supplementary materials


xu5701 scheme

Acta Cryst. (2013). E69, o861-o862    [ doi:10.1107/S1600536813012348 ]

4',4',6',6'-Tetrachloro-2-(6-methylpyridin-2-yl)-1H,2H-spiro[naphtho[1,2-e][1,3,2]oxazaphosphinine-3,2'-[1,3,5,2,4,6]triazatriphosphinine]

M. Isiklan, Ö. Sonkaya and T. Hökelek

Abstract top

The title compound, C17H14Cl4N5OP3, is a spiro-phosphazene derivative with bulky naphthalene and pyridine rings. The phosphazene and the six-membered N/O rings are in flattened-boat and twisted-boat conformations, respectively. The naphthalene ring system and the pyridine ring are oriented at a dihedral angle of 18.06 (8)°. In the crystal, weak [pi]-[pi] stacking between the pyridine rings and between the pyridine rings and the naphthalene ring system [centroid-centroid distances = 3.594 (2) and 3.961 (2) Å, respectively] occur. Weak C-H...[pi] interactions are also observed. These interactions link the molecules into a three-dimensional supramolecular network.

Comment top

Cyclophosphazenes are known as inorganic heterocyclic rings containing an (N=PX2)n repeating unit. Hexachlorocyclotriphosphazene, N3P3Cl6, can also be considered as a trimer, which can be obtained by the reaction of phosphorus pentachloride and ammonium chloride. It has been observed that reactions of N3P3Cl6 with bifunctional reagents can afford spiro-, ansa-, bino- and open chain (dangling) products (Beşli et al., 2006). Reaction of hexachlorocyclotriphosphazene with N/O donor type bifunctional reagents such as aminoalcohols (Beşli et al., 2007; Sournies et al., 1997; Deutsch & Shaw, 1990), aminophenols (Işıklan et al., 2010; İlter et al., 2007) and aminonaphthols (İlter et al., 2004; Tercan et al., 2004) predominantly gave spiro derivatives. Cyclophosphazenes have found industrial applications such as in the production of ionic liquids (Omotowa et al., 2004), liquid crystals (Barbera et al., 2005), dendrimers having chiral ligands for asymmetric catalysis (Schneider et al., 1999), flame retardants (Ding et al., 2005), advanced elastomers (Allcock, 2006), rechargeable lithium batteries and polymer electrolytes (Xu et al., 2006; Allcock & Wood, 2006), non-linear optics (Li et al., 2004), biomedical mambranes (Singh et al., 2006), and biomedical materials including synthetic bones (Greish et al., 2005). The present study was undertaken to ascertain the crystal structure of the title compound.

In the title compound, (Fig. 1), the phosphazene ring (A) is in flattened-boat conformation [φ = 31.7 (9)° and θ = 101.8 (8)°] having total puckering amplitude QT of 0.137 (2) Å (Cremer & Pople, 1975). Atoms N1, N2 and N3 are displaced from the plane through the P atoms by 0.112 (3), -0.154 (3) and -0.029 (3) Å, respectively. As expected, the naphthalene and pyridine rings are planar, and they are oriented at a dihedral angle of 18.06 (8)°. Ring B (P1/O1/C9—C11/N4) is in twisted-boat conformation [φ = 147.1 (7)° and θ = 96.9 (8)°] having total puckering amplitude QT of 0.482 (7) Å.

In the phosphazene ring, the P—N bond lengths are in the range of 1.571 (3)–1.598 (3) Å [average value is 1.583 (3) Å] (Table 1), exhibiting a regular variation with distances from P1: P1—N1 P1—N3 P2—N2 P3—N2 P2—N1 P3—N3, and showing double-bond character. However, the exocyclic P1—N4 bond [1.665 (3) Å] is at the lower limit of the single bond length. In the phosphazene compounds, the P—N and PN bonds are generally in the ranges of 1.628–1.691 and 1.571–1.604 Å, respectively (Allen et al., 1987). The shortening in the P1—N4 bond is probably due to electron transfer from N4 to the phosphazene ring.

In the phosphazene ring, the endocyclic N1—P1—N3 angle [117.31 (14)°] is decreased and the exocyclic O1—P1—N4 angle [102.37 (12)°] is increased, with electron donation and withdrawal by the substituents, relative to the 'standard compound' N3P3Cl6 (Bullen, 1971). In the latter compound, the corresponding angles are 118.3, 118.5, 101.2 and 101.6 °, respectively.

The P1—N1—P1, P2—N2—P3 and P1—N3—P3 angles are 121.72 (17), 119.79 (17) and 120.78 (17) °, respectively; P2—N2—P3 and P1—N3—P3 are decreased, with electron donation and withdrawal by the N3P3 ring. They can be compared with the average value reported for N3P3Cl6, viz. 121.4 (3)°.

In the crystal, molecules are stacked nearly parallel to (101) [Fig. 2]. Two weak C—H···π interactions (Table 2) and two weak ππ contacts between the pyridine rings and between the pyridine and naphthalene rings, Cg5—Cg5i and Cg5—Cg3ii [symmetry codes: (i) - x, - y, 1 - z, (ii) - x, 1 - y, 1 - z, where Cg3 and Cg5 are the centroids of the rings (C1/C6—C10) and (N5/C12—C16), respectively] may stabilize the structure, with centroid-centroid distances of 3.594 (2) and 3.961 (2) Å, respectively.

Related literature top

For products from the reaction of N3P3Cl6 with bifunctional reagents, see: Beşli et al. (2006). For N/O donor type bifunctional reagents used for the reaction of hexachlorocyclotriphosphazene giving spiro derivatives, see: Beşli et al. (2007); Sournies et al. (1997); Deutsch & Shaw (1990); Işıklan et al. (2010); İlter et al. (2004, 2007); Tercan et al. (2004). For industrial applications of cyclophosphazenes, see: Omotowa et al. (2004); Barbera et al. (2005); Schneider et al. (1999); Ding et al. (2005); Allcock (2006); Xu et al. (2006); Allcock & Wood (2006); Li et al. (2004); Singh et al. (2006); Greish et al. (2005). For bond-length data, see: Allen et al. (1987). For the standard compound, N3P3Cl6, see: Bullen (1971). For ring-puckering parameters, see: Cremer & Pople (1975).

Experimental top

Hexachlorocyclotriphosphazene (1.00 g, 2.88 mmol) in dry THF (100 ml) was introduced into a 250 ml three-necked round-bottomed flask. One equivalent of 1-[(6-methylpyridin-2-ylamino)methyl]naphthalene-2-ol (0.76 g, 2.88 mmol) and triethylamine (5 ml, 36.00 mmol) were dissolved in dry THF (50 ml) and placed in an addition funnel. The 1-[(6-methylpyridin-2-ylamino)methyl]- naphthalene-2-ol and triethylamine solution was added dropwise to the hexachlorocyclotriphosphazene solution and allowed to react for 24 h. The progress of the reaction was monitored by TLC. The precipitated triethylamine hydrochloride was filtered off. The solvent was evaporated and the product was purified through a silica gel column with a mobile phase of CHCl3. The oily product was recrystallized in n-hexane [m.p. 495.5 K, yield: 0.70 g, 45%].

Refinement top

H atoms were positioned geometrically with C—H = 0.95, 0.99 and 0.98 Å for aromatic, methylene and methyl H atoms, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H-atoms and k = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound (a axis vertical; c axis horizontal). Hydrogen atoms have been omitted for clarity.
4',4',6',6'-Tetrachloro-2-(6-methylpyridin-2-yl)-1H,2H-spiro[naphtho[1,2-e][1,3,2]oxazaphosphinine-3,2'-[1,3,5,2,4,6]triazatriphosphinine] top
Crystal data top
C17H14Cl4N5OP3F(000) = 2176
Mr = 539.04Dx = 1.667 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2741 reflections
a = 21.7784 (5) Åθ = 2.5–26.6°
b = 7.8573 (3) ŵ = 0.80 mm1
c = 25.1034 (5) ÅT = 100 K
V = 4295.7 (2) Å3Plate, colorless
Z = 80.38 × 0.28 × 0.08 mm
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
5297 independent reflections
Radiation source: fine-focus sealed tube3446 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
φ and ω scansθmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2529
Tmin = 0.752, Tmax = 0.939k = 106
22083 measured reflectionsl = 3133
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0611P)2 + 1.3984P]
where P = (Fo2 + 2Fc2)/3
5297 reflections(Δ/σ)max < 0.001
272 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.77 e Å3
Crystal data top
C17H14Cl4N5OP3V = 4295.7 (2) Å3
Mr = 539.04Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 21.7784 (5) ŵ = 0.80 mm1
b = 7.8573 (3) ÅT = 100 K
c = 25.1034 (5) Å0.38 × 0.28 × 0.08 mm
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
5297 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3446 reflections with I > 2σ(I)
Tmin = 0.752, Tmax = 0.939Rint = 0.070
22083 measured reflectionsθmax = 28.3°
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.129Δρmax = 0.73 e Å3
S = 1.01Δρmin = 0.77 e Å3
5297 reflectionsAbsolute structure: ?
272 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.23736 (4)0.09286 (12)0.33683 (4)0.0310 (2)
Cl20.12400 (4)0.12370 (11)0.36507 (4)0.0315 (2)
Cl30.12654 (4)0.54678 (12)0.27056 (3)0.0268 (2)
Cl40.00013 (4)0.37802 (12)0.28234 (3)0.0277 (2)
P10.10765 (4)0.37524 (10)0.42559 (3)0.01570 (18)
P20.14946 (4)0.11972 (11)0.35899 (3)0.0203 (2)
P30.08161 (4)0.38196 (11)0.31822 (3)0.01836 (19)
O10.15089 (10)0.5220 (3)0.44668 (8)0.0188 (5)
N10.14830 (12)0.2097 (3)0.41488 (10)0.0195 (6)
N20.11206 (13)0.2007 (4)0.31138 (11)0.0243 (7)
N30.07526 (12)0.4618 (3)0.37531 (10)0.0183 (6)
N40.06038 (12)0.3449 (3)0.47683 (10)0.0161 (6)
N50.00488 (13)0.1705 (3)0.42067 (11)0.0220 (6)
C10.15699 (15)0.5167 (4)0.59375 (12)0.0170 (7)
C20.12413 (15)0.4649 (4)0.63968 (12)0.0197 (7)
H20.08610.40680.63570.024*
C30.14637 (16)0.4972 (4)0.68968 (13)0.0241 (8)
H30.12420.45850.71990.029*
C40.20163 (17)0.5872 (5)0.69686 (14)0.0279 (8)
H40.21630.61040.73170.033*
C50.23409 (16)0.6410 (4)0.65326 (14)0.0248 (8)
H50.27130.70210.65810.030*
C60.21268 (15)0.6066 (4)0.60098 (13)0.0202 (7)
C70.24658 (15)0.6603 (4)0.55567 (13)0.0213 (7)
H70.28390.72110.56060.026*
C80.22672 (15)0.6265 (4)0.50547 (13)0.0203 (7)
H80.24990.66120.47530.024*
C90.17088 (14)0.5387 (4)0.49938 (12)0.0167 (6)
C100.13573 (14)0.4829 (4)0.54063 (12)0.0164 (6)
C110.07536 (14)0.3917 (4)0.53259 (11)0.0147 (6)
H11A0.07580.28650.55430.018*
H11B0.04200.46510.54640.018*
C120.00836 (14)0.2393 (4)0.46936 (13)0.0184 (7)
C130.03482 (15)0.2132 (4)0.50891 (13)0.0182 (7)
H130.02920.25740.54380.022*
C140.08672 (15)0.1197 (4)0.49558 (14)0.0229 (7)
H140.11790.10020.52130.027*
C150.09263 (16)0.0552 (4)0.44471 (14)0.0244 (8)
H150.12870.00450.43460.029*
C160.04548 (17)0.0783 (4)0.40862 (14)0.0263 (8)
C170.0465 (2)0.0028 (6)0.35445 (15)0.0493 (12)
H17A0.03840.08380.32730.074*
H17B0.08690.05390.34810.074*
H17C0.01490.09130.35260.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0266 (5)0.0330 (5)0.0333 (5)0.0062 (4)0.0064 (4)0.0064 (4)
Cl20.0411 (6)0.0177 (4)0.0357 (5)0.0001 (4)0.0043 (4)0.0053 (4)
Cl30.0293 (5)0.0327 (5)0.0184 (4)0.0093 (4)0.0004 (3)0.0037 (3)
Cl40.0211 (4)0.0374 (5)0.0245 (4)0.0040 (4)0.0045 (3)0.0029 (4)
P10.0188 (4)0.0146 (4)0.0137 (4)0.0009 (4)0.0004 (3)0.0004 (3)
P20.0245 (5)0.0173 (4)0.0192 (4)0.0029 (4)0.0014 (3)0.0034 (3)
P30.0199 (4)0.0200 (4)0.0151 (4)0.0005 (4)0.0005 (3)0.0000 (3)
O10.0211 (12)0.0192 (12)0.0161 (11)0.0042 (10)0.0013 (9)0.0005 (9)
N10.0233 (15)0.0169 (14)0.0182 (14)0.0053 (12)0.0021 (11)0.0008 (11)
N20.0315 (17)0.0241 (15)0.0174 (14)0.0053 (13)0.0010 (11)0.0054 (12)
N30.0222 (15)0.0169 (14)0.0159 (13)0.0050 (12)0.0021 (11)0.0026 (11)
N40.0170 (14)0.0163 (14)0.0152 (12)0.0027 (11)0.0010 (10)0.0001 (10)
N50.0297 (16)0.0186 (14)0.0179 (13)0.0036 (13)0.0055 (11)0.0005 (11)
C10.0191 (17)0.0131 (16)0.0189 (15)0.0029 (13)0.0002 (12)0.0018 (12)
C20.0201 (17)0.0192 (17)0.0199 (16)0.0004 (14)0.0011 (13)0.0006 (13)
C30.030 (2)0.0240 (18)0.0185 (16)0.0026 (15)0.0009 (13)0.0006 (13)
C40.032 (2)0.031 (2)0.0212 (17)0.0033 (16)0.0050 (14)0.0046 (14)
C50.0244 (18)0.0215 (18)0.0286 (18)0.0027 (16)0.0045 (14)0.0024 (14)
C60.0216 (17)0.0159 (17)0.0233 (16)0.0003 (14)0.0043 (13)0.0003 (13)
C70.0166 (17)0.0177 (18)0.0295 (18)0.0027 (13)0.0016 (13)0.0011 (14)
C80.0221 (17)0.0166 (16)0.0223 (16)0.0005 (15)0.0031 (13)0.0002 (13)
C90.0198 (17)0.0139 (16)0.0164 (15)0.0033 (13)0.0017 (12)0.0019 (12)
C100.0180 (16)0.0122 (15)0.0191 (15)0.0029 (13)0.0032 (12)0.0007 (12)
C110.0161 (15)0.0161 (15)0.0118 (13)0.0012 (13)0.0002 (11)0.0025 (12)
C120.0187 (17)0.0129 (16)0.0235 (16)0.0020 (14)0.0044 (13)0.0027 (13)
C130.0205 (17)0.0118 (15)0.0225 (16)0.0012 (14)0.0006 (13)0.0000 (13)
C140.0191 (17)0.0146 (16)0.0349 (19)0.0023 (14)0.0019 (14)0.0056 (14)
C150.0239 (18)0.0155 (16)0.0337 (19)0.0032 (15)0.0093 (15)0.0058 (14)
C160.035 (2)0.0184 (18)0.0251 (18)0.0069 (16)0.0101 (15)0.0037 (14)
C170.069 (3)0.054 (3)0.025 (2)0.034 (2)0.003 (2)0.0021 (19)
Geometric parameters (Å, º) top
Cl1—P22.0047 (12)C6—C51.419 (4)
Cl2—P21.9972 (13)C6—C71.420 (5)
Cl3—P32.0165 (12)C7—C81.358 (4)
Cl4—P31.9902 (12)C7—H70.9500
P1—O11.580 (2)C8—H80.9500
P1—N11.596 (3)C9—C81.407 (4)
P1—N31.598 (3)C10—C11.436 (4)
P1—N41.665 (3)C10—C91.360 (4)
P2—N11.571 (3)C11—C101.511 (4)
P2—N21.580 (3)C11—H11A0.9900
P3—N21.581 (3)C11—H11B0.9900
P3—N31.571 (3)C12—N51.339 (4)
O1—C91.399 (4)C12—C131.383 (4)
N4—C111.483 (4)C13—C141.389 (5)
N4—C121.416 (4)C13—H130.9500
C1—C21.417 (4)C14—C151.380 (5)
C1—C61.415 (4)C14—H140.9500
C2—C31.369 (4)C15—C161.381 (5)
C2—H20.9500C15—H150.9500
C3—H30.9500C16—N51.348 (4)
C4—C31.407 (5)C16—C171.502 (5)
C4—H40.9500C17—H17A0.9800
C5—C41.370 (5)C17—H17B0.9800
C5—H50.9500C17—H17C0.9800
O1—P1—N1108.71 (14)C1—C6—C7119.4 (3)
O1—P1—N3102.53 (13)C5—C6—C7120.9 (3)
O1—P1—N4102.37 (12)C6—C7—H7119.4
N1—P1—N3117.31 (14)C8—C7—C6121.3 (3)
N1—P1—N4110.87 (14)C8—C7—H7119.4
N3—P1—N4113.47 (14)C7—C8—C9118.2 (3)
Cl2—P2—Cl1100.69 (5)C7—C8—H8120.9
N1—P2—Cl1108.08 (11)C9—C8—H8120.9
N1—P2—Cl2110.98 (11)O1—C9—C8114.7 (3)
N1—P2—N2119.09 (15)C10—C9—O1121.0 (3)
N2—P2—Cl1108.95 (12)C10—C9—C8124.2 (3)
N2—P2—Cl2107.47 (12)C1—C10—C11119.5 (3)
Cl4—P3—Cl3100.03 (5)C9—C10—C1117.8 (3)
N2—P3—Cl3108.10 (12)C9—C10—C11122.7 (3)
N2—P3—Cl4108.11 (11)N4—C11—C10115.8 (2)
N3—P3—Cl3109.12 (11)N4—C11—H11A108.3
N3—P3—Cl4109.92 (11)N4—C11—H11B108.3
N3—P3—N2119.75 (14)C10—C11—H11A108.3
C9—O1—P1124.78 (19)C10—C11—H11B108.3
P2—N1—P1121.72 (17)H11A—C11—H11B107.4
P2—N2—P3119.79 (17)N5—C12—N4113.8 (3)
P3—N3—P1120.78 (17)N5—C12—C13123.8 (3)
C11—N4—P1123.9 (2)C13—C12—N4122.4 (3)
C12—N4—P1118.4 (2)C12—C13—C14117.3 (3)
C12—N4—C11116.5 (2)C12—C13—H13121.3
C12—N5—C16117.9 (3)C14—C13—H13121.3
C6—C1—C2118.2 (3)C13—C14—H14120.2
C6—C1—C10119.2 (3)C15—C14—C13119.5 (3)
C2—C1—C10122.6 (3)C15—C14—H14120.2
C1—C2—H2119.5C14—C15—C16119.3 (3)
C3—C2—C1120.9 (3)C14—C15—H15120.4
C3—C2—H2119.5C16—C15—H15120.4
C2—C3—C4120.9 (3)N5—C16—C15121.9 (3)
C2—C3—H3119.6N5—C16—C17116.3 (3)
C4—C3—H3119.6C15—C16—C17121.8 (3)
C3—C4—H4120.2C16—C17—H17A109.5
C5—C4—C3119.6 (3)C16—C17—H17B109.5
C5—C4—H4120.2C16—C17—H17C109.5
C4—C5—C6120.7 (3)H17A—C17—H17B109.5
C4—C5—H5119.6H17A—C17—H17C109.5
C6—C5—H5119.6H17B—C17—H17C109.5
C1—C6—C5119.7 (3)
N1—P1—O1—C981.1 (3)C10—C1—C2—C3179.0 (3)
N3—P1—O1—C9154.0 (2)C2—C1—C6—C50.4 (5)
N4—P1—O1—C936.2 (3)C2—C1—C6—C7179.9 (3)
O1—P1—N1—P2123.90 (19)C10—C1—C6—C5179.9 (3)
N3—P1—N1—P28.3 (3)C10—C1—C6—C70.4 (5)
N4—P1—N1—P2124.32 (19)C1—C2—C3—C41.8 (5)
O1—P1—N3—P3121.15 (19)C5—C4—C3—C20.9 (5)
N1—P1—N3—P32.2 (3)C6—C5—C4—C30.2 (5)
N4—P1—N3—P3129.23 (18)C1—C6—C5—C40.5 (5)
O1—P1—N4—C1122.8 (3)C7—C6—C5—C4179.2 (3)
O1—P1—N4—C12170.1 (2)C1—C6—C7—C80.3 (5)
N1—P1—N4—C1193.0 (3)C5—C6—C7—C8179.4 (3)
N1—P1—N4—C1274.1 (3)C6—C7—C8—C91.0 (5)
N3—P1—N4—C11132.5 (2)O1—C9—C8—C7174.6 (3)
N3—P1—N4—C1260.4 (3)C10—C9—C8—C71.0 (5)
Cl1—P2—N1—P1128.10 (17)C9—C10—C1—C2179.9 (3)
Cl2—P2—N1—P1122.37 (17)C9—C10—C1—C60.4 (4)
N2—P2—N1—P13.2 (3)C11—C10—C1—C21.3 (5)
Cl1—P2—N2—P3116.35 (18)C11—C10—C1—C6178.2 (3)
Cl2—P2—N2—P3135.37 (17)C1—C10—C9—O1175.1 (3)
N1—P2—N2—P38.2 (3)C1—C10—C9—C80.3 (5)
Cl3—P3—N2—P2111.53 (18)C11—C10—C9—O13.5 (5)
Cl4—P3—N2—P2141.03 (17)C11—C10—C9—C8178.9 (3)
N3—P3—N2—P214.2 (3)N4—C11—C10—C1173.4 (3)
Cl3—P3—N3—P1116.34 (17)N4—C11—C10—C98.1 (4)
Cl4—P3—N3—P1134.90 (16)N4—C12—N5—C16175.2 (3)
N2—P3—N3—P18.9 (3)C13—C12—N5—C164.0 (5)
P1—O1—C9—C8154.1 (2)N4—C12—C13—C14174.3 (3)
P1—O1—C9—C1030.1 (4)N5—C12—C13—C144.7 (5)
P1—N4—C11—C104.4 (4)C12—C13—C14—C151.1 (5)
C12—N4—C11—C10171.6 (3)C13—C14—C15—C162.9 (5)
P1—N4—C12—N52.2 (4)C14—C15—C16—N53.8 (5)
P1—N4—C12—C13177.0 (2)C14—C15—C16—C17174.1 (4)
C11—N4—C12—N5165.9 (3)C15—C16—N5—C120.4 (5)
C11—N4—C12—C1315.0 (4)C17—C16—N5—C12177.6 (3)
C6—C1—C2—C31.5 (5)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C8-benzene ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg2i0.952.973.746 (4)140
C7—H7···Cg3i0.952.823.507 (3)130
Symmetry code: (i) x, y1/2, z1/2.
Selected bond lengths (Å) top
P1—O11.580 (2)P2—N11.571 (3)
P1—N11.596 (3)P2—N21.580 (3)
P1—N31.598 (3)P3—N21.581 (3)
P1—N41.665 (3)P3—N31.571 (3)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C8-benzene ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···Cg3i0.952.823.507 (3)130
Symmetry code: (i) x, y1/2, z1/2.
Acknowledgements top

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer. The authors gratefully acknowledge the Kırıkkale University Scientific Research Projects Coordination Unit (grant No. 2009/42), the Scientific and Technical Research Council of Turkey, TÜBİTAK (grant No. 106 T503) and the Hacettepe University Scientific Research Unit (grant No. 02 02 602 002) for financial support.

references
References top

Allcock, H. R. (2006). Curr. Opin. Solid State Mater. Sci. 10, 231–240.

Allcock, H. R. & Wood, R. M. (2006). J. Polym. Sci. Part B Polym. Phys. 44, 2358–2368.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Barbera, J., Bardajı, M., Jimenez, J., Laguna, A., Martinez, M. P., Oriol, L., Serrano, J. L. & Zaragozano, I. (2005). J. Am. Chem. Soc. 127, 8994–9002.

Beşli, S., Coles, S. J., Davies, D. B., Eaton, R. J., Kılıç, A. & Shaw, R. A. (2006). Polyhedron, 25, 963–974.

Beşli, S., Coles, S. J., Davies, D. B., Hursthouse, M. B., Kılıç, A. & Shaw, R. A. (2007). Dalton Trans. pp. 2792–2801.

Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Bullen, G. J. (1971). J. Chem. Soc. A, pp. 1450–1453.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.

Deutsch, W. F. & Shaw, R. A. (1990). Phosphorus Sulfur Silicon, 47, 119–140.

Ding, J., Liang, H., Shi, W. & Shen, X. (2005). J. Appl. Polym. Sci. 97, 1776–1782.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Greish, Y. E., Bender, J. E., Lakshmi, S., Brown, P. W., Allcock, H. R. & Laurencin, C. T. (2005). Biomaterials, 26, 1–9.

İlter, E. E., Asmafiliz, N., Kılıç, Z., Işıklan, M., Hökelek, T., Çaylak, N. & Şahin, E. (2007). Inorg. Chem. 46, 9931–9944.

İlter, E. E., Çaylak, N., Işıklan, M., Asmafiliz, N., Kılıç, Z. & Hökelek, T. (2004). J. Mol. Struct. 697, 119–129.

Işıklan, M., Asmafiliz, N., Özalp, E. E., İlter, E. E., Kılıç, Z., Coşut, B., Yeşilot, S., Kılıç, A., Öztürk, A., Hökelek, T., Koç, L. Y., Açık, L. & Akyüz, E. (2010). Inorg. Chem. 49, 7057–7071.

Li, Z., Huang, C., Hua, J., Qin, J., Yang, Z. & Ye, C. (2004). Macromolecules, 37, 371–376.

Omotowa, B. A., Phillips, B. S., Zabinski, J. S. & Shreeve, J. M. (2004). Inorg. Chem. 43, 5466–5471.

Schneider, R., Köllner, C., Weber, I. & Togni, A. (1999). Chem. Commun. 23, 2415–2416.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Singh, A., Krogman, N. R., Sethurman, S., Nair, L. S., Sturgeon, J. L., Brown, P. W., Laurencin, C. T. & Allcock, H. R. (2006). Biomacromolecules, 7, 914–918.

Sournies, F., Zai, K., Vercruysse, K., Labarre, M. C. & Labarre, J. F. (1997). J. Mol. Struct. 412, 19–26.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Tercan, B., Hökelek, T., Işıklan, M., İlter, E. E. & Kılıç, Z. (2004). Acta Cryst. E60, o971–o973.

Xu, G.-X., Lu, Q., Yu, B. T. & Wen, L. (2006). Solid State Ionics, 177, 305–309.