organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o964-o965

Crystal structure of ethyl 2-chloro-5,8-di­meth­­oxy­quinoline-3-carboxyl­ate

aLaboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique, PHYSYNOR, Université Constantine 1, 25000 Constantine, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université Constantine 1, 25000 , Algeria, and cDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

Edited by P. C. Healy, Griffith University, Australia (Received 22 July 2014; accepted 28 July 2014; online 1 August 2014)

In the title compound, C14H14ClNO4, the dihedral angle between the quinoline ring system (r.m.s. deviation = 0.0142 Å) and ester planes is 18.99 (3)°. The C—O—C—Cm (m = meth­yl) torsion angle is −172.08 (10)°, indicating a trans conformation. In the crystal, the mol­ecules are linked by C—H⋯O and C—H⋯N inter­actions, generating layers lying parallel to (101). Aromatic π-π stacking [centroid–centroid distances = 3.557 (2) and 3.703 (2)Å] links the layers into a three-dimensional network.

1. Related literature

For the synthesis and applications of quinoline derivatives, see: Wang et al. (2011[Wang, X. J., Gong, D. L., Wang, J. D., Zhang, J., Liu, C. X. & Xiang, W. S. (2011). Bioorg. Med. Chem. Lett. 21, 2313-2315.]); Benzerka et al. (2012[Benzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T., Bentchouala, C., Smati, F. & Belfaitah, A. (2012). Lett. Org. Chem. 9, 309-313.]); Valdez et al. (2009[Valdez, D., Rodrigue-Morales, S., Hermandez-Copos, A., Hernandez-Luis, F., Ypez-Mulian, L., Tapia-Contreras, A. & Castillo, R. (2009). Bioorg. Med. Chem. 17, 1724-1730.]). For our previous work, see: Bouraiou et al. (2012[Bouraiou, A., Bouacida, S., Bertrand, C., Roisnel, T. & Belfaitah, A. (2012). Acta Cryst. E68, o1701-o1702.]); Hayour et al. (2014[Hayour, H., Bouraiou, A., Bouacida, S., Benzerka, S. & Belfaitah, A. (2014). Acta Cryst. E70, o195-o196.]); Benzerka et al. (2012[Benzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T., Bentchouala, C., Smati, F. & Belfaitah, A. (2012). Lett. Org. Chem. 9, 309-313.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H14ClNO4

  • Mr = 295.71

  • Triclinic, [P \overline 1]

  • a = 7.512 (4) Å

  • b = 9.759 (5) Å

  • c = 9.811 (5) Å

  • α = 76.071 (10)°

  • β = 72.021 (10)°

  • γ = 86.037 (10)°

  • V = 664.0 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 150 K

  • 0.25 × 0.14 × 0.12 mm

2.2. Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.690, Tmax = 0.747

  • 10769 measured reflections

  • 5204 independent reflections

  • 4090 reflections with I > 2σ(I)

  • Rint = 0.024

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.103

  • S = 1.04

  • 5204 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.5 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O3i 0.93 2.56 3.482 (2) 173
C14—H14C⋯N1ii 0.96 2.61 3.476 (2) 150
Symmetry codes: (i) x-1, y, z+1; (ii) -x+2, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Quinolines have attracted considerable interest for many years due to their presence in the skeleton of a large number of bioactive compounds and natural products (Wang, et al. 2011), such as antibacterial (Benzerka, et al.2012). in going with our investigation, recently, we have reported the synthesis and structure determination of some new quinoline compounds (Hayour, et al., 2014; Bouraiou, et al. 2012). In this paper, we describe the synthesis and the structure determination of ethyl 2-chloro-5,8-dimethoxyquinoline-3-carboxylate (I) which obtained in one step, by addition of NaCN in presence of manganese dioxide in absolute ethanol to 2-chloro-5,8-dimethoxyquinoline-3-carbaldehyde. The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. In the asymmetric unit of title compound the quinoline ring is four time substituted by two methoxy, one chlore and one ethyl carboxylate. The two rings of quinolyl moiety are fused in an axial fashion and form dihedral angle of 1.75 (3) Å. The crystal packing can be described as double layers parallel to (101) plane, along the b axis (Fig. 2). It is stabilized by intermolecular hydrogen bond (N—H···O and C—H···O) and strong ππ stacking, resulting in the formation of infinite a three-dimensional network linking these layers together and reinforces cohesion of the structure (Fig. 2). Hydrogen-bonding parameters are listed in Table 1.

Related literature top

For the synthesis and applications of quinoline derivatives, see: Wang et al. (2011); Benzerka et al. (2012); Valdez et al. (2009). For our previous work, see: Bouraiou et al. (2012); Hayour et al. (2014); Benzerka et al. (2012).

Experimental top

To a cold solution of NaCN (3 mmol) in absolute ethanol (15 mL), a mixture of 2-chloro-5,8-dimethoxy quinolin-3-carbaldehyde (1 mmol) and manganese dioxide (6.7 mmol) was added at 0°C, then the reaction mixture was stirred at 25°C during 3 h. After complexion, the title compound was obtained by simple filtration through a small column packed with 4 cm of celite and 3 cm of silica gel using CH2Cl2 as eluant (Valdez, et al. 2009).

Refinement top

All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent C atom. (with C—H = 0.93 (aromatic), 0.96 (methyl) and 0.97 Å (methylene) and Uiso(H) = 1.5 or 1.2 (carrier atom).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. (Farrugia, 2012) the structure of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level.
[Figure 2] Fig. 2. (Brandenburg & Berndt, 2001) A diagram of the layered crystal packing of (I) viewed down the b axis and showing hydrogen bond [C—H···O in red and C—H···N in black] as dashed line.
Ethyl 2-chloro-5,8-dimethoxyquinoline-3-carboxylate top
Crystal data top
C14H14ClNO4Z = 2
Mr = 295.71F(000) = 308
Triclinic, P1Dx = 1.479 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.512 (4) ÅCell parameters from 4109 reflections
b = 9.759 (5) Åθ = 2.7–34.1°
c = 9.811 (5) ŵ = 0.30 mm1
α = 76.071 (10)°T = 150 K
β = 72.021 (10)°Prism, colorless
γ = 86.037 (10)°0.25 × 0.14 × 0.12 mm
V = 664.0 (6) Å3
Data collection top
Bruker APEXII
diffractometer
4090 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
CCD rotation images, thin slices scansθmax = 34.7°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1111
Tmin = 0.690, Tmax = 0.747k = 1515
10769 measured reflectionsl = 1515
5204 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.079P]
where P = (Fo2 + 2Fc2)/3
5204 reflections(Δ/σ)max = 0.001
184 parametersΔρmax = 0.5 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C14H14ClNO4γ = 86.037 (10)°
Mr = 295.71V = 664.0 (6) Å3
Triclinic, P1Z = 2
a = 7.512 (4) ÅMo Kα radiation
b = 9.759 (5) ŵ = 0.30 mm1
c = 9.811 (5) ÅT = 150 K
α = 76.071 (10)°0.25 × 0.14 × 0.12 mm
β = 72.021 (10)°
Data collection top
Bruker APEXII
diffractometer
5204 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
4090 reflections with I > 2σ(I)
Tmin = 0.690, Tmax = 0.747Rint = 0.024
10769 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.04Δρmax = 0.5 e Å3
5204 reflectionsΔρmin = 0.24 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.27548 (18)1.02335 (11)0.38370 (13)0.0317 (2)
H1B1.34741.01840.45040.048*
H1A1.14781.04510.43040.048*
H1C1.32621.09580.29650.048*
C21.28321 (17)0.88354 (11)0.34275 (11)0.0266 (2)
H2A1.21180.88730.27470.032*
H2B1.41160.85990.29610.032*
C31.21881 (13)0.64349 (10)0.46758 (10)0.01689 (16)
C41.11813 (13)0.54830 (9)0.61114 (10)0.01547 (15)
C51.14674 (13)0.39997 (10)0.64961 (10)0.01641 (16)
C60.92888 (13)0.37156 (9)0.87752 (10)0.01595 (16)
C70.83649 (14)0.28087 (10)1.01633 (10)0.01932 (17)
C80.82466 (19)0.05352 (12)1.17645 (13)0.0316 (2)
H8A0.87990.03811.1760.047*
H8B0.69080.04481.20730.047*
H8C0.86180.09431.24340.047*
C90.70785 (14)0.33822 (11)1.12113 (10)0.02025 (18)
H90.64740.27951.21160.024*
C100.66446 (13)0.48421 (11)1.09552 (10)0.01941 (17)
H100.57610.51961.16830.023*
C110.75286 (13)0.57316 (10)0.96332 (10)0.01729 (16)
C120.88663 (12)0.51757 (9)0.85187 (10)0.01559 (16)
C130.98519 (13)0.60393 (9)0.71557 (10)0.01569 (16)
H130.96030.70010.69550.019*
C140.61166 (16)0.78024 (12)1.03759 (11)0.0250 (2)
H14A0.48630.74391.06910.038*
H14B0.61080.88060.99990.038*
H14C0.6610.75981.11960.038*
N11.05905 (11)0.31542 (8)0.77389 (9)0.01767 (15)
O11.20348 (11)0.77897 (8)0.47853 (8)0.02506 (16)
O20.88630 (12)0.14209 (8)1.03191 (8)0.02716 (17)
O31.30129 (11)0.60788 (8)0.35513 (8)0.02479 (16)
O40.72630 (11)0.71537 (8)0.92457 (8)0.02404 (16)
Cl11.31414 (4)0.31664 (3)0.52818 (3)0.02578 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0359 (6)0.0187 (5)0.0298 (5)0.0004 (4)0.0026 (5)0.0019 (4)
C20.0336 (6)0.0190 (4)0.0186 (4)0.0029 (4)0.0014 (4)0.0003 (3)
C30.0171 (4)0.0168 (4)0.0160 (4)0.0001 (3)0.0032 (3)0.0043 (3)
C40.0161 (4)0.0154 (4)0.0144 (4)0.0003 (3)0.0030 (3)0.0044 (3)
C50.0173 (4)0.0158 (4)0.0164 (4)0.0020 (3)0.0038 (3)0.0064 (3)
C60.0172 (4)0.0150 (4)0.0156 (4)0.0006 (3)0.0043 (3)0.0040 (3)
C70.0221 (4)0.0163 (4)0.0184 (4)0.0029 (3)0.0048 (3)0.0028 (3)
C80.0421 (7)0.0189 (5)0.0245 (5)0.0025 (4)0.0018 (5)0.0024 (4)
C90.0207 (4)0.0213 (4)0.0160 (4)0.0050 (3)0.0021 (3)0.0024 (3)
C100.0176 (4)0.0231 (4)0.0160 (4)0.0005 (3)0.0017 (3)0.0060 (3)
C110.0174 (4)0.0179 (4)0.0157 (4)0.0019 (3)0.0033 (3)0.0051 (3)
C120.0153 (4)0.0163 (4)0.0144 (4)0.0002 (3)0.0030 (3)0.0041 (3)
C130.0170 (4)0.0140 (4)0.0149 (4)0.0006 (3)0.0030 (3)0.0036 (3)
C140.0278 (5)0.0267 (5)0.0207 (4)0.0105 (4)0.0046 (4)0.0120 (4)
N10.0199 (4)0.0154 (3)0.0174 (3)0.0006 (3)0.0046 (3)0.0047 (3)
O10.0331 (4)0.0153 (3)0.0183 (3)0.0012 (3)0.0037 (3)0.0026 (2)
O20.0384 (4)0.0146 (3)0.0212 (3)0.0004 (3)0.0009 (3)0.0010 (3)
O30.0300 (4)0.0243 (4)0.0163 (3)0.0032 (3)0.0012 (3)0.0075 (3)
O40.0294 (4)0.0186 (3)0.0183 (3)0.0073 (3)0.0005 (3)0.0054 (3)
Cl10.02904 (13)0.02190 (12)0.02243 (12)0.00813 (9)0.00059 (9)0.00934 (9)
Geometric parameters (Å, º) top
C1—C21.5050 (17)C7—C91.3760 (14)
C1—H1B0.96C8—O21.4257 (14)
C1—H1A0.96C8—H8A0.96
C1—H1C0.96C8—H8B0.96
C2—O11.4534 (13)C8—H8C0.96
C2—H2A0.97C9—C101.4189 (15)
C2—H2B0.97C9—H90.93
C3—O31.2062 (12)C10—C111.3722 (14)
C3—O11.3463 (13)C10—H100.93
C3—C41.4928 (13)C11—O41.3656 (13)
C4—C131.3796 (13)C11—C121.4254 (13)
C4—C51.4241 (14)C12—C131.4068 (13)
C5—N11.3025 (13)C13—H130.93
C5—Cl11.7500 (10)C14—O41.4301 (12)
C6—N11.3677 (12)C14—H14A0.96
C6—C121.4173 (14)C14—H14B0.96
C6—C71.4286 (14)C14—H14C0.96
C7—O21.3650 (14)
C2—C1—H1B109.5H8A—C8—H8B109.5
C2—C1—H1A109.5O2—C8—H8C109.5
H1B—C1—H1A109.5H8A—C8—H8C109.5
C2—C1—H1C109.5H8B—C8—H8C109.5
H1B—C1—H1C109.5C7—C9—C10122.07 (9)
H1A—C1—H1C109.5C7—C9—H9119
O1—C2—C1106.85 (9)C10—C9—H9119
O1—C2—H2A110.4C11—C10—C9120.01 (9)
C1—C2—H2A110.4C11—C10—H10120
O1—C2—H2B110.4C9—C10—H10120
C1—C2—H2B110.4O4—C11—C10126.18 (8)
H2A—C2—H2B108.6O4—C11—C12114.27 (8)
O3—C3—O1123.25 (9)C10—C11—C12119.55 (9)
O3—C3—C4126.28 (9)C13—C12—C6117.50 (8)
O1—C3—C4110.46 (8)C13—C12—C11122.18 (9)
C13—C4—C5116.02 (8)C6—C12—C11120.29 (8)
C13—C4—C3119.42 (9)C4—C13—C12121.12 (9)
C5—C4—C3124.56 (8)C4—C13—H13119.4
N1—C5—C4125.27 (8)C12—C13—H13119.4
N1—C5—Cl1114.12 (7)O4—C14—H14A109.5
C4—C5—Cl1120.60 (7)O4—C14—H14B109.5
N1—C6—C12121.71 (8)H14A—C14—H14B109.5
N1—C6—C7118.96 (9)O4—C14—H14C109.5
C12—C6—C7119.31 (8)H14A—C14—H14C109.5
O2—C7—C9125.81 (9)H14B—C14—H14C109.5
O2—C7—C6115.43 (9)C5—N1—C6118.38 (8)
C9—C7—C6118.76 (9)C3—O1—C2115.86 (8)
O2—C8—H8A109.5C7—O2—C8116.99 (8)
O2—C8—H8B109.5C11—O4—C14116.88 (8)
O3—C3—C4—C13160.43 (10)C7—C6—C12—C110.20 (13)
O1—C3—C4—C1318.58 (12)O4—C11—C12—C131.56 (13)
O3—C3—C4—C518.55 (16)C10—C11—C12—C13178.38 (9)
O1—C3—C4—C5162.43 (9)O4—C11—C12—C6179.62 (8)
C13—C4—C5—N10.45 (14)C10—C11—C12—C60.32 (14)
C3—C4—C5—N1179.46 (9)C5—C4—C13—C120.60 (13)
C13—C4—C5—Cl1178.93 (7)C3—C4—C13—C12179.67 (8)
C3—C4—C5—Cl12.06 (13)C6—C12—C13—C40.11 (13)
N1—C6—C7—O21.04 (13)C11—C12—C13—C4178.00 (9)
C12—C6—C7—O2179.64 (8)C4—C5—N1—C60.23 (14)
N1—C6—C7—C9178.96 (9)Cl1—C5—N1—C6178.33 (7)
C12—C6—C7—C90.36 (14)C12—C6—N1—C50.77 (13)
O2—C7—C9—C10179.98 (9)C7—C6—N1—C5177.79 (9)
C6—C7—C9—C100.02 (15)O3—C3—O1—C23.72 (15)
C7—C9—C10—C110.50 (15)C4—C3—O1—C2175.33 (8)
C9—C10—C11—O4179.27 (9)C1—C2—O1—C3172.08 (10)
C9—C10—C11—C120.66 (14)C9—C7—O2—C811.40 (15)
N1—C6—C12—C130.60 (13)C6—C7—O2—C8168.60 (9)
C7—C6—C12—C13177.95 (9)C10—C11—O4—C147.48 (15)
N1—C6—C12—C11178.76 (9)C12—C11—O4—C14172.46 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O3i0.932.563.482 (2)173
C14—H14C···N1ii0.962.613.476 (2)150
C13—H13···O10.932.342.6713 (19)101
C13—H13···O40.932.422.7366 (19)100
Symmetry codes: (i) x1, y, z+1; (ii) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O3i0.93002.56003.482 (2)173.00
C14—H14C···N1ii0.96002.61003.476 (2)150.00
Symmetry codes: (i) x1, y, z+1; (ii) x+2, y+1, z+2.
 

Acknowledgements

We are grateful to all personnel of the PHYSYNOR Laboratory, Universite Constantine 1, Algeria, for their assistance. Thanks are due to the MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique - Algérie) for financial support.

References

First citationBenzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T., Bentchouala, C., Smati, F. & Belfaitah, A. (2012). Lett. Org. Chem. 9, 309–313.  CrossRef CAS Google Scholar
First citationBouraiou, A., Bouacida, S., Bertrand, C., Roisnel, T. & Belfaitah, A. (2012). Acta Cryst. E68, o1701–o1702.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHayour, H., Bouraiou, A., Bouacida, S., Benzerka, S. & Belfaitah, A. (2014). Acta Cryst. E70, o195–o196.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValdez, D., Rodrigue-Morales, S., Hermandez-Copos, A., Hernandez-Luis, F., Ypez-Mulian, L., Tapia-Contreras, A. & Castillo, R. (2009). Bioorg. Med. Chem. 17, 1724–1730.  Web of Science PubMed Google Scholar
First citationWang, X. J., Gong, D. L., Wang, J. D., Zhang, J., Liu, C. X. & Xiang, W. S. (2011). Bioorg. Med. Chem. Lett. 21, 2313–2315.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o964-o965
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds