organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o964-o965

2-[(Di­methyl­phenyl­phosphanyl­­idene)aza­nium­yl]-5-methyl­benzene­sulfonate benzene monosolvate

aDepartment of Chemistry, University of Louisville, Louisville, KY 40292, USA
*Correspondence e-mail: msmashuta.xray@louisville.edu

(Received 10 May 2013; accepted 17 May 2013; online 25 May 2013)

The title compound, C15H18NO3PS·C6H6, is a rare example of a crystallographically characterized exocyclic phosphiniminium–arene­sulfonate zwitterion, which crystallises as its benzene solvate. The crystal structure shows that the N atom is protonated and that the iminium H atom forms both intra- and inter­molecular hydrogen bonds to the single-bonded sulfonate O atom in an R22(4) graph-set motif. The dihedral angle between the aromatic rings in the main molecule is 89.49 (8)°.

Related literature

For background to this class of compound, see: Brown et al. (2007[Brown, M. K., May, T. L., Baxter, C. A. & Hoveyda, A. H. (2007). Angew. Chem. Int. Ed. 46, 1097-1100.]); Bruneau & Achard (2012[Bruneau, C. & Achard, M. (2012). Coord. Chem. Rev. 256, 525-536.]); Drent et al. (2002[Drent, E., van Dijk, R., van Ginkel, R., van Oort, B. & Pugh, R. I. (2002). Chem. Commun. pp. 744-745.]); Lee & Hoveyda (2009[Lee, Y. & Hoveyda, A. H. (2009). J. Am. Chem. Soc. 131, 3160-3161.]); Lee et al. (2008[Lee, Y., Akiyama, K., Gillingham, D. G., Brown, M. K. & Hoveyda, A. H. (2008). J. Am. Chem. Soc. 130, 446-447.], 2009[Lee, Y., Jang, H. & Hoveyda, A. H. (2009). J. Am. Chem. Soc. 131, 18234-18235.]); Nakamura et al. (2009[Nakamura, A., Ito, S. & Nozaki, K. (2009). Chem. Rev. 109, 5215-5244.]). For related structures, see: Burns et al. (2012[Burns, C. T., Shang, S., Thapa, R. & Mashuta, M. S. (2012). Tetrahedron Lett. 53, 4832-4835.]); Liu et al. (1995[Liu, C.-Y., Chen, D.-Y., Peng, S.-M., Cheng, M.-C. & Liu, S.-T. (1995). Organometallics, 14, 1983-1991.]); Perrotin et al. (2011[Perrotin, P., McCahill, J. S. J., Wu, G. & Scott, S. L. (2011). Chem. Commun. 47, 6948-6950.]); Spencer et al. (2003[Spencer, L. P., Altwer, R., Wei, P., Gelmini, L., Gauld, J. & Stephan, D. W. (2003). Organometallics, 22, 3841-3854.]); Wallis et al. (2009[Wallis, C. J., Kraft, I. L., Murphy, J. N., Patrick, B. O. & Mehrkhodavandi, P. (2009). Organometallics, 28, 3889-3895.], 2010[Wallis, C. J., Kraft, I. L., Patrick, B. O. & Mehrkhodavandi, P. (2010). Dalton Trans. 39, 541-547.]); Zhang et al. (2006[Zhang, C., Sun, W.-H. & Wang, Z.-X. (2006). Eur. J. Inorg. Chem. 23, 4895-4902.]); Zhou & Jordan (2011[Zhou, X. & Jordan, R. F. (2011). Organometallics, 30, 4632-4642.]). For hydrogen-bonding details, see: Desiraju (1995[Desiraju, G. R. (1995). Angew. Chem. Int. Ed. 34, 2311-2327.]).

[Scheme 1]

Experimental

Crystal data
  • C15H18NO3PS·C6H6

  • Mr = 401.44

  • Triclinic, [P \overline 1]

  • a = 9.3696 (2) Å

  • b = 10.3141 (2) Å

  • c = 11.7579 (3) Å

  • α = 68.665 (2)°

  • β = 78.180 (2)°

  • γ = 70.630 (2)°

  • V = 993.89 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 100 K

  • 0.41 × 0.31 × 0.25 mm

Data collection
  • Agilent Xcalibur (Ruby, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.939, Tmax = 1.000

  • 22626 measured reflections

  • 5263 independent reflections

  • 4918 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.096

  • S = 1.05

  • 5263 reflections

  • 251 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.40 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2 0.80 (2) 2.09 (2) 2.7374 (17) 139 (2)
N1—H1N⋯O2i 0.80 (2) 2.47 (2) 3.0311 (17) 128 (2)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Exocyclic phosphinimine functionalized benzenesulfonate ligands have the potential to be used in the synthesis of new transition and main group metal catalysts with numerous applications. Few examples exist where an exocyclic phosphinimine has been incorporated into a mixed donor ligand system for use in the preparation of metal complexes (Liu et al., 1995; Spencer et al., 2003; Zhang et al., 2006; Wallis et al., 2009, 2010). There are also a very limited number of ortho-substituted arenesulfonate bidentate ligands used for catalytic reactions. 2-Phosphine-arenesulfonate chelates have received considerable attention in the last decade as ancillary ligands for group 10 olefin insertion polymerization catalysts (Drent et al., 2002; Nakamura et al., 2009; Perrotin et al., 2011) and have also been used to stabilize ruthenium complexes that catalyze allylic alkylations of heterocycles and amines (Bruneau & Achard, 2012). Chiral and achiral ortho-N-heterocyclic-carbene-benzenesulfonate ligands have been used in the copper-catalyzed asymmetric conjugate addition, allylic alkylation, hydroboration and diboronation reactions (Brown et al., 2007; Lee et al., 2008, 2009; Lee & Hoveyda, 2009) as well as being explored as catalysts that promote insertion of unsaturated molecules into a palladium carbon bond (Zhou & Jordan, 2011). The title compound, (I), has been synthesized as an air-stable precursor of 2-dimethyl(phenyl)phosphinimine-5-methylbenzenesulfonate which is being explored as an ancillary ligand for metal mediated transformations.

The structures of the related 2-triphenylphosphiniminium-5-methylbenzenesulfonate and 2-diphenyl(methyl)phosphiniminium-5-methylbenzenesulfonate (Burns et al., 2012), have been reported recently and contain the same primary structural features as those found in (I). All three structures confirm the zwitterionic nature of these compounds via presence of the phosphiniminium group in which the nitrogen is protonated and the sulfonate anion is located ortho to the protonated phosphinimine. The P(1)—N(1) bond distance (Table 1) in (I) is statistically the same as the phosphiniminium P—N bonds in both 2-triphenylphosphiniminium-5-methylbenzenesulfonate [1.6327 (17) Å] and 2-diphenyl(methyl)phosphiniminium-5-methylbenzenesulfonate [1.6380 (12) Å] (Burns et al., 2012) indicative of single bond character. The iminium hydrogen forms a strong intramolecular hydrogen bond to one sulfonate oxygen atom N1—H1n- - –O2 (Table 2), (Desiraju, 1995). This hydrogen is also involved in an intermolecular interaction with the nearest symmetry generated O2 atom N1—H1n- - –O2i (Table 2). The smaller phosphiniminium Me2PPh substituent in (I) has much less steric impact than the Ph3P and Ph2PMe groups in the two previously reported zwitterions. Comparison of relevant torsion angles in the three structures shows that the phosphorous atom of the phosphiniminium group in (I) is situated above the plane of the aryl ring of the 5-methylbenzenesulfonate fragment with a C5—C6—N1—P1 torsion angle of 29.7 (2)° whereas the phosphorous atom of the phosphiniminium group in the triphenylphosphiniminium and diphenyl(methyl)phosphiniminium zwitterion structures is located below the plane of the aryl ring with corresponding torsion angles of 39.2 (3)° and 14.9 (2)° respectively (Burns et al., 2012).

Related literature top

For background to this class of compound, see: Brown et al. (2007); Bruneau & Achard (2012); Drent et al. (2002); Lee & Hoveyda (2009); Lee et al. (2008, 2009); Nakamura et al. (2009). For related structures, see: Burns et al. (2012); Liu et al. (1995); Perrotin et al. (2011); Spencer et al. (2003); Wallis et al. (2009, 2010); Zhang et al. (2006); Zhou & Jordan (2011). For hydrogen-bonding details, see: Desiraju (1995).

Experimental top

Compound (I) was synthesized following a previously reported procedure (Burns et al., 2012). Dimethylphenylphosphine (11.1 mmol) was added dropwise to a toluene solution (40 ml) of propyl-2-azido-5-methylbenzenesulfonate (9.3 mmol) at 298 K. Effervescence was observed immediately after addition of the phosphine and the clear yellow solution was stirred under N2. After 2 h the solvent was removed under vacuum. The resulting yellow oil was dissolved in CH2Cl2 (40 ml) and transferred via cannula to a suspension of pyridinium tetrafluoroborate (9.3 mmol) in CH2Cl2 (40 ml). Pyridine (14.0 mmol) was added to the white suspension in CH2Cl2 and the reaction mixture was stirred at 298 K for 48 h. A clear pale green solution was observed and the volatiles were removed under vacuum. The resulting residue was treated with diethyl ether (4 x 60 ml) followed by filtration to give a light yellow solid. The solid was purified via column chromatography using silica gel (160 g) and CH2Cl2. The column was eluted with CH2Cl2:MeOH 95:5 (500 ml), CH2Cl2:MeOH 90:10 (1 L) and CH2Cl2:MeOH 80:20 (1 L). The fractions (100 ml) were analyzed by UV-Vis, and those that contained the product were combined and dried under vacuum, affording a white solid. The solid was treated with CH2Cl2 (20 ml) and diethyl ether (100 ml) to afford a white precipitate. Filtration of the precipitate followed by diethyl ether washes (3 x 20 ml) afforded the title compound as a white powder (3.86 g, 70%). Crystals for X-ray analysis were obtained by slow diffusion of benzene into a CHCl3 solution of the title compound in a sealed 5 mm tube at 298 K.

Refinement top

The iminum hydrogen atom was located in a difference map and refined isotropically. Aromatic H atom positions were calculated, and included as fixed contributions with Uiso(H) = 1.2 x Ueq(C). Methyl H atoms were placed in calculated positions and allowed to ride (the torsion angle which defines its orientation was allowed to refine) on the attached C atom, and these atoms were assigned Uiso(H) = 1.5 x Ueq(C). The highest peak, 1.40 e/Å3, and deepest trough, -0.42 e/Å3, are located 0.75 Å and 0.73 Å from C16 and C20 respectively.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. An ellipsoid plot of (I) showing 50% displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing diagram displaying intramolecular and intermolecular hydrogen-bonding interactions between H1n, O2 and O2i. [Symmetry code: (i) 1 - x, 1 - y, 1 - z]
2-[(Dimethylphenylphosphanylidene)azaniumyl]-5-methylbenzenesulfonate benzene monosolvate top
Crystal data top
C15H18NO3PS·C6H6Z = 2
Mr = 401.44F(000) = 424
Triclinic, P1Dx = 1.341 Mg m3
Hall symbol: -P 1Melting point: 490 K
a = 9.3696 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.3141 (2) ÅCell parameters from 16324 reflections
c = 11.7579 (3) Åθ = 3.3–29.0°
α = 68.665 (2)°µ = 0.27 mm1
β = 78.180 (2)°T = 100 K
γ = 70.630 (2)°Prism, colorless
V = 993.89 (4) Å30.41 × 0.31 × 0.25 mm
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
5263 independent reflections
Radiation source: Enhance (Mo) X-ray Source4918 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 10.2836 pixels mm-1θmax = 29.1°, θmin = 3.3°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1313
Tmin = 0.939, Tmax = 1.000l = 1616
22626 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0264P)2 + 1.4298P]
where P = (Fo2 + 2Fc2)/3
5263 reflections(Δ/σ)max = 0.001
251 parametersΔρmax = 1.40 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C15H18NO3PS·C6H6γ = 70.630 (2)°
Mr = 401.44V = 993.89 (4) Å3
Triclinic, P1Z = 2
a = 9.3696 (2) ÅMo Kα radiation
b = 10.3141 (2) ŵ = 0.27 mm1
c = 11.7579 (3) ÅT = 100 K
α = 68.665 (2)°0.41 × 0.31 × 0.25 mm
β = 78.180 (2)°
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
5263 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
4918 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 1.000Rint = 0.017
22626 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.40 e Å3
5263 reflectionsΔρmin = 0.42 e Å3
251 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.24462 (4)0.76594 (4)0.45953 (3)0.01262 (9)
P10.71909 (4)0.68470 (4)0.55802 (3)0.01128 (9)
O10.28714 (14)0.88299 (13)0.35938 (11)0.0211 (2)
O20.34682 (13)0.62271 (12)0.46153 (11)0.0181 (2)
O30.08543 (12)0.77151 (14)0.47013 (11)0.0200 (2)
N10.54554 (14)0.67514 (14)0.56918 (12)0.0135 (2)
H1N0.530 (3)0.632 (3)0.531 (2)0.027 (6)*
C10.27173 (16)0.78953 (15)0.59586 (13)0.0119 (3)
C20.14789 (16)0.86274 (16)0.65917 (14)0.0139 (3)
H20.05160.89040.63360.017*
C30.16470 (17)0.89556 (16)0.75995 (14)0.0155 (3)
C40.30965 (18)0.84905 (17)0.79818 (14)0.0171 (3)
H40.32350.86840.86580.021*
C50.43403 (17)0.77421 (17)0.73725 (14)0.0156 (3)
H50.52940.74280.76550.019*
C60.41761 (16)0.74565 (15)0.63435 (13)0.0125 (3)
C70.03151 (19)0.98321 (19)0.82218 (16)0.0221 (3)
H7A0.01370.92620.90600.033*
H7B0.05731.01030.78060.033*
H7C0.05321.06900.81950.033*
C80.81146 (16)0.56744 (16)0.69318 (13)0.0140 (3)
C90.92555 (18)0.6000 (2)0.72847 (15)0.0210 (3)
H90.95230.68500.68350.025*
C100.9990 (2)0.5043 (2)0.83147 (17)0.0296 (4)
H101.07550.52500.85520.036*
C110.9585 (2)0.3787 (2)0.89842 (18)0.0329 (4)
H111.00740.31550.96760.040*
C120.8455 (2)0.34585 (19)0.86339 (17)0.0286 (4)
H120.81900.26090.90900.034*
C130.77174 (19)0.43981 (17)0.76011 (15)0.0191 (3)
H130.69660.41770.73600.023*
C140.82093 (17)0.63095 (17)0.42977 (14)0.0169 (3)
H14A0.82610.53180.44430.025*
H14B0.92200.64030.41810.025*
H14C0.76980.69180.35770.025*
C150.71858 (18)0.86602 (16)0.53121 (16)0.0186 (3)
H15A0.66030.93010.46370.028*
H15B0.82100.87280.51210.028*
H15C0.67410.89310.60340.028*
C160.6085 (3)0.8347 (2)0.14006 (19)0.0392 (5)
H160.59420.88830.19230.047*
C170.6651 (3)0.8839 (3)0.0207 (2)0.0363 (5)
H170.68380.97410.00920.044*
C180.6951 (2)0.8019 (2)0.05696 (18)0.0318 (4)
H180.73520.83610.13770.038*
C190.6647 (2)0.6685 (2)0.01315 (18)0.0296 (4)
H190.68860.61150.06390.035*
C200.6011 (2)0.6207 (2)0.1021 (2)0.0319 (4)
H200.57610.53360.12870.038*
C210.5720 (2)0.7022 (2)0.18328 (18)0.0311 (4)
H210.52970.66860.26340.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01064 (16)0.01423 (17)0.01497 (16)0.00342 (12)0.00207 (12)0.00656 (13)
P10.00971 (16)0.01120 (16)0.01365 (17)0.00251 (12)0.00188 (12)0.00481 (13)
O10.0269 (6)0.0214 (6)0.0159 (5)0.0104 (5)0.0009 (4)0.0045 (4)
O20.0163 (5)0.0174 (5)0.0248 (6)0.0016 (4)0.0054 (4)0.0125 (4)
O30.0117 (5)0.0294 (6)0.0234 (6)0.0056 (4)0.0028 (4)0.0131 (5)
N10.0098 (5)0.0159 (6)0.0188 (6)0.0028 (4)0.0019 (4)0.0107 (5)
C10.0122 (6)0.0112 (6)0.0137 (6)0.0043 (5)0.0013 (5)0.0045 (5)
C20.0118 (6)0.0129 (6)0.0169 (7)0.0039 (5)0.0005 (5)0.0047 (5)
C30.0155 (7)0.0143 (6)0.0158 (7)0.0035 (5)0.0012 (5)0.0059 (5)
C40.0198 (7)0.0183 (7)0.0154 (7)0.0044 (6)0.0017 (6)0.0085 (6)
C50.0134 (6)0.0173 (7)0.0174 (7)0.0027 (5)0.0039 (5)0.0072 (6)
C60.0115 (6)0.0107 (6)0.0156 (6)0.0031 (5)0.0008 (5)0.0048 (5)
C70.0186 (7)0.0250 (8)0.0221 (8)0.0009 (6)0.0012 (6)0.0130 (6)
C80.0119 (6)0.0151 (7)0.0144 (6)0.0008 (5)0.0021 (5)0.0065 (5)
C90.0152 (7)0.0303 (9)0.0206 (7)0.0075 (6)0.0026 (6)0.0102 (7)
C100.0191 (8)0.0455 (11)0.0260 (9)0.0008 (7)0.0100 (7)0.0166 (8)
C110.0346 (10)0.0329 (10)0.0227 (9)0.0095 (8)0.0151 (7)0.0094 (7)
C120.0417 (11)0.0169 (8)0.0206 (8)0.0001 (7)0.0079 (7)0.0033 (6)
C130.0234 (8)0.0155 (7)0.0184 (7)0.0037 (6)0.0037 (6)0.0061 (6)
C140.0146 (7)0.0204 (7)0.0159 (7)0.0039 (6)0.0004 (5)0.0078 (6)
C150.0174 (7)0.0121 (7)0.0266 (8)0.0046 (5)0.0031 (6)0.0058 (6)
C160.0531 (13)0.0367 (11)0.0249 (9)0.0015 (10)0.0034 (9)0.0168 (8)
C170.0350 (11)0.0372 (11)0.0396 (11)0.0124 (9)0.0016 (9)0.0145 (9)
C180.0265 (9)0.0423 (11)0.0248 (9)0.0089 (8)0.0007 (7)0.0104 (8)
C190.0248 (9)0.0381 (10)0.0286 (9)0.0033 (8)0.0065 (7)0.0167 (8)
C200.0221 (9)0.0338 (10)0.0443 (11)0.0117 (7)0.0074 (8)0.0199 (9)
C210.0268 (9)0.0488 (12)0.0215 (8)0.0143 (8)0.0017 (7)0.0144 (8)
Geometric parameters (Å, º) top
S1—O11.4474 (12)C9—H90.9300
S1—O31.4547 (11)C10—C111.380 (3)
S1—O21.4648 (11)C10—H100.9300
S1—O21.4648 (11)C11—C121.387 (3)
S1—C11.7845 (15)C11—H110.9300
P1—N11.6373 (13)C12—C131.391 (2)
P1—C141.7776 (15)C12—H120.9300
P1—C151.7783 (16)C13—H130.9300
P1—C81.7911 (15)C14—H14A0.9600
N1—C61.4155 (18)C14—H14B0.9600
N1—H1N0.80 (2)C14—H14C0.9600
C1—C21.395 (2)C15—H15A0.9600
C1—C61.4043 (19)C15—H15B0.9600
C2—C31.395 (2)C15—H15C0.9600
C2—H20.9300C16—C171.365 (3)
C3—C41.392 (2)C16—C211.406 (3)
C3—C71.506 (2)C16—H160.9300
C4—C51.390 (2)C17—C181.388 (3)
C4—H40.9300C17—H170.9300
C5—C61.393 (2)C18—C191.386 (3)
C5—H50.9300C18—H180.9300
C7—H7A0.9600C19—C201.346 (3)
C7—H7B0.9600C19—H190.9300
C7—H7C0.9600C20—C211.421 (3)
C8—C131.394 (2)C20—H200.9300
C8—C91.396 (2)C21—H210.9300
C9—C101.391 (2)
O1—S1—O3114.14 (7)C10—C9—C8119.49 (17)
O1—S1—O2112.97 (7)C10—C9—H9120.3
O3—S1—O2112.35 (7)C8—C9—H9120.3
O1—S1—O2112.97 (7)C11—C10—C9120.11 (17)
O3—S1—O2112.35 (7)C11—C10—H10119.9
O1—S1—C1105.48 (7)C9—C10—H10119.9
O3—S1—C1106.09 (7)C10—C11—C12120.53 (17)
O2—S1—C1104.84 (7)C10—C11—H11119.7
O2—S1—C1104.84 (7)C12—C11—H11119.7
N1—P1—C14107.43 (7)C11—C12—C13120.10 (18)
N1—P1—C15110.52 (7)C11—C12—H12120.0
C14—P1—C15108.36 (8)C13—C12—H12120.0
N1—P1—C8111.53 (7)C12—C13—C8119.40 (16)
C14—P1—C8109.37 (7)C12—C13—H13120.3
C15—P1—C8109.55 (7)C8—C13—H13120.3
C6—N1—P1125.47 (10)P1—C14—H14A109.5
C6—N1—H1N116.5 (17)P1—C14—H14B109.5
P1—N1—H1N117.9 (17)H14A—C14—H14B109.5
C2—C1—C6119.74 (13)P1—C14—H14C109.5
C2—C1—S1119.26 (11)H14A—C14—H14C109.5
C6—C1—S1120.80 (11)H14B—C14—H14C109.5
C1—C2—C3121.75 (14)P1—C15—H15A109.5
C1—C2—H2119.1P1—C15—H15B109.5
C3—C2—H2119.1H15A—C15—H15B109.5
C4—C3—C2117.74 (14)P1—C15—H15C109.5
C4—C3—C7121.16 (14)H15A—C15—H15C109.5
C2—C3—C7121.05 (14)H15B—C15—H15C109.5
C5—C4—C3121.29 (14)C17—C16—C21119.3 (2)
C5—C4—H4119.4C17—C16—H16120.3
C3—C4—H4119.4C21—C16—H16120.3
C4—C5—C6120.79 (14)C16—C17—C18121.3 (2)
C4—C5—H5119.6C16—C17—H17119.4
C6—C5—H5119.6C18—C17—H17119.4
C5—C6—C1118.64 (13)C19—C18—C17119.44 (19)
C5—C6—N1120.69 (13)C19—C18—H18120.3
C1—C6—N1120.67 (13)C17—C18—H18120.3
C3—C7—H7A109.5C20—C19—C18120.70 (19)
C3—C7—H7B109.5C20—C19—H19119.7
H7A—C7—H7B109.5C18—C19—H19119.7
C3—C7—H7C109.5C19—C20—C21120.49 (19)
H7A—C7—H7C109.5C19—C20—H20119.8
H7B—C7—H7C109.5C21—C20—H20119.8
C13—C8—C9120.36 (15)C16—C21—C20118.63 (18)
C13—C8—P1118.82 (12)C16—C21—H21120.7
C9—C8—P1120.78 (12)C20—C21—H21120.7
O1—S1—O2—O20.00 (7)C2—C1—C6—N1178.06 (13)
O3—S1—O2—O20.00 (4)S1—C1—C6—N13.16 (19)
C1—S1—O2—O20.00 (6)P1—N1—C6—C529.7 (2)
C14—P1—N1—C6160.95 (12)P1—N1—C6—C1149.70 (12)
C15—P1—N1—C642.91 (15)N1—P1—C8—C1330.59 (14)
C8—P1—N1—C679.22 (14)C14—P1—C8—C1388.10 (13)
O1—S1—C1—C296.24 (13)C15—P1—C8—C13153.27 (12)
O3—S1—C1—C225.20 (13)N1—P1—C8—C9151.94 (12)
O2—S1—C1—C2144.27 (12)C14—P1—C8—C989.38 (14)
O2—S1—C1—C2144.27 (12)C15—P1—C8—C929.26 (15)
O1—S1—C1—C678.68 (13)C13—C8—C9—C100.3 (2)
O3—S1—C1—C6159.88 (12)P1—C8—C9—C10177.74 (13)
O2—S1—C1—C640.81 (13)C8—C9—C10—C110.4 (3)
O2—S1—C1—C640.81 (13)C9—C10—C11—C120.5 (3)
C6—C1—C2—C30.7 (2)C10—C11—C12—C130.1 (3)
S1—C1—C2—C3174.27 (11)C11—C12—C13—C80.6 (3)
C1—C2—C3—C41.8 (2)C9—C8—C13—C120.8 (2)
C1—C2—C3—C7175.96 (14)P1—C8—C13—C12178.27 (13)
C2—C3—C4—C50.9 (2)C21—C16—C17—C183.6 (4)
C7—C3—C4—C5176.87 (15)C16—C17—C18—C191.1 (3)
C3—C4—C5—C61.1 (2)C17—C18—C19—C202.6 (3)
C4—C5—C6—C12.2 (2)C18—C19—C20—C213.7 (3)
C4—C5—C6—N1177.15 (14)C17—C16—C21—C202.5 (3)
C2—C1—C6—C51.3 (2)C19—C20—C21—C161.1 (3)
S1—C1—C6—C5176.21 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.80 (2)2.09 (2)2.7374 (17)139 (2)
N1—H1N···O2i0.80 (2)2.47 (2)3.0311 (17)128 (2)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H18NO3PS·C6H6
Mr401.44
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.3696 (2), 10.3141 (2), 11.7579 (3)
α, β, γ (°)68.665 (2), 78.180 (2), 70.630 (2)
V3)993.89 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.41 × 0.31 × 0.25
Data collection
DiffractometerAgilent Xcalibur (Ruby, Gemini)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.939, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
22626, 5263, 4918
Rint0.017
(sin θ/λ)max1)0.684
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.096, 1.05
No. of reflections5263
No. of parameters251
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.40, 0.42

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.80 (2)2.09 (2)2.7374 (17)139 (2)
N1—H1N···O2i0.80 (2)2.47 (2)3.0311 (17)128 (2)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

MSM thanks the Department of Energy, grant DEFG02–08CH11538, and the Kentucky Research Challenge Trust Fund for upgrade of our X-ray facilities. CTB thanks the American Chemical Society Petroleum Research Fund (grant 50401-DN13) for financial support of this research.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.
First citationBrown, M. K., May, T. L., Baxter, C. A. & Hoveyda, A. H. (2007). Angew. Chem. Int. Ed. 46, 1097–1100.  Web of Science CSD CrossRef CAS
First citationBruneau, C. & Achard, M. (2012). Coord. Chem. Rev. 256, 525–536.  Web of Science CrossRef CAS
First citationBurns, C. T., Shang, S., Thapa, R. & Mashuta, M. S. (2012). Tetrahedron Lett. 53, 4832–4835.  Web of Science CSD CrossRef CAS
First citationDesiraju, G. R. (1995). Angew. Chem. Int. Ed. 34, 2311–2327.  CrossRef CAS Web of Science
First citationDrent, E., van Dijk, R., van Ginkel, R., van Oort, B. & Pugh, R. I. (2002). Chem. Commun. pp. 744–745.  Web of Science CrossRef
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationLee, Y., Akiyama, K., Gillingham, D. G., Brown, M. K. & Hoveyda, A. H. (2008). J. Am. Chem. Soc. 130, 446–447.  Web of Science CrossRef PubMed CAS
First citationLee, Y. & Hoveyda, A. H. (2009). J. Am. Chem. Soc. 131, 3160–3161.  Web of Science CrossRef PubMed CAS
First citationLee, Y., Jang, H. & Hoveyda, A. H. (2009). J. Am. Chem. Soc. 131, 18234–18235.  Web of Science CrossRef PubMed CAS
First citationLiu, C.-Y., Chen, D.-Y., Peng, S.-M., Cheng, M.-C. & Liu, S.-T. (1995). Organometallics, 14, 1983–1991.  CSD CrossRef CAS Web of Science
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals
First citationNakamura, A., Ito, S. & Nozaki, K. (2009). Chem. Rev. 109, 5215–5244.  Web of Science CrossRef PubMed CAS
First citationPerrotin, P., McCahill, J. S. J., Wu, G. & Scott, S. L. (2011). Chem. Commun. 47, 6948–6950.  Web of Science CSD CrossRef CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationSpencer, L. P., Altwer, R., Wei, P., Gelmini, L., Gauld, J. & Stephan, D. W. (2003). Organometallics, 22, 3841–3854.  Web of Science CSD CrossRef CAS
First citationWallis, C. J., Kraft, I. L., Murphy, J. N., Patrick, B. O. & Mehrkhodavandi, P. (2009). Organometallics, 28, 3889–3895.  Web of Science CSD CrossRef CAS
First citationWallis, C. J., Kraft, I. L., Patrick, B. O. & Mehrkhodavandi, P. (2010). Dalton Trans. 39, 541–547.  Web of Science CSD CrossRef CAS
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals
First citationZhang, C., Sun, W.-H. & Wang, Z.-X. (2006). Eur. J. Inorg. Chem. 23, 4895–4902.  Web of Science CSD CrossRef
First citationZhou, X. & Jordan, R. F. (2011). Organometallics, 30, 4632–4642.  Web of Science CSD CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o964-o965
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds