9)0.00119 (6)0.00273 (6)0.00017 (6)
O10.0094 (14)0.0170 (16)0.0171 (14)0.0038 (11)0.0001 (11)0.0043 (12)
N10.0152 (17)0.0113 (18)0.0082 (15)0.0010 (13)0.0008 (13)0.0017 (13)
C10.013 (2)0.015 (2)0.0076 (18)0.0016 (16)0.0038 (15)0.0031 (16)
Pt20.01050 (9)0.00972 (10)0.01119 (9)0.00181 (6)0.00188 (6)0.00010 (6)
O2A0.0183 (15)0.0101 (15)0.0158 (14)0.0003 (12)0.0065 (11)0.0017 (11)
N2A0.0095 (16)0.0140 (19)0.0178 (18)0.0016 (13)0.0003 (13)0.0008 (14)
C2A0.015 (2)0.007 (2)0.0144 (19)0.0029 (16)0.0002 (16)0.0007 (16)
N20.0115 (17)0.0108 (18)0.0132 (16)0.0028 (13)0.0016 (13)0.0009 (13)
O20.0139 (14)0.0098 (15)0.0205 (15)0.0016 (11)0.0080 (12)0.0010 (12)
C20.013 (2)0.014 (2)0.015 (2)0.0046 (16)0.0009 (16)0.0032 (17)
C3A0.019 (2)0.014 (2)0.013 (2)0.0034 (17)0.0032 (16)0.0013 (16)
O3A0.0259 (17)0.0258 (18)0.0175 (15)0.0096 (14)0.0030 (13)0.0103 (13)
O30.0155 (15)0.0225 (17)0.0182 (15)0.0089 (13)0.0013 (12)0.0013 (12)
C30.0105 (19)0.009 (2)0.017 (2)0.0030 (15)0.0038 (16)0.0001 (16)
O4A0.0216 (16)0.0119 (16)0.0257 (16)0.0004 (12)0.0080 (13)0.0019 (13)
C4A0.014 (2)0.020 (2)0.014 (2)0.0002 (17)0.0005 (16)0.0025 (17)
O40.0226 (16)0.0088 (16)0.0288 (17)0.0007 (12)0.0121 (13)0.0030 (12)
C40.014 (2)0.017 (2)0.0122 (19)0.0004 (16)0.0015 (16)0.0007 (16)
C5A0.018 (2)0.025 (3)0.018 (2)0.0067 (18)0.0035 (17)0.0012 (18)
C50.017 (2)0.029 (3)0.013 (2)0.0005 (18)0.0033 (17)0.0067 (18)
O50.0225 (17)0.0217 (19)0.0295 (19)0.0084 (14)0.0011 (14)0.0052 (15)
C6A0.022 (2)0.017 (2)0.019 (2)0.0072 (18)0.0057 (18)0.0005 (18)
C60.020 (2)0.017 (2)0.020 (2)0.0005 (17)0.0083 (18)0.0037 (18)
O60.0273 (18)0.027 (2)0.0249 (18)0.0142 (15)0.0095 (15)0.0045 (15)
C7A0.012 (2)0.022 (2)0.016 (2)0.0033 (17)0.0019 (16)0.0016 (17)
C70.014 (2)0.016 (2)0.014 (2)0.0013 (16)0.0036 (16)0.0006 (16)
O70.0158 (17)0.044 (2)0.0187 (17)0.0070 (15)0.0038 (14)0.0091 (15)
C80.016 (2)0.019 (2)0.014 (2)0.0022 (17)0.0025 (16)0.0017 (17)
C8A0.017 (2)0.029 (3)0.020 (2)0.0005 (19)0.0056 (18)0.0079 (19)
O80.0190 (18)0.027 (2)0.0301 (19)0.0022 (15)0.0001 (14)0.0068 (16)
C9A0.017 (2)0.017 (2)0.029 (2)0.0001 (18)0.0030 (18)0.0074 (19)
C90.022 (2)0.015 (2)0.0115 (19)0.0080 (17)0.0041 (17)0.0019 (16)
C10A0.009 (2)0.018 (2)0.023 (2)0.0026 (16)0.0033 (16)0.0033 (18)
C100.021 (2)0.012 (2)0.0087 (19)0.0015 (16)0.0000 (16)0.0003 (15)
C11A0.0083 (18)0.007 (2)0.021 (2)0.0011 (15)0.0011 (16)0.0002 (16)
C110.015 (2)0.0052 (19)0.0086 (18)0.0006 (15)0.0012 (15)0.0012 (14)
C12A0.0066 (18)0.015 (2)0.015 (2)0.0026 (15)0.0013 (15)0.0007 (16)
C120.015 (2)0.014 (2)0.0080 (18)0.0002 (16)0.0008 (15)0.0003 (16)
C13A0.010 (2)0.017 (2)0.024 (2)0.0034 (16)0.0036 (17)0.0067 (18)
C130.019 (2)0.017 (2)0.0111 (19)0.0051 (17)0.0016 (16)0.0018 (16)
C14A0.015 (2)0.021 (2)0.026 (2)0.0024 (17)0.0017 (18)0.0123 (19)
C140.020 (2)0.017 (2)0.013 (2)0.0074 (17)0.0010 (16)0.0027 (16)
C15A0.017 (2)0.029 (3)0.016 (2)0.0014 (18)0.0031 (17)0.0067 (19)
C150.010 (2)0.026 (3)0.014 (2)0.0007 (17)0.0029 (16)0.0034 (17)
C16A0.013 (2)0.019 (2)0.016 (2)0.0009 (17)0.0011 (16)0.0015 (17)
C160.014 (2)0.013 (2)0.0121 (19)0.0029 (16)0.0009 (15)0.0017 (16)
C17A0.0064 (19)0.019 (2)0.031 (2)0.0013 (16)0.0015 (17)0.0135 (19)
C170.026 (2)0.012 (2)0.0102 (19)0.0051 (17)0.0010 (17)0.0039 (16)
C18A0.015 (2)0.013 (2)0.036 (3)0.0026 (17)0.0033 (19)0.0094 (19)
C180.024 (2)0.013 (2)0.015 (2)0.0076 (17)0.0043 (17)0.0015 (17)
Geometric parameters (Å, º) top
O1A—C1A1.294 (5)C6—H6A0.9900
O1A—Pt22.012 (3)C6—H6B0.9900
N1A—C7A1.328 (5)O6—H6V0.84 (2)
N1A—C11A1.368 (5)O6—H6W0.83 (2)
N1A—Pt21.989 (3)C7A—C8A1.400 (6)
C1A—O3A1.225 (5)C7A—H7AA0.9500
C1A—C3A1.534 (6)C7—C81.394 (6)
Pt1—N11.992 (3)C7—H7A0.9500
Pt1—N21.996 (3)O7—H7V0.83 (2)
Pt1—O22.000 (3)O7—H7W0.83 (2)
Pt1—O12.010 (3)C8—C91.378 (6)
O1—C11.290 (5)C8—H8A0.9500
N1—C71.333 (5)C8A—C9A1.373 (7)
N1—C111.366 (5)C8A—H8AA0.9500
C1—O31.240 (5)O8—H8V0.85 (2)
C1—C31.524 (5)O8—H8W0.84 (2)
Pt2—N2A1.996 (3)C9A—C10A1.402 (6)
Pt2—O2A2.000 (3)C9A—H9AA0.9500
O2A—C2A1.303 (5)C9—C101.409 (6)
N2A—C16A1.330 (5)C9—H9A0.9500
N2A—C12A1.359 (5)C10A—C11A1.410 (6)
C2A—O4A1.217 (5)C10A—C17A1.466 (6)
C2A—C3A1.532 (6)C10—C111.393 (6)
N2—C161.328 (5)C10—C171.434 (6)
N2—C121.349 (5)C11A—C12A1.422 (6)
O2—C21.296 (5)C11—C121.423 (5)
C2—O41.224 (5)C12A—C13A1.400 (6)
C2—C31.528 (5)C12—C131.403 (6)
C3A—C6A1.541 (6)C13A—C14A1.404 (6)
C3A—C4A1.560 (6)C13A—C18A1.440 (6)
C3—C61.538 (6)C13—C141.415 (6)
C3—C41.560 (5)C13—C181.419 (6)
C4A—C5A1.548 (6)C14A—C15A1.367 (6)
C4A—H4AA0.9900C14A—H14A0.9500
C4A—H4AB0.9900C14—C151.374 (6)
C4—C51.545 (6)C14—H14B0.9500
C4—H4A0.9900C15A—C16A1.400 (6)
C4—H4B0.9900C15A—H15A0.9500
C5A—C6A1.544 (6)C15—C161.385 (6)
C5A—H5AA0.9900C15—H15B0.9500
C5A—H5AB0.9900C16A—H16A0.9500
C5—C61.548 (6)C16—H16B0.9500
C5—H5A0.9900C17A—C18A1.331 (6)
C5—H5B0.9900C17A—H17A0.9500
O5—H5V0.85 (2)C17—C181.379 (6)
O5—H5W0.84 (2)C17—H17B0.9500
C6A—H6AA0.9900C18A—H18A0.9500
C6A—H6AB0.9900C18—H18B0.9500
C1A—O1A—Pt2121.2 (2)H6AA—C6A—H6AB111.1
C7A—N1A—C11A118.6 (4)C3—C6—C589.3 (3)
C7A—N1A—Pt2128.4 (3)C3—C6—H6A113.8
C11A—N1A—Pt2112.9 (3)C5—C6—H6A113.8
O3A—C1A—O1A122.3 (4)C3—C6—H6B113.8
O3A—C1A—C3A120.5 (4)C5—C6—H6B113.8
O1A—C1A—C3A117.2 (3)H6A—C6—H6B111.0
N1—Pt1—N281.97 (13)H6V—O6—H6W100 (6)
N1—Pt1—O2173.29 (12)N1A—C7A—C8A121.2 (4)
N2—Pt1—O292.66 (12)N1A—C7A—H7AA119.4
N1—Pt1—O193.57 (12)C8A—C7A—H7AA119.4
N2—Pt1—O1174.96 (12)N1—C7—C8120.9 (4)
O2—Pt1—O191.63 (11)N1—C7—H7A119.6
C1—O1—Pt1122.9 (2)C8—C7—H7A119.6
C7—N1—C11118.9 (3)H7V—O7—H7W107 (5)
C7—N1—Pt1128.1 (3)C9—C8—C7120.9 (4)
C11—N1—Pt1112.9 (3)C9—C8—H8A119.5
O3—C1—O1120.5 (4)C7—C8—H8A119.5
O3—C1—C3121.7 (4)C9A—C8A—C7A120.4 (4)
O1—C1—C3117.8 (3)C9A—C8A—H8AA119.8
N1A—Pt2—N2A82.27 (14)C7A—C8A—H8AA119.8
N1A—Pt2—O2A174.10 (12)H8V—O8—H8W99 (6)
N2A—Pt2—O2A93.23 (12)C8A—C9A—C10A120.2 (4)
N1A—Pt2—O1A93.17 (13)C8A—C9A—H9AA119.9
N2A—Pt2—O1A175.17 (12)C10A—C9A—H9AA119.9
O2A—Pt2—O1A91.21 (11)C8—C9—C10118.9 (4)
C2A—O2A—Pt2120.2 (2)C8—C9—H9A120.6
C16A—N2A—C12A119.2 (4)C10—C9—H9A120.6
C16A—N2A—Pt2128.1 (3)C9A—C10A—C11A115.9 (4)
C12A—N2A—Pt2112.6 (3)C9A—C10A—C17A126.4 (4)
O4A—C2A—O2A122.4 (4)C11A—C10A—C17A117.6 (4)
O4A—C2A—C3A120.5 (4)C11—C10—C9117.1 (4)
O2A—C2A—C3A117.0 (3)C11—C10—C17119.1 (4)
C16—N2—C12119.0 (3)C9—C10—C17123.8 (4)
C16—N2—Pt1128.0 (3)N1A—C11A—C10A123.7 (4)
C12—N2—Pt1113.0 (3)N1A—C11A—C12A115.8 (4)
C2—O2—Pt1121.2 (2)C10A—C11A—C12A120.6 (4)
O4—C2—O2121.5 (4)N1—C11—C10123.2 (4)
O4—C2—C3120.3 (3)N1—C11—C12115.6 (3)
O2—C2—C3118.2 (4)C10—C11—C12121.1 (4)
C2A—C3A—C1A108.4 (3)N2A—C12A—C13A123.0 (4)
C2A—C3A—C6A116.8 (3)N2A—C12A—C11A116.4 (3)
C1A—C3A—C6A113.5 (3)C13A—C12A—C11A120.5 (4)
C2A—C3A—C4A116.7 (3)N2—C12—C13123.7 (4)
C1A—C3A—C4A111.6 (3)N2—C12—C11116.5 (3)
C6A—C3A—C4A88.8 (3)C13—C12—C11119.7 (4)
C1—C3—C2109.7 (3)C12A—C13A—C14A116.7 (4)
C1—C3—C6114.4 (3)C12A—C13A—C18A118.1 (4)
C2—C3—C6116.1 (3)C14A—C13A—C18A125.2 (4)
C1—C3—C4109.0 (3)C12—C13—C14116.0 (4)
C2—C3—C4117.5 (3)C12—C13—C18118.5 (4)
C6—C3—C488.8 (3)C14—C13—C18125.5 (4)
C5A—C4A—C3A88.0 (3)C15A—C14A—C13A119.9 (4)
C5A—C4A—H4AA114.0C15A—C14A—H14A120.1
C3A—C4A—H4AA114.0C13A—C14A—H14A120.1
C5A—C4A—H4AB114.0C15—C14—C13119.3 (4)
C3A—C4A—H4AB114.0C15—C14—H14B120.4
H4AA—C4A—H4AB111.2C13—C14—H14B120.4
C5—C4—C388.5 (3)C14A—C15A—C16A120.2 (4)
C5—C4—H4A113.9C14A—C15A—H15A119.9
C3—C4—H4A113.9C16A—C15A—H15A119.9
C5—C4—H4B113.9C14—C15—C16120.6 (4)
C3—C4—H4B113.9C14—C15—H15B119.7
H4A—C4—H4B111.1C16—C15—H15B119.7
C6A—C5A—C4A89.2 (3)N2A—C16A—C15A121.0 (4)
C6A—C5A—H5AA113.8N2A—C16A—H16A119.5
C4A—C5A—H5AA113.8C15A—C16A—H16A119.5
C6A—C5A—H5AB113.8N2—C16—C15121.3 (4)
C4A—C5A—H5AB113.8N2—C16—H16B119.3
H5AA—C5A—H5AB111.0C15—C16—H16B119.3
C4—C5—C689.0 (3)C18A—C17A—C10A120.7 (4)
C4—C5—H5A113.8C18A—C17A—H17A119.7
C6—C5—H5A113.8C10A—C17A—H17A119.7
C4—C5—H5B113.8C18—C17—C10119.2 (4)
C6—C5—H5B113.8C18—C17—H17B120.4
H5A—C5—H5B111.0C10—C17—H17B120.4
H5V—O5—H5W112 (6)C17A—C18A—C13A122.4 (4)
C3A—C6A—C5A88.9 (3)C17A—C18A—H18A118.8
C3A—C6A—H6AA113.8C13A—C18A—H18A118.8
C5A—C6A—H6AA113.8C17—C18—C13122.3 (4)
C3A—C6A—H6AB113.8C17—C18—H18B118.8
C5A—C6A—H6AB113.8C13—C18—H18B118.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5W···O60.841.972.802 (5)170
O6—H6W···O30.832.032.842 (4)165
O7—H7W···O3A0.831.932.753 (4)169
O8—H8V···O70.851.952.806 (5)175
O5—H5V···O8i0.851.982.821 (5)169
O6—H6V···O4ii0.842.002.839 (4)173
O7—H7V···O4Aiii0.832.002.828 (4)176
O8—H8W···O1iv0.842.433.125 (4)142
O8—H8W···O3iv0.842.172.971 (4)160
C7A—H7AA···O3iv0.952.553.376 (5)146
C7—H7A···O7iv0.952.493.145 (5)126
C8—H8A···O5v0.952.593.259 (6)128
C9—H9A···O6v0.952.513.436 (6)165
C14A—H14A···O8vi0.952.353.230 (6)154
C14—H14B···O5vii0.952.363.309 (6)174
C18A—H18A···O4Av0.952.383.196 (5)144
C18—H18B···O4v0.952.553.151 (5)121
Symmetry codes: (i) x+1, y, z1; (ii) x+1, y+1, z; (iii) x, y+2, z+1; (iv) x+1, y+1, z+1; (v) x, y1, z; (vi) x, y+1, z+1; (vii) x1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5W···O60.841.972.802 (5)170
O6—H6W···O30.832.032.842 (4)165
O7—H7W···O3A0.831.932.753 (4)169
O8—H8V···O70.851.952.806 (5)175
O5—H5V···O8i0.851.982.821 (5)169
O6—H6V···O4ii0.842.002.839 (4)173
O7—H7V···O4Aiii0.832.002.828 (4)176
O8—H8W···O1iv0.842.433.125 (4)142
O8—H8W···O3iv0.842.172.971 (4)160
C7A—H7AA···O3iv0.952.553.376 (5)146
C7—H7A···O7iv0.952.493.145 (5)126
C8—H8A···O5v0.952.593.259 (6)128
C9—H9A···O6v0.952.513.436 (6)165
C14A—H14A···O8vi0.952.353.230 (6)154
C14—H14B···O5vii0.952.363.309 (6)174
C18A—H18A···O4Av0.952.383.196 (5)144
C18—H18B···O4v0.952.553.151 (5)121
Symmetry codes: (i) x+1, y, z1; (ii) x+1, y+1, z; (iii) x, y+2, z+1; (iv) x+1, y+1, z+1; (v) x, y1, z; (vi) x, y+1, z+1; (vii) x1, y1, z.
Acknowledgements top

This work was supported by Palacký University (grant No. PrF_2013_015). The authors wish to thank Mr Tomáš Šilha for performing the CHN elemental analysis.

references
References top

Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Santa Clara, CA, USA.

Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Ferreira, A. D. Q., Bino, A. & Gibson, D. (1997). Inorg. Chim. Acta, 265, 155–161.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Tu, C., Lin, J., Shao, Y. & Guo, Z. (2003). Inorg. Chem. 42, 5795–5797.

Tu, C., Wu, X., Liu, C., Wang, X., Xu, Q. & Guo, Z. (2004). Inorg. Chim. Acta, 357, 95–102.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Yoo, J., Sohn, Y. S. & Do, Y. (1999). J. Inorg. Biochem. 73, 187–193.