research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

IUCrJ
Volume 2| Part 4| July 2015| Pages 402-408
ISSN: 2052-2525

Combinatorial selection of molecular conformations and supramolecular synthons in quercetin cocrystal landscapes: a route to ternary solids

aSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
*Correspondence e-mail: desiraju@sscu.iisc.ernet.in

Edited by C. Lecomte, Université de Lorraine, France (Received 24 February 2015; accepted 21 May 2015; online 11 June 2015)

The crystallization of 28 binary and ternary cocrystals of quercetin with dibasic coformers is analyzed in terms of a combinatorial selection from a solution of preferred molecular conformations and supramolecular synthons. The crystal structures are characterized by distinctive O—H⋯N and O—H⋯O based synthons and are classified as nonporous, porous and helical. Variability in molecular conformation and synthon structure led to an increase in the energetic and structural space around the crystallization event. This space is the crystal structure landscape of the compound and is explored by fine-tuning the experimental conditions of crystallization. In the landscape context, we develop a strategy for the isolation of ternary cocrystals with the use of auxiliary template molecules to reduce the molecular and supramolecular `confusion' that is inherent in a molecule like quercetin. The absence of concomitant polymorphism in this study highlights the selectivity in conformation and synthon choice from the virtual combinatorial library in solution.

1. Introduction

Polymorphism (Groth, 1906–1919[Groth, P. (1906-1919). Chemische Kristallographie, Vols. III to V. Leipzig: Verlag von Wilhelm Engelmann.]; Deffet, 1942[Deffet, L. (1942). Répertoire des Composés organiques polymorphes. Liége: Editions Desoer.]) is intrinsic to organic compounds and multiple crystalline phases exist because of contrasting kinetic and thermodynamic preferences during crystallization (Desiraju, 2002[Desiraju, G. R. (2002). Nat. Mater. 1, 77-79.], 2007[Desiraju, G. R. (2007). Angew. Chem. Int. Ed. 46, 8342-8356.], 2013[Desiraju, G. R. (2013). J. Am. Chem. Soc. 135, 9952-9967.]). The phenomenon may be more common for molecules which have both conformational flexibility and hydrogen-bonding propensity, although it is by no means unknown to other categories of substances (Sarma & Desiraju, 1999[Sarma, J. A. R. P. & Desiraju, G. R. (1999). Crystal Engineering: The Design and Application of Fundamental Solids, edited by K. R. Seddon & M. Zaworotko, pp. 325-356. Dordrecht: Kluwer Academic Publishers.]; Desiraju, 1997b[Desiraju, G. R. (1997b). Science, 278, 404-405.]). Conformationally flexible molecules provide alternative packing arrangements because rotations around single bonds afford differently shaped molecules (Nangia, 2008[Nangia, A. (2008). Acc. Chem. Res. 41, 595-604.]; Amadei et al., 1998[Amadei, E., Carcelli, M., Ianelli, S., Cozzini, P., Pelagatti, P. & Pelizzi, C. (1998). J. Chem. Soc. Dalton Trans. pp. 1025-1030.]; Bhatt & Desiraju, 2007[Bhatt, P. M. & Desiraju, G. R. (2007). Chem. Commun. p. 2057.]; Bond et al., 2007a[Bond, A. D., Boese, R. & Desiraju, G. R. (2007a). Angew. Chem. Int. Ed. 46, 615-617.],b[Bond, A. D., Boese, R. & Desiraju, G. R. (2007b). Angew. Chem. Int. Ed. 46, 618-622.]). Again, the presence of multiple hydrogen bond functionalities facilitates the emergence of several crystalline forms because of the different supramolecular synthon possibilities that could ensue (Jetti et al., 2003[Jetti, R. K. R., Boese, R., Sarma, J. A. R. P., Reddy, L. S., Vishweshwar, P. & Desiraju, G. R. (2003). Angew. Chem. Int. Ed. 42, 1963-1967.]; Roy & Matzger, 2009[Roy, S. & Matzger, A. J. (2009). Angew. Chem. Int. Ed. 48, 8505-8508.]; Chen et al., 2005[Chen, S., Guzei, I. A. & Yu, L. (2005). J. Am. Chem. Soc. 127, 9881-9885.]; López-Mejías et al., 2012[López-Mejías, V., Kampf, J. W. & Matzger, A. J. (2012). J. Am. Chem. Soc. 134, 9872-9875.]). The (molecular) energy differences between conformations is comparable to the (crystal) energy differences between polymorphs (<20 kJ mol−1), and therefore a combination of both factors enhances the likelihood of polymorphism in organic compounds, especially if small changes in experimental conditions result (Nangia, 2008[Nangia, A. (2008). Acc. Chem. Res. 41, 595-604.]). This energy profile may contain various dynamically equilibrated molecular conformations and supramolecular synthons in solution that, in combination, would be capable of providing a large number of crystalline phases from the supersaturated crystallizing medium. These phases, which would be virtual save for some extenuating circumstance, may be amplified by solvent control or by using suitable template molecules to give isolable solids (Blagden & Davey, 2003[Blagden, N. & Davey, R. J. (2003). Cryst. Growth Des. 3, 873-885.]; Kulkarni et al., 2012[Kulkarni, S. A., McGarrity, E. S., Meekes, H. & ter Horst, J. H. (2012). Chem. Commun. pp. 4983-4985.]; Staab et al., 1990[Staab, E., Addadi, L., Leiserowitz, L. & Lahav, M. (1990). Adv. Mater. 2, 40-43.]; Friščič & MacGillivray, 2009[Friščič, T. & MacGillivray, L. R. (2009). Chem. Commun. pp. 773-775.]). If we consider the crystal as a supramolecular entity (Desiraju, 1996[Desiraju, G. R. (1996). Editor. The Crystal as a Supramolecular Entity. Chichester: John Wiley and Sons.]), both factors, molecular conformation and multiplicity of synthons, collectively increase the energetic and structural space around the reaction trajectories in this supramolecular synthesis. This space is the crystal structure landscape of the compound (Thakur et al., 2015[Thakur, T. S., Dubey, R. & Desiraju, G. R. (2015). Annu. Rev. Phys. Chem. 66, 21-42.]; Dubey et al., 2012[Dubey, R., Pavan, M. S. & Desiraju, G. R. (2012). Chem. Commun. 48, 9020-9022.], Dubey & Desiraju, 2014a[Dubey, R. & Desiraju, G. R. (2014a). Angew. Chem. Int. Ed. 53, 13178-13182.],b[Dubey, R. & Desiraju, G. R. (2014b). Chem. Commun. 50, 1181-1184.]).

The concept of polymorphism is very well studied in single component systems but systematic exploration of cocrystal polymorphism has only recently begun in the crystal engineering context (Aitipamula et al., 2014[Aitipamula, S., Chow, P. S. & Tan, R. B. H. (2014). CrystEngComm, 16, 3451-3465.]). We have performed a detailed landscape exploration based on the conformationally flexible orcinol (5-methylresorcinol) molecule and its cocrystals with N-bases (Mukherjee et al., 2011[Mukherjee, A., Grobelny, P., Thakur, T. S. & Desiraju, G. R. (2011). Cryst. Growth Des. 11, 2637-2653.]). We found that all possible conformations of the orcinol molecule can exist in these crystalline forms: synsyn (four cocrystals), antianti (seven cocrystals), synanti (five cocrystals). We further showed that the orcinol:4,4′-bipyridine (ORC:44BP) cocrystal landscape consists of five anhydrous crystal forms, but that all forms have just one of the orcinol conformations (antianti), however, with different packing arrangements (Dubey et al., 2014[Dubey, R., Pavan, M. S., Guru Row, T. N. & Desiraju, G. R. (2014). IUCrJ, 1, 8-18.]). Cocrystal polymorphism can also involve changes in the main synthons themselves (Desiraju, 1995[Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.]), the so-called synthon polymorphism (Sreekanth et al., 2007[Sreekanth, B. R., Vishweshwar, P. & Vyas, K. (2007). Chem. Commun. p. 2375.]; Mukherjee & Desiraju, 2011[Mukherjee, A. & Desiraju, G. R. (2011). Chem. Commun. 47, 4090-4092.]). The 4-hydroxybenzoic acid:4,4′-bipyridine cocrystal, for example, shows efficient synthon selection with different experimental conditions leading to fundamentally different crystal forms (Mukherjee & Desiraju, 2011[Mukherjee, A. & Desiraju, G. R. (2011). Chem. Commun. 47, 4090-4092.]). Synthon polymorphism in cocrystals may be considered to be combinatorial selection from a virtual synthon library. This idea of selection has been elaborated in solution chemistry previously (Lehn, 1999[Lehn, J. (1999). Chem. Eur. J. 5, 2455-2463.], 2007[Lehn, J. (2007). Chem. Soc. Rev. 36, 151-160.]). Recently, we interpreted the extensive polymorphic modifications in phloroglucinol:1,2-bis(4-pyridyl)ethylene (PGL:DPE) and phloroglucinol:phenazine (PGL:PHE) cocrystal systems on this basis and showed selective amplification of synthons using auxiliary template molecules (Dubey & Desiraju, 2014a[Dubey, R. & Desiraju, G. R. (2014a). Angew. Chem. Int. Ed. 53, 13178-13182.]).

Quercetin (QUE) is an important polyphenol flavonoid which shows a variety of biological properties including antioxidant behavior (Grassi et al., 2010[Grassi, D., Desideri, G. & Feri, C. (2010). Nutrients, 2, 889-902.]; Zhang et al., 2011[Zhang, M., Swarts, S. G., Yin, L., Liu, C., Tian, Y., Cao, Y., Swarts, M., Yang, S., Zhang, S. B., Zhang, K., Ju, S., Olek, D. J. Jr, Schwartz, L., Keng, P. C., Howell, R., Zhang, L. & Okunieff, P. (2011). Adv. Exp. Med. Biol. 701, 283-289.]). Using the cocrystal landscapes of quercetin (Kavuru et al., 2010[Kavuru, P., Aboarayes, D., Arora, K. K., Clarke, H. D., Kennedy, A., Marshall, L., Ong, T. T., Perman, J., Pujari, T., Wojtas, Ł., Łukasz, & Zaworotko, M. J. (2010). Cryst. Growth Des. 10, 3568-3584.]) with dibasic coformers, i.e. tetramethylpyrazine (TMP), 4,4′-bipyridine (44BP), 1,2-bis(4-pyridyl)ethylene (DPE-1), 1,2-bis(4-pyridyl)ethane (DPE-2), 4,4′-azopyridine (44AP), phenazine (PHE), we extend here the idea of a combinatorial library towards prenucleation events where a conformationally flexible compound has a large number of virtual conformations. This approach allows one to consider the aggregation of these flexible molecules towards heteroclusters as synthon selection from a virtual library leading eventually to nucleation events and the final crystal structure (Desiraju, 1997[Desiraju, G. R. (1997b). Science, 278, 404-405.]a[Desiraju, G. R. (1997a). Chem. Commun. pp. 1475-1482.]; Davey et al., 2013[Davey, R. J., Schroeder, S. L. M. & ter Horst, J. H. (2013). Angew. Chem. Int. Ed. 52, 2166-2179.]).

2. Experimental

All datasets were collected on a Rigaku Mercury 375R/MCCD (XtaLABmini) diffractometer with a graphite monochromator using Mo Kα radiation, attached with a Rigaku low-temperature gas spray cooler. The data were processed with CrystalClear software (Rigaku, 2009[Rigaku (2009). Mercury375R/M CCD and Crystal Clear 2.0, SM Expert, rc14. Rigaku Cooperation, Tokyo, Japan.]). QUE:DPE-II (form III) was collected on an Oxford Xcalibur diffractometer with a microfocus X-ray source (Mo Kα) equipped with a Cryojet-HT nitrogen gas stream cooling device and data were processed with CrysAlisPro (Oxford, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and PRO RED. Qxford Diffraction Ltd, Yarnton, England.]). Data for some of the crystals, the QUE:DPE-I (form IV), QUE:DPE-II (form II), QUE:44AP (form II), QUE:PHE (forms III and IV) and QUE:DPE-I:ANT were collected on a Bruker Kappa Apex II CCD diffractometer using Mo Kα radiation and an Oxford cryosystems N2 open-flow cryostat (Bruker, 2006[Bruker (2006). APEX2, Version 1.0.22, BIS, Version 1.2.08, COSMO,Version 1.48, SAINT, Version 7.06A. Bruker AXS Inc., Madison, Wisconsin, USA.]). Cell refinement, data integration and data reduction were carried out using the SAINT-Plus program. Crystal structures were solved by direct methods and refined in the spherical-atom approximation using SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) from the WinGX suite (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]). All non-H atoms were refined anisotropically. The H atoms were fixed on a riding model and acidic H atoms were located via Fourier maps. Precise experimental details of each crystal structure are provided in the supporting information .

3. Results and discussion

This section is divided into a description of the landscapes and the combinatorial analysis of the crystallization events. The primary driving force in the formation of a cocrystal is enthalpically driven synthon formation in solution that involves two or more chemically distinct molecules. A particular synthon is also associated with certain conformations of the QUE molecule. Which conformation and which synthon is preferred in any instance depend on the structure of the coformer, the presence of auxiliary molecules and other experimental variables.

3.1. Quercetin cocrystal landscapes

Quercetin has five hydroxy groups (Fig. 1[link]) and the mutual orientations of these groups provide a variety of putative conformations that constitute a virtual conformational library (supporting information ). This scenario is further complicated by the conformational possibilities brought about with the flexible C-ring. We performed extensive cocrystallization experiments with dibasic coformers (supporting information ). These crystal structures are characterized by several O—H⋯N and/or O—H⋯O based supramolecular synthons which are all rather distinctive and lead to structure types that we refer to in this paper as nonporous, porous and helical within the extended domain of the quercetin cocrystal landscapes. There are other synthon possibilities which were revealed in later cocrystal screening experiments, giving a hint about the virtual nature of this library. Figs. 2[link] and 3[link] illustrate quercetin conformations and a schematic representation of the supramolecular synthons discussed here. In general, the second (OH2) and third (OH3) hydroxy groups of quercetin are conformationally locked by intramolecular hydrogen bonding, while OH1, OH4 and OH5 are responsible for the supramolecular development of various intricate hydrogen bonding patterns in the crystal structures. The supporting information gives a list of 12 conformations and their energies. It is interesting that the most stable conformation (Conf 2B) does not feature in the experimental crystal structures. This could be because of a trade-off between intra- and intermolecular factors.

[Figure 1]
Figure 1
Flipping of the (5) OH group by rotation of the flexible C—C single bond in quercetin.
[Figure 2]
Figure 2
Molecular conformations in quercetin cocrystal landscapes.
[Figure 3]
Figure 3
Supramolecular synthons in quercetin cocrystal landscapes. All the members of this synthon library may be interpreted based on O—H⋯O and/or O—H⋯N hydrogen bonding patterns, but each synthon is distinct from any of the others based on topological considerations.

In the quercetin–tetramethyl­pyrazine (QUE:TMP) cocrystal system, we were able to isolate four crystal forms: two anhydrates, a 1,4-dioxane solvate and a tetrahydrofuran (thf) solvate. The crystal stoichiometries can be 1:3, 1:2 or 1:1. QUE is underexpressed in the crystal in relation to the amount taken in solution for crystallization. So a 1:3 anhydrate, form I (space group Pc), is obtained from a solution that contains QUE and TMP in a 1:1 ratio, while a 1:2 anhydrate, form II (space group P21/c), is obtained when the QUE:TMP ratio taken in solution is 2:1. In form I, quercetin acquires the Conf 6B conformation that accelerates the selection of synthon A from the solution library. In this crystal structure, OH1, OH2, OH3 and OH4 groups are involved in O–H⋯N hydrogen bonding while OH2 and OH5 groups participate with O–H⋯O hydrogen bonds. Form II also has Conf 6B, but a different supramolecular synthon, synthon B. So we observe a preferential trend of O—H⋯O over O—H⋯N with increasing QUE content in solution, as might be expected. This trend continues when the QUE content is increased further. When QUE and TMP are taken in a 3:1 ratio in solution, the outcome are two 1:1 cocrystals, form III and form IV, both of which have Conf 5B and synthon E. In these crystal structures, the molecular conformation and synthon selection mutually provide a channel arrangement that facilitates porosity along [100]. This one-dimensional porous channel is filled with dioxane and thf solvents as a guest, respectively. In the crystal structure landscape context this movement from a close packed to a porous structure highlights that subtle factors underlie the selection of certain high-energy conformations leading to particular synthons and hydrogen bond arrangements. This combinatorial selection of molecular conformation as well as the amplification of `correct' synthons could be delicately controlled by changing the experimental conditions – stoichiometric ratios or solvents – during crystallization.

The quercetin–4,4′-bipyridine cocrystal system (QUE:44BP) has four crystal forms. Three of them are porous, with basically the same structure as the porous QUE:TMP crystals, and have 1:1 stoichiometry. As in QUE:TMP, these forms have the same conformation Conf 5B and the same synthon E. These crystal structures accommodate 1,4-dioxane, thf and even coformer (44BP) as a guest in the larger porous pocket (Fig. 4[link]). When QUE and 44BP were taken in 1:4 ratios in solution for crystallization, a fourth form was obtained in which QUE switches its molecular conformation to the high energy Conf 7B. This crystal form is a 1:3 QUE:44BP monohydrate with masked synthon F where water is involved in complex hydrogen bond patterns. MacGillivray et al. have utilized the appropriate term masked synthon to describe a situation wherein water actively participates in the development of the supramolecular synthon (Sander et al., 2013[Sander, J. R. G., Bučar, D.-K., Henry, R. F., Giangiorgi, B. N., Zhang, G. G. Z. & MacGillivray, L. R. (2013). CrystEngComm, 15, 4816-4822.]). In the next step, we replaced the 44BP coformer with 1,2-bis(4-pyridyl)ethylene (DPE-I) and explored its corresponding structural space. The QUE:DPE-I landscape contains five crystal forms – two anhydrates and one solvate each of 1,4-dioxane, thf and DMF. The latter pseudopolymorphic structures are all porous with the solvents situated in the open pockets. Extending the argument, we have described recently that replacement of DPE-I with 1,2-bis(4-pyridyl)ethane, DPE-II, can extend the structural landscape (Dubey & Desiraju, 2015[Dubey, R. & Desiraju, G. R. (2015). Cryst. Growth Des. 15, 489-496.]). In the present study we made cocrystals of QUE with DPE-II and also with 4,4′-azopyridine (44AP), which is chemically similar to DPE-I and DPE-II. We found the same conformation Conf 6B and porous synthon E in these structures.

[Figure 4]
Figure 4
Porous molecular arrangements in quercetin cocrystal landscapes; QUE:TMP (left), QUE:44BP (middle), QUE:DPE (right). Compounds are color coded: green – quercetin; blue – coformer.

Let us now consider the anhydrates. By altering the experimental conditions, we found that crystallization of a 1:1 ratio of QUE and DPE-I provides two forms: the first has a 1:1 QUE:DPE-I stoichiometry with Conf 1B and synthon H, while the other is a 1:2 QUE:DPE-I cocrystal with Conf 7B and synthon G. The latter illustrates a new helical structure type illustrated in Fig. 5[link], which shows different molecular and supramolecular features from the previously described nonporous and porous structure types and correspondingly enhances the domain of the structural space available. Similar to the pseudopolymorphs, the anhydrates also follow the same trend after coformer replacement of DPE-I by DPE-II or 44AP and hints about the robustness of conformation and synthon selection during crystallization. Changing the experimental conditions for QUE:TMP, QUE:44BP and QUE:DPE-I allows one to move within a landscape from nonporous to porous and thereafter to helical crystal structures. In most cases the corresponding DPE-I, DPE-II and 44AP cocrystal structures are isomorphous. However, in the 2:1 QUE:DPE-II cocrystal there is a different synthon C despite the same conformation Conf 6B. There are a number of structures lying within a small energy window, all with the same conformation but different synthon possibilities. We did not observe any instance of concomitant polymorphism so selectivity in synthon choice is clearly present. The crystallographic details of the crystal structures are given in the supporting information .

[Figure 5]
Figure 5
Helical molecular arrangements in quercetin cocrystal landscapes. Compounds are color coded: green – quercetin; blue – coformer.

Finally, the quercetin–phenazine cocrystal landscape (QUE:PHE) is very comparable and has five crystal forms: two anhydrates, a methanolate, a 1,4-dioxane solvate and a monohydrate. Of these crystal forms, two are porous with Conf 5B and synthon E and their one-directional porous channel is occupied by 1,4-dioxane and PHE as a guest molecule. In the methanolate, Conf 6B is taken with synthon D. PHE is geometrically different from DPE-I and DPE-II, but it still amplifies Conf 7B in the monohydrate; this conformation is favored by DPE-I and DPE-II in their helical structures. However, in the case of the QUE–PHE landscape the rigid nature of the small coformer molecule PHE prevents adoption of the helical structure for the monohydrate. The observed structure is nonporous with an alternative supramolecular synthon, synthon G. The final structure is the second anhydrate where the hitherto virtual conformation Conf 2A is expressed as also synthon I that had not been observed previously (Fig. 6[link]). These unique selections of conformation and supramolecular synthons highlight the virtuality of conformational and synthon libraries in supersaturated solution that could selectively be fine-tuned by experimental conditions. So, in general, the QUE:PHE cocrystal landscape shows the same conformations selection: Conf 6B, Conf 5B and Conf 7B as in the previous landscapes. These conformations lead respectively to each of the three structure types: nonporous, porous and helical.

[Figure 6]
Figure 6
Selection of molecular conformation, Conf 2A, and supramolecular synthon, synthon I, in the anhydrous 2:3 QUE:PHE crystal structure.

In summary, deliberate coformer replacement is a chemical probe that may be used to perturb and understand kinetic events during crystallization that are otherwise experimentally inaccessible. The coformers TMP, 44BP, DPE-I and PHE are chemically similar but contain different geometrical features and topologies. The chemical similarity could be the factor that leads to a common conformation. The geometrical dissimilarities could be the factors that lead to a difference in stabilities between the structure types, in this case nonporous, porous and helical.1 We note that this experimental perturbation would help one to understand the crystallization kinetics and accordingly would enter into more remote domains in the molecule to crystal landscape pathway.

3.2. Auxiliary template molecules and ternary cocrystals

This detailed understanding of quercetin cocrystal landscapes can lead one towards the isolation of stoichiometric ternary molecular solids. Very few reports discuss the synthesis of cocrystals that contain three molecules that all exist as solids at room temperature in their native crystal structures. There are only a handful of design strategies available (Aakeröy et al., 2000[Aakeröy, C. B., Beatty, A. M. & Helfrich, B. A. (2000). Angew. Chem. Int. Ed. 40, 3240-3242.]; Bhogala & Nangia, 2008[Bhogala, B. R. & Nangia, A. (2008). New J. Chem. 32, 800-807.]; Thothadi & Desiraju, 2013[Tothadi, S. & Desiraju, G. R. (2013). Chem. Commun. 49, 7791-7793.]; Seaton et al., 2013[Seaton, C. C., Blagden, N., Munshi, T. & Scowen, I. J. (2013). Chem. Eur. J. 19, 10663-10671.]; Chakraborty et al., 2014[Chakraborty, S., Rajput, L. & Desiraju, G. R. (2014). Cryst. Growth Des. 14, 2571-2577.]; Dobrowolski et al., 2014[Dobrowolski, M. A., Garbarino, G., Mezouar, M., Ciesielski, A. & Cyrański, M. K. (2014). CrystEngComm, 16, 415-429.]). This exercise requires a good control over intermolecular interactions because there is an inherent tendency during crystallization to exclude `impurities'. In the context of quercetin cocrystal landscapes, any design strategy for ternary solids should be based on a precise selection of molecular conformations and supramolecular synthons during molecular recognition leading eventually to convergence into a modular and robust crystal structure (Sanders, 2004[Sanders, J. K. M. (2004). Philos. Trans. R. Soc. Lond. A, 362, 1239-1245.]; Cougnon & Sanders, 2011[Cougnon, F. B. L. & Sanders, J. K. M. (2011). Acc. Chem. Res. 45, 2211-2221.]). We utilized our understanding of the events as outlined in the earlier section and used appropriate auxiliary template molecules to reduce the molecular and supramolecular `confusion' that is inherent in a molecule like quercetin.

The design strategy for ternary solids depends upon the QUE:44BP landscape in which there are consistent appearances of Conf 5B and synthon E from the pool of possibilities. In our ternary design we exploited these robust chemical features and a 1:1 solution of QUE and 44BP in iPrOH solution was layered with a saturated toluene solution of 2,2′-bis-thiophene (22TP) so that liquid diffusion takes place. The appearance of a 2:2:1 stoichiometric ternary solid with Conf 5B conformation and synthon E validated our anticipation and hints at the utility of the landscape idea in designing complex supramolecular architectures. We have shown shape and size mimicry of 22TP for 44BP in ternary solids earlier (Tothadi et al., 2011[Tothadi, S., Mukherjee, A. & Desiraju, G. R. (2011). Chem. Commun. 47, 12080-12082.]). Using this molecular mimicry as a guide leads to a well ordered QUE:44BP:22TP stoichiometric ternary solid (Fig. 7[link]), which is not a solid solution. Tetrathiofulvalene (TTF) as a template highlights an efficient selection of one of four possible synthons, namely synthon B that is associated with Conf 6B, from the corresponding libraries in solution (Fig. 8[link]). Both this conformation and this synthon could be termed virtual in the context of this QUE:44BP landscape because they were not observed in this system until the isolation of this particular solid. We extended this ternary design argument with the QUE:DPE-I cocrystal landscape. This exercise highlights recurring molecular conformations like Conf 5B, Conf 6B and Conf 7B in several crystal forms during landscape exploration. The shape–size mimicry of 22TP with 44BP once again acts as a guide for the selection of Conf 5B and synthon E in the prenucleation events. These precise selections in supramolecular synthesis facilitate the emergence of a porous molecular arrangement and helps to isolate a QUE:DPE-I:22TP ternary solid. Unlike the QUE:44BP:22TP ternary solid, the `longer' coformer provides a larger porous cavity in the QUE:DPE-I binary cocrystal that can efficiently accommodate a 22TP molecule that has both orientational and positional disorder in the pocket (Fig. 7[link]). Like the TTF template in QUE:44BP, pyrene (PYR) plays a characteristic role in QUE:DPE-I for the amplification of `virtual' Conf 6B and synthon B chemical features in the ternary solid (Fig. 8[link]).

[Figure 7]
Figure 7
Ternary design strategy. 22TP as a template molecule in QUE:44BP and QUE:DPE-I cocrystals. The presence of the robust Conf 5B conformation and supramolecular synthon, synthon E, is presented in the ternary solids. Respective guest molecules are shown.
[Figure 8]
Figure 8
Ternary design strategy. TTF (top) and PYR (lower) as template molecules in QUE:44BP and QUE:DPE-I cocrystals. These crystal structures also highlight tghe virtual selection of Conf 6B and synthon B.

We also conceptualized the role of anthracene (ANT) as a template molecule and obtained the respective 2:2:1 ternary solid (Fig. 9[link]). This crystal structure again highlights the virtuality of conformation and synthon selection from the respective libraries. This conformation amplification in the QUE:DPE-I:ANT ternary solid is, however, different from the previously discussed virtual chemical features because neither the conformation Conf 1A or the synthon J had been observed by us previously in any of the quercetin cocrystal landscapes studied here. Accordingly we term this conformation and this synthon as being globally virtual.

[Figure 9]
Figure 9
Ternary design strategy. Anthracene (ANT) as a template molecule in QUE:DPE-I cocrystal. This solid shows a unique selection of the globally virtual Conf 1A conformation and supramolecular synthon, synthon J, in the crystal structure.

4. Conclusions

In conclusion, the isolation of different crystal forms in a quercetin cocrystal system is an illustration of combinatorial crystal synthesis in that there is an inherent selection of a particular molecular conformation and a particular supramolecular synthon in any given case. The principles of combinatorial chemistry may be profitably extended to supramolecular synthesis of solids and the ensuing events may be logically extended to the entire crystallization process prior to nucleation. The absence of concomitant crystallization of different crystal forms in any single experiment shows that the selection is quite efficient. We have recently described the formation of cocrystal polymorphs as combinatorial synthesis based solely on selection from a synthon library. Here we have extended the idea to a selection of both molecular conformation and supramolecular synthon. The convergent nature of the process is further reinforced by the use of template molecules to generate ternary cocrystals, a normally difficult task. Crystallization is known since antiquity as a purification technique which proceeds with efficient exclusion of impurities. The formation of multi-component crystals seems to fly in the face of this reality. However, a closer inspection of the events that take place in the quercetin cocrystal landscapes convey the feeling that the selection of a single conformation and a single synthon is what effectively constitutes the `purifying step' in these crystallizations. Which comes earlier, conformation selection or synthon selection, is hard to say, but formation of a multi-component crystal is then practically inevitable because of enthalpic factors that favour multi-molecular recognition. We feel that these observations open the way to synthesis of ternary and higher component molecular crystals.

Supporting information


Computing details top

For all compounds, program(s) used to refine structure: SHELXL2013 (Sheldrick, 2013).

(QTMP_I) top
Crystal data top
C39H46N6O7Z = 2
Mr = 710.82F(000) = 756
Monoclinic, PcDx = 1.292 Mg m3
a = 9.0760 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9616 (13) ŵ = 0.09 mm1
c = 22.501 (3) ÅT = 150 K
β = 93.554 (7)°Plate, yellow
V = 1826.6 (5) Å30.45 × 0.25 × 0.20 mm
Data collection top
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
Rint = 0.062
Tmin = 0.728, Tmax = 1.000θmax = 27.5°, θmin = 3.2°
18413 measured reflectionsh = 1111
8351 independent reflectionsk = 1111
6243 reflections with I > 2σ(I)l = 2929
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.058 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.2309P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.130(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.25 e Å3
8351 reflectionsΔρmin = 0.27 e Å3
489 parametersAbsolute structure: Flack x determined using 2448 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons and Flack (2004), Acta Cryst. A60, s61).
2 restraintsAbsolute structure parameter: 0.5 (8)
Crystal data top
C39H46N6O7V = 1826.6 (5) Å3
Mr = 710.82Z = 2
Monoclinic, PcMo Kα radiation
a = 9.0760 (13) ŵ = 0.09 mm1
b = 8.9616 (13) ÅT = 150 K
c = 22.501 (3) Å0.45 × 0.25 × 0.20 mm
β = 93.554 (7)°
Data collection top
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
8351 independent reflections
Tmin = 0.728, Tmax = 1.0006243 reflections with I > 2σ(I)
18413 measured reflectionsRint = 0.062
Refinement top
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.130Δρmax = 0.25 e Å3
S = 1.04Δρmin = 0.27 e Å3
8351 reflectionsAbsolute structure: Flack x determined using 2448 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons and Flack (2004), Acta Cryst. A60, s61).
489 parametersAbsolute structure parameter: 0.5 (8)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C80.8826 (4)0.0812 (4)0.34550 (18)0.0178 (8)
C70.8760 (4)0.1576 (4)0.40202 (18)0.0188 (8)
C60.7651 (4)0.1067 (4)0.44070 (18)0.0173 (8)
C50.7471 (4)0.1733 (4)0.49676 (18)0.0192 (9)
C40.6421 (4)0.1195 (5)0.53268 (18)0.0208 (9)
H40.62980.16420.57030.025*
C30.5531 (4)0.0018 (4)0.51364 (19)0.0207 (9)
C20.5669 (4)0.0684 (4)0.45846 (19)0.0194 (9)
H20.50540.14940.44550.023*
C10.6740 (4)0.0121 (4)0.42305 (17)0.0165 (8)
C90.7902 (4)0.0340 (4)0.33065 (17)0.0179 (8)
C100.7822 (4)0.1252 (4)0.27634 (18)0.0178 (8)
C150.6794 (4)0.2409 (4)0.26898 (18)0.0183 (9)
H150.61160.25910.29870.022*
C140.6764 (4)0.3296 (4)0.21811 (18)0.0212 (9)
H140.60700.40880.21360.025*
C130.7731 (4)0.3039 (4)0.17409 (18)0.0194 (9)
C120.8752 (4)0.1868 (5)0.18089 (18)0.0197 (9)
C110.8797 (4)0.0996 (4)0.23135 (18)0.0196 (9)
H110.94970.02100.23580.024*
C170.1359 (4)0.7608 (4)0.00901 (18)0.0212 (9)
C180.0318 (4)0.6470 (4)0.00060 (18)0.0217 (9)
C190.2157 (4)0.4706 (4)0.01387 (19)0.0218 (9)
C200.3211 (4)0.5838 (4)0.02283 (19)0.0197 (9)
C210.0943 (5)0.9237 (5)0.0057 (2)0.0322 (11)
H21A0.18310.98500.01280.048*
H21B0.04830.94600.03390.048*
H21C0.02450.94600.03600.048*
C220.1297 (5)0.6791 (5)0.0131 (2)0.0336 (11)
H22A0.18410.58490.01730.050*
H22B0.16780.73760.01940.050*
H22C0.14210.73580.05030.050*
C230.2557 (5)0.3083 (5)0.0160 (2)0.0364 (12)
H23A0.16630.24800.00890.055*
H23B0.32470.28660.01460.055*
H23C0.30230.28420.05530.055*
C240.4811 (5)0.5516 (5)0.0378 (2)0.0340 (12)
H24A0.53570.64570.04190.051*
H24B0.49170.49600.07530.051*
H24C0.52050.49200.00590.051*
C250.1021 (4)0.7706 (5)0.16296 (19)0.0223 (9)
C260.1997 (5)0.6507 (5)0.17205 (19)0.0247 (10)
C270.3955 (5)0.8129 (5)0.18152 (19)0.0256 (10)
C280.2988 (4)0.9346 (5)0.17448 (19)0.0235 (9)
C290.0621 (5)0.7496 (5)0.1536 (2)0.0308 (11)
H29A0.11000.84710.14830.046*
H29B0.08390.68850.11800.046*
H29C0.09930.69940.18830.046*
C300.1467 (5)0.4917 (5)0.1725 (2)0.0334 (11)
H30A0.23140.42470.17930.050*
H30B0.07920.47860.20450.050*
H30C0.09490.46820.13420.050*
C310.5587 (5)0.8347 (6)0.1902 (2)0.0387 (12)
H31A0.60750.73730.19390.058*
H31B0.59430.88830.15590.058*
H31C0.58130.89300.22650.058*
C320.3506 (5)1.0937 (5)0.1778 (2)0.0307 (11)
H32A0.26561.16070.17200.046*
H32B0.40081.11240.21690.046*
H32C0.41931.11190.14670.046*
C330.1360 (4)0.4939 (5)0.33381 (18)0.0194 (9)
C340.2339 (5)0.3767 (4)0.34738 (19)0.0234 (9)
C350.4258 (4)0.5416 (5)0.35798 (19)0.0228 (9)
C360.3282 (4)0.6607 (5)0.34293 (18)0.0206 (9)
C370.0261 (4)0.4677 (5)0.3212 (2)0.0276 (10)
H37A0.07570.56310.31270.041*
H37B0.04130.40160.28670.041*
H37C0.06720.42120.35590.041*
C380.1830 (5)0.2162 (5)0.3490 (2)0.0351 (12)
H38A0.26770.15130.35910.053*
H38B0.11000.20520.37900.053*
H38C0.13820.18810.30980.053*
C390.5891 (5)0.5679 (6)0.3714 (2)0.0379 (12)
H39A0.63810.47250.38060.057*
H39B0.63140.61290.33660.057*
H39C0.60340.63520.40560.057*
C400.3784 (5)0.8203 (5)0.3413 (2)0.0325 (11)
H40A0.29390.88470.33020.049*
H40B0.42100.84930.38070.049*
H40C0.45310.83110.31200.049*
N10.1852 (3)0.6341 (4)0.33125 (15)0.0195 (8)
N20.3779 (4)0.4011 (4)0.35994 (16)0.0267 (9)
N30.1536 (4)0.9117 (4)0.16417 (15)0.0212 (8)
N40.3448 (4)0.6726 (4)0.18067 (17)0.0275 (9)
N50.0719 (4)0.5037 (4)0.00323 (16)0.0228 (8)
N60.2791 (4)0.7272 (4)0.02058 (16)0.0214 (8)
O10.4539 (3)0.0475 (3)0.55180 (14)0.0277 (7)
O20.8306 (3)0.2913 (3)0.51516 (13)0.0245 (7)
O30.9630 (3)0.2626 (3)0.41560 (13)0.0248 (7)
O40.9866 (3)0.1288 (3)0.30917 (13)0.0245 (7)
O50.9684 (3)0.1615 (3)0.13575 (13)0.0283 (7)
O60.7690 (3)0.3954 (3)0.12499 (13)0.0250 (7)
O70.6863 (3)0.0799 (3)0.36924 (12)0.0181 (6)
H1O0.398 (6)0.144 (7)0.538 (3)0.066 (18)*
H4O1.034 (5)0.206 (6)0.324 (2)0.036 (14)*
H6O0.808 (6)0.356 (6)0.095 (3)0.045 (16)*
H5O1.034 (6)0.060 (7)0.145 (3)0.067 (19)*
H2O0.906 (5)0.305 (5)0.489 (2)0.031 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C80.0118 (19)0.017 (2)0.025 (2)0.0017 (16)0.0042 (16)0.0009 (17)
C70.017 (2)0.015 (2)0.024 (2)0.0014 (16)0.0017 (16)0.0027 (17)
C60.0139 (19)0.0116 (19)0.026 (2)0.0012 (15)0.0001 (16)0.0013 (16)
C50.014 (2)0.017 (2)0.026 (2)0.0033 (16)0.0021 (17)0.0006 (16)
C40.018 (2)0.025 (2)0.020 (2)0.0006 (17)0.0033 (16)0.0049 (17)
C30.015 (2)0.0157 (19)0.031 (2)0.0046 (16)0.0019 (17)0.0006 (17)
C20.016 (2)0.0137 (19)0.029 (2)0.0068 (16)0.0008 (16)0.0024 (17)
C10.0131 (19)0.0141 (19)0.022 (2)0.0034 (15)0.0035 (15)0.0013 (16)
C90.016 (2)0.016 (2)0.022 (2)0.0001 (16)0.0024 (17)0.0020 (16)
C100.016 (2)0.0113 (19)0.026 (2)0.0040 (15)0.0010 (16)0.0012 (15)
C150.0128 (19)0.017 (2)0.024 (2)0.0023 (16)0.0002 (16)0.0005 (16)
C140.021 (2)0.017 (2)0.024 (2)0.0014 (17)0.0057 (17)0.0033 (17)
C130.019 (2)0.017 (2)0.021 (2)0.0057 (17)0.0040 (17)0.0010 (17)
C120.017 (2)0.021 (2)0.021 (2)0.0043 (17)0.0022 (16)0.0061 (17)
C110.014 (2)0.017 (2)0.028 (2)0.0008 (16)0.0004 (16)0.0026 (17)
C170.018 (2)0.018 (2)0.027 (2)0.0001 (17)0.0005 (17)0.0005 (18)
C180.017 (2)0.021 (2)0.026 (2)0.0027 (17)0.0015 (17)0.0023 (18)
C190.023 (2)0.017 (2)0.026 (2)0.0026 (17)0.0009 (17)0.0008 (17)
C200.016 (2)0.020 (2)0.024 (2)0.0013 (16)0.0038 (17)0.0011 (17)
C210.027 (3)0.020 (2)0.048 (3)0.0021 (19)0.004 (2)0.001 (2)
C220.020 (2)0.028 (3)0.052 (3)0.0017 (19)0.008 (2)0.002 (2)
C230.031 (3)0.020 (2)0.058 (3)0.004 (2)0.004 (2)0.001 (2)
C240.016 (2)0.033 (3)0.053 (3)0.0020 (19)0.001 (2)0.006 (2)
C250.021 (2)0.025 (2)0.022 (2)0.0019 (18)0.0060 (17)0.0059 (18)
C260.024 (2)0.024 (2)0.026 (2)0.0058 (18)0.0033 (19)0.0012 (18)
C270.018 (2)0.032 (3)0.026 (2)0.0019 (18)0.0010 (18)0.0017 (19)
C280.022 (2)0.024 (2)0.025 (2)0.0017 (18)0.0049 (18)0.0043 (19)
C290.023 (2)0.031 (3)0.038 (3)0.003 (2)0.002 (2)0.008 (2)
C300.034 (3)0.025 (2)0.041 (3)0.005 (2)0.002 (2)0.000 (2)
C310.018 (2)0.045 (3)0.052 (3)0.001 (2)0.004 (2)0.001 (2)
C320.025 (2)0.027 (3)0.040 (3)0.0074 (19)0.002 (2)0.008 (2)
C330.014 (2)0.024 (2)0.020 (2)0.0013 (17)0.0019 (16)0.0046 (17)
C340.022 (2)0.019 (2)0.029 (2)0.0016 (17)0.0032 (18)0.0045 (18)
C350.015 (2)0.027 (2)0.027 (2)0.0009 (17)0.0004 (17)0.0091 (18)
C360.018 (2)0.022 (2)0.022 (2)0.0008 (17)0.0058 (17)0.0046 (17)
C370.017 (2)0.030 (2)0.036 (3)0.0016 (18)0.0008 (19)0.004 (2)
C380.036 (3)0.020 (2)0.048 (3)0.003 (2)0.008 (2)0.006 (2)
C390.017 (2)0.037 (3)0.059 (3)0.001 (2)0.003 (2)0.014 (2)
C400.027 (2)0.026 (2)0.045 (3)0.004 (2)0.005 (2)0.007 (2)
N10.0152 (17)0.0218 (19)0.0218 (19)0.0021 (14)0.0030 (14)0.0044 (14)
N20.0197 (19)0.024 (2)0.036 (2)0.0060 (15)0.0061 (16)0.0067 (16)
N30.0185 (18)0.0226 (19)0.0226 (19)0.0023 (14)0.0023 (15)0.0044 (14)
N40.025 (2)0.025 (2)0.031 (2)0.0034 (16)0.0019 (17)0.0008 (16)
N50.0188 (19)0.0167 (18)0.032 (2)0.0012 (14)0.0032 (15)0.0017 (15)
N60.0208 (18)0.0178 (18)0.0258 (19)0.0038 (15)0.0032 (15)0.0001 (15)
O10.0255 (17)0.0279 (17)0.0306 (18)0.0144 (14)0.0108 (14)0.0072 (14)
O20.0242 (16)0.0227 (15)0.0267 (16)0.0129 (12)0.0025 (13)0.0042 (12)
O30.0231 (15)0.0219 (15)0.0294 (16)0.0118 (12)0.0016 (12)0.0023 (13)
O40.0228 (16)0.0242 (17)0.0271 (17)0.0118 (13)0.0072 (13)0.0038 (13)
O50.0291 (17)0.0273 (17)0.0290 (17)0.0028 (14)0.0057 (13)0.0006 (14)
O60.0313 (17)0.0238 (17)0.0200 (16)0.0011 (13)0.0006 (13)0.0029 (13)
O70.0164 (14)0.0160 (14)0.0221 (15)0.0030 (11)0.0016 (11)0.0014 (12)
Geometric parameters (Å, º) top
C8—O41.355 (5)C24—H24C0.9800
C8—C91.359 (5)C25—N31.347 (5)
C8—C71.449 (6)C25—C261.400 (6)
C7—O31.253 (5)C25—C291.504 (6)
C7—C61.445 (5)C26—N41.334 (5)
C6—C11.391 (5)C26—C301.504 (6)
C6—C51.414 (6)C27—N41.338 (6)
C5—O21.350 (5)C27—C281.403 (6)
C5—C41.374 (5)C27—C311.495 (6)
C4—C31.405 (6)C28—N31.340 (5)
C4—H40.9500C28—C321.502 (6)
C3—O11.346 (5)C29—H29A0.9800
C3—C21.390 (6)C29—H29B0.9800
C2—C11.389 (5)C29—H29C0.9800
C2—H20.9500C30—H30A0.9800
C1—O71.365 (5)C30—H30B0.9800
C9—O71.383 (4)C30—H30C0.9800
C9—C101.468 (5)C31—H31A0.9800
C10—C151.398 (5)C31—H31B0.9800
C10—C111.404 (6)C31—H31C0.9800
C15—C141.393 (5)C32—H32A0.9800
C15—H150.9500C32—H32B0.9800
C14—C131.383 (6)C32—H32C0.9800
C14—H140.9500C33—N11.336 (5)
C13—O61.374 (5)C33—C341.397 (6)
C13—C121.402 (5)C33—C371.500 (6)
C12—C111.377 (6)C34—N21.338 (5)
C12—O51.381 (5)C34—C381.512 (6)
C11—H110.9500C35—N21.333 (5)
C17—N61.344 (5)C35—C361.415 (6)
C17—C181.395 (6)C35—C391.512 (6)
C17—C211.509 (6)C36—N11.330 (5)
C18—N51.336 (5)C36—C401.503 (6)
C18—C221.507 (6)C37—H37A0.9800
C19—N51.345 (5)C37—H37B0.9800
C19—C201.400 (6)C37—H37C0.9800
C19—C231.499 (6)C38—H38A0.9800
C20—N61.341 (5)C38—H38B0.9800
C20—C241.498 (6)C38—H38C0.9800
C21—H21A0.9800C39—H39A0.9800
C21—H21B0.9800C39—H39B0.9800
C21—H21C0.9800C39—H39C0.9800
C22—H22A0.9800C40—H40A0.9800
C22—H22B0.9800C40—H40B0.9800
C22—H22C0.9800C40—H40C0.9800
C23—H23A0.9800O1—H1O1.03 (6)
C23—H23B0.9800O2—H2O0.94 (5)
C23—H23C0.9800O4—H4O0.87 (5)
C24—H24A0.9800O5—H5O1.10 (6)
C24—H24B0.9800O6—H6O0.86 (6)
O4—C8—C9122.2 (4)C26—C25—C29122.5 (4)
O4—C8—C7116.7 (3)N4—C26—C25121.2 (4)
C9—C8—C7121.1 (3)N4—C26—C30116.9 (4)
O3—C7—C6122.8 (4)C25—C26—C30121.9 (4)
O3—C7—C8120.6 (4)N4—C27—C28121.1 (4)
C6—C7—C8116.6 (3)N4—C27—C31117.5 (4)
C1—C6—C5118.5 (3)C28—C27—C31121.4 (4)
C1—C6—C7119.6 (3)N3—C28—C27120.1 (4)
C5—C6—C7121.8 (3)N3—C28—C32117.1 (4)
O2—C5—C4119.4 (4)C27—C28—C32122.7 (4)
O2—C5—C6120.7 (3)C25—C29—H29A109.5
C4—C5—C6119.9 (4)C25—C29—H29B109.5
C5—C4—C3119.9 (4)H29A—C29—H29B109.5
C5—C4—H4120.0C25—C29—H29C109.5
C3—C4—H4120.0H29A—C29—H29C109.5
O1—C3—C2122.7 (4)H29B—C29—H29C109.5
O1—C3—C4115.8 (4)C26—C30—H30A109.5
C2—C3—C4121.5 (4)C26—C30—H30B109.5
C1—C2—C3117.4 (4)H30A—C30—H30B109.5
C1—C2—H2121.3C26—C30—H30C109.5
C3—C2—H2121.3H30A—C30—H30C109.5
O7—C1—C2116.5 (3)H30B—C30—H30C109.5
O7—C1—C6120.9 (3)C27—C31—H31A109.5
C2—C1—C6122.6 (4)C27—C31—H31B109.5
C8—C9—O7120.4 (3)H31A—C31—H31B109.5
C8—C9—C10128.7 (3)C27—C31—H31C109.5
O7—C9—C10110.9 (3)H31A—C31—H31C109.5
C15—C10—C11118.8 (3)H31B—C31—H31C109.5
C15—C10—C9120.6 (3)C28—C32—H32A109.5
C11—C10—C9120.5 (3)C28—C32—H32B109.5
C14—C15—C10120.0 (4)H32A—C32—H32B109.5
C14—C15—H15120.0C28—C32—H32C109.5
C10—C15—H15120.0H32A—C32—H32C109.5
C13—C14—C15120.8 (4)H32B—C32—H32C109.5
C13—C14—H14119.6N1—C33—C34120.5 (4)
C15—C14—H14119.6N1—C33—C37117.7 (4)
O6—C13—C14119.3 (4)C34—C33—C37121.8 (4)
O6—C13—C12121.3 (4)N2—C34—C33121.5 (4)
C14—C13—C12119.4 (4)N2—C34—C38116.6 (4)
C11—C12—O5121.7 (4)C33—C34—C38121.9 (4)
C11—C12—C13120.0 (4)N2—C35—C36121.3 (4)
O5—C12—C13118.3 (4)N2—C35—C39117.3 (4)
C12—C11—C10120.9 (4)C36—C35—C39121.4 (4)
C12—C11—H11119.5N1—C36—C35120.1 (4)
C10—C11—H11119.5N1—C36—C40117.3 (4)
N6—C17—C18120.1 (4)C35—C36—C40122.6 (4)
N6—C17—C21117.5 (4)C33—C37—H37A109.5
C18—C17—C21122.4 (4)C33—C37—H37B109.5
N5—C18—C17121.1 (4)H37A—C37—H37B109.5
N5—C18—C22116.8 (4)C33—C37—H37C109.5
C17—C18—C22122.0 (4)H37A—C37—H37C109.5
N5—C19—C20120.8 (4)H37B—C37—H37C109.5
N5—C19—C23116.7 (4)C34—C38—H38A109.5
C20—C19—C23122.4 (4)C34—C38—H38B109.5
N6—C20—C19119.9 (4)H38A—C38—H38B109.5
N6—C20—C24117.5 (4)C34—C38—H38C109.5
C19—C20—C24122.5 (4)H38A—C38—H38C109.5
C17—C21—H21A109.5H38B—C38—H38C109.5
C17—C21—H21B109.5C35—C39—H39A109.5
H21A—C21—H21B109.5C35—C39—H39B109.5
C17—C21—H21C109.5H39A—C39—H39B109.5
H21A—C21—H21C109.5C35—C39—H39C109.5
H21B—C21—H21C109.5H39A—C39—H39C109.5
C18—C22—H22A109.5H39B—C39—H39C109.5
C18—C22—H22B109.5C36—C40—H40A109.5
H22A—C22—H22B109.5C36—C40—H40B109.5
C18—C22—H22C109.5H40A—C40—H40B109.5
H22A—C22—H22C109.5C36—C40—H40C109.5
H22B—C22—H22C109.5H40A—C40—H40C109.5
C19—C23—H23A109.5H40B—C40—H40C109.5
C19—C23—H23B109.5C36—N1—C33118.9 (3)
H23A—C23—H23B109.5C35—N2—C34117.7 (4)
C19—C23—H23C109.5C28—N3—C25118.9 (4)
H23A—C23—H23C109.5C26—N4—C27118.4 (4)
H23B—C23—H23C109.5C18—N5—C19118.6 (4)
C20—C24—H24A109.5C20—N6—C17119.4 (3)
C20—C24—H24B109.5C3—O1—H1O114 (3)
H24A—C24—H24B109.5C5—O2—H2O109 (3)
C20—C24—H24C109.5C8—O4—H4O111 (3)
H24A—C24—H24C109.5C12—O5—H5O110 (3)
H24B—C24—H24C109.5C13—O6—H6O114 (4)
N3—C25—C26120.1 (4)C1—O7—C9121.4 (3)
N3—C25—C29117.4 (4)
(QTMP_II) top
Crystal data top
C31H34N4O7Z = 4
Mr = 574.62F(000) = 1216
Monoclinic, P21/cDx = 1.323 Mg m3
a = 15.831 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3122 (13) ŵ = 0.10 mm1
c = 20.211 (3) ÅT = 150 K
β = 104.415 (7)°Plate, yellow
V = 2885.7 (7) Å30.45 × 0.40 × 0.12 mm
Data collection top
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
Rint = 0.077
Tmin = 0.821, Tmax = 1.000θmax = 27.5°, θmin = 3.0°
22578 measured reflectionsh = 2020
6558 independent reflectionsk = 1212
4018 reflections with I > 2σ(I)l = 2626
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.063H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.163 w = 1/[σ2(Fo2) + (0.0734P)2 + 1.8069P]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
6558 reflectionsΔρmax = 0.32 e Å3
399 parametersΔρmin = 0.33 e Å3
Crystal data top
C31H34N4O7V = 2885.7 (7) Å3
Mr = 574.62Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.831 (2) ŵ = 0.10 mm1
b = 9.3122 (13) ÅT = 150 K
c = 20.211 (3) Å0.45 × 0.40 × 0.12 mm
β = 104.415 (7)°
Data collection top
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
6558 independent reflections
Tmin = 0.821, Tmax = 1.0004018 reflections with I > 2σ(I)
22578 measured reflectionsRint = 0.077
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.32 e Å3
6558 reflectionsΔρmin = 0.33 e Å3
399 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O70.71359 (11)0.07040 (17)0.02995 (8)0.0167 (4)
O60.79097 (12)0.0522 (2)0.28380 (8)0.0247 (4)
O50.88726 (11)0.2441 (2)0.22957 (8)0.0210 (4)
O10.55924 (13)0.3277 (2)0.22519 (9)0.0266 (4)
O20.74181 (12)0.05103 (19)0.25448 (8)0.0218 (4)
O30.82603 (12)0.18958 (19)0.14494 (8)0.0234 (4)
O40.86091 (13)0.2338 (2)0.00775 (9)0.0271 (5)
N10.97376 (13)0.4223 (2)0.15543 (10)0.0198 (5)
N21.05110 (13)0.5943 (2)0.07598 (10)0.0190 (5)
N30.42305 (14)0.3371 (2)0.05778 (11)0.0248 (5)
N40.50090 (13)0.5199 (2)0.13237 (10)0.0205 (5)
C70.79003 (16)0.1075 (3)0.11043 (11)0.0168 (5)
C60.73144 (15)0.0043 (2)0.14023 (11)0.0154 (5)
C161.03420 (16)0.3681 (3)0.12561 (12)0.0203 (5)
C120.83520 (15)0.1481 (3)0.18636 (11)0.0161 (5)
C100.77477 (15)0.0436 (2)0.07474 (11)0.0147 (5)
C260.43499 (16)0.5672 (3)0.10743 (13)0.0212 (6)
C20.63664 (16)0.2018 (3)0.12467 (12)0.0180 (5)
H20.61270.26000.09520.022*
C130.78720 (16)0.0513 (3)0.21548 (11)0.0175 (5)
C190.95242 (16)0.5616 (3)0.14611 (12)0.0204 (5)
C40.65135 (16)0.1390 (3)0.23841 (12)0.0181 (5)
H40.63640.15650.28620.022*
C80.80664 (16)0.1258 (3)0.03700 (12)0.0169 (5)
C320.40644 (19)0.7197 (3)0.12155 (15)0.0292 (6)
H32A0.44210.76570.14880.044*
H32B0.41350.77130.07830.044*
H32C0.34500.72200.14680.044*
C50.70798 (15)0.0313 (3)0.21204 (12)0.0166 (5)
C90.76815 (15)0.0387 (2)0.00106 (11)0.0158 (5)
C150.72792 (16)0.0535 (3)0.10456 (12)0.0193 (5)
H150.69170.12350.07710.023*
C110.82822 (15)0.1449 (3)0.11705 (11)0.0153 (5)
H110.86010.21220.09750.018*
C10.69418 (15)0.0917 (3)0.09922 (11)0.0154 (5)
C140.73436 (17)0.0477 (3)0.17430 (12)0.0225 (6)
H140.70160.11330.19400.027*
C30.61492 (16)0.2245 (3)0.19535 (12)0.0179 (5)
C310.32062 (18)0.5209 (3)0.04125 (15)0.0346 (7)
H31A0.30240.44120.01640.052*
H31B0.27170.55020.07890.052*
H31C0.33880.60220.01010.052*
C180.99137 (16)0.6492 (3)0.10574 (12)0.0197 (5)
C250.39589 (16)0.4737 (3)0.06944 (13)0.0233 (6)
C240.96937 (19)0.8052 (3)0.09556 (15)0.0286 (6)
H24A1.00300.84770.06580.043*
H24B0.98380.85420.13990.043*
H24C0.90690.81580.07430.043*
C231.14606 (17)0.4027 (3)0.05620 (14)0.0269 (6)
H23A1.16470.47990.03010.040*
H23B1.12520.32110.02600.040*
H23C1.19550.37220.09320.040*
C270.52894 (16)0.3839 (3)0.12101 (13)0.0221 (6)
C171.07375 (15)0.4561 (3)0.08588 (11)0.0183 (5)
C280.48904 (17)0.2916 (3)0.08359 (13)0.0238 (6)
C290.5162 (2)0.1371 (3)0.07165 (17)0.0371 (7)
H29A0.48050.09040.04460.056*
H29B0.57780.13230.04690.056*
H29C0.50780.08790.11570.056*
C300.60303 (18)0.3368 (3)0.14988 (15)0.0302 (6)
H30A0.62160.41720.17420.045*
H30B0.58390.25700.18170.045*
H30C0.65190.30550.11270.045*
C221.05796 (19)0.2126 (3)0.13664 (15)0.0296 (6)
H22A1.02390.16910.16580.044*
H22B1.12030.20410.15880.044*
H22C1.04530.16300.09250.044*
C210.88591 (19)0.6216 (3)0.18047 (15)0.0333 (7)
H21A0.86610.54540.20650.050*
H21B0.83610.65910.14580.050*
H21C0.91230.69920.21150.050*
H5O0.914 (2)0.307 (3)0.2056 (16)0.040 (9)*
H1O0.543 (2)0.375 (4)0.1923 (18)0.057 (11)*
H4O0.882 (2)0.293 (4)0.0376 (19)0.071 (12)*
H2O0.781 (2)0.115 (4)0.2262 (19)0.066 (12)*
H6O0.817 (2)0.131 (4)0.3047 (16)0.045 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O70.0217 (9)0.0172 (9)0.0113 (8)0.0057 (7)0.0047 (7)0.0008 (6)
O60.0349 (11)0.0298 (11)0.0107 (8)0.0082 (9)0.0083 (8)0.0008 (8)
O50.0258 (10)0.0256 (10)0.0130 (8)0.0087 (8)0.0073 (7)0.0038 (7)
O10.0352 (11)0.0252 (10)0.0181 (9)0.0132 (9)0.0040 (8)0.0035 (8)
O20.0290 (10)0.0241 (10)0.0137 (8)0.0063 (8)0.0079 (8)0.0001 (7)
O30.0302 (10)0.0260 (10)0.0159 (9)0.0107 (8)0.0092 (8)0.0004 (7)
O40.0389 (11)0.0293 (10)0.0142 (9)0.0219 (9)0.0088 (8)0.0033 (8)
N10.0193 (11)0.0214 (11)0.0187 (10)0.0029 (9)0.0048 (9)0.0018 (9)
N20.0191 (11)0.0212 (11)0.0156 (10)0.0051 (9)0.0026 (8)0.0005 (8)
N30.0210 (12)0.0270 (12)0.0243 (12)0.0017 (10)0.0018 (9)0.0066 (9)
N40.0190 (11)0.0186 (11)0.0218 (11)0.0005 (9)0.0011 (9)0.0025 (9)
C70.0188 (12)0.0179 (12)0.0147 (12)0.0016 (10)0.0059 (10)0.0025 (9)
C60.0168 (12)0.0148 (12)0.0155 (12)0.0018 (10)0.0059 (9)0.0005 (9)
C160.0221 (13)0.0206 (13)0.0164 (12)0.0038 (11)0.0013 (10)0.0013 (10)
C120.0169 (12)0.0153 (12)0.0155 (12)0.0013 (10)0.0031 (10)0.0013 (9)
C100.0160 (12)0.0139 (12)0.0145 (11)0.0023 (10)0.0041 (9)0.0016 (9)
C260.0202 (13)0.0185 (13)0.0216 (13)0.0006 (11)0.0009 (10)0.0030 (10)
C20.0201 (13)0.0183 (13)0.0164 (12)0.0021 (10)0.0059 (10)0.0028 (10)
C130.0221 (13)0.0198 (13)0.0113 (11)0.0019 (11)0.0056 (10)0.0019 (9)
C190.0170 (12)0.0223 (14)0.0217 (13)0.0041 (11)0.0042 (10)0.0051 (10)
C40.0228 (13)0.0189 (13)0.0126 (11)0.0021 (11)0.0042 (10)0.0009 (9)
C80.0203 (13)0.0169 (12)0.0146 (11)0.0045 (10)0.0065 (10)0.0007 (9)
C320.0288 (15)0.0217 (14)0.0347 (16)0.0031 (12)0.0034 (12)0.0020 (12)
C50.0190 (12)0.0169 (12)0.0156 (12)0.0039 (10)0.0072 (10)0.0018 (9)
C90.0174 (12)0.0149 (12)0.0143 (11)0.0005 (10)0.0022 (9)0.0006 (9)
C150.0230 (13)0.0189 (13)0.0161 (12)0.0054 (11)0.0049 (10)0.0002 (10)
C110.0147 (12)0.0168 (12)0.0148 (11)0.0005 (10)0.0043 (9)0.0035 (9)
C10.0161 (12)0.0184 (12)0.0111 (11)0.0050 (10)0.0024 (9)0.0004 (9)
C140.0268 (14)0.0217 (13)0.0202 (13)0.0046 (11)0.0084 (11)0.0064 (10)
C30.0207 (13)0.0150 (12)0.0160 (12)0.0001 (10)0.0007 (10)0.0006 (9)
C310.0256 (15)0.0445 (18)0.0349 (16)0.0010 (14)0.0098 (13)0.0011 (14)
C180.0186 (13)0.0204 (13)0.0191 (12)0.0025 (11)0.0025 (10)0.0035 (10)
C250.0175 (13)0.0290 (15)0.0208 (13)0.0008 (11)0.0001 (10)0.0025 (11)
C240.0293 (15)0.0225 (14)0.0347 (15)0.0002 (12)0.0093 (12)0.0002 (12)
C230.0246 (14)0.0316 (16)0.0260 (14)0.0003 (12)0.0091 (11)0.0039 (12)
C270.0195 (13)0.0228 (14)0.0210 (13)0.0015 (11)0.0005 (10)0.0027 (10)
C170.0154 (12)0.0231 (14)0.0147 (12)0.0035 (10)0.0006 (9)0.0018 (10)
C280.0226 (14)0.0188 (14)0.0259 (14)0.0001 (11)0.0018 (11)0.0030 (10)
C290.0351 (17)0.0221 (15)0.0512 (19)0.0050 (13)0.0055 (15)0.0114 (13)
C300.0269 (15)0.0297 (16)0.0345 (16)0.0044 (13)0.0086 (12)0.0019 (13)
C220.0314 (15)0.0242 (15)0.0333 (16)0.0015 (12)0.0082 (12)0.0075 (12)
C210.0301 (16)0.0335 (16)0.0420 (17)0.0027 (13)0.0196 (14)0.0087 (13)
Geometric parameters (Å, º) top
O7—C11.371 (3)C19—C211.505 (4)
O7—C91.379 (3)C4—C51.363 (3)
O6—C131.367 (3)C4—C31.405 (3)
O6—H6O0.90 (3)C4—H40.9500
O5—C121.372 (3)C8—C91.362 (3)
O5—H5O0.92 (3)C32—H32A0.9800
O1—C31.342 (3)C32—H32B0.9800
O1—H1O0.89 (4)C32—H32C0.9800
O2—C51.356 (3)C15—C141.389 (3)
O2—H2O0.94 (4)C15—H150.9500
O3—C71.262 (3)C11—H110.9500
O4—C81.358 (3)C14—H140.9500
O4—H4O0.94 (4)C31—C251.509 (4)
N1—C191.342 (3)C31—H31A0.9800
N1—C161.350 (3)C31—H31B0.9800
N2—C171.337 (3)C31—H31C0.9800
N2—C181.342 (3)C18—C241.496 (4)
N3—C251.344 (3)C24—H24A0.9800
N3—C281.347 (3)C24—H24B0.9800
N4—C261.341 (3)C24—H24C0.9800
N4—C271.342 (3)C23—C171.503 (3)
C7—C61.425 (3)C23—H23A0.9800
C7—C81.451 (3)C23—H23B0.9800
C6—C11.393 (3)C23—H23C0.9800
C6—C51.428 (3)C27—C281.396 (4)
C16—C171.400 (3)C27—C301.500 (4)
C16—C221.499 (4)C28—C291.503 (4)
C12—C111.378 (3)C29—H29A0.9800
C12—C131.399 (3)C29—H29B0.9800
C10—C151.398 (3)C29—H29C0.9800
C10—C111.406 (3)C30—H30A0.9800
C10—C91.467 (3)C30—H30B0.9800
C26—C251.403 (4)C30—H30C0.9800
C26—C321.496 (4)C22—H22A0.9800
C2—C11.383 (3)C22—H22B0.9800
C2—C31.400 (3)C22—H22C0.9800
C2—H20.9500C21—H21A0.9800
C13—C141.377 (3)C21—H21B0.9800
C19—C181.401 (3)C21—H21C0.9800
C1—O7—C9121.77 (18)C13—C14—C15121.3 (2)
C13—O6—H6O112 (2)C13—C14—H14119.3
C12—O5—H5O110.9 (19)C15—C14—H14119.3
C3—O1—H1O107 (2)O1—C3—C2122.3 (2)
C5—O2—H2O106 (2)O1—C3—C4116.9 (2)
C8—O4—H4O116 (2)C2—C3—C4120.8 (2)
C19—N1—C16118.7 (2)C25—C31—H31A109.5
C17—N2—C18119.5 (2)C25—C31—H31B109.5
C25—N3—C28118.4 (2)H31A—C31—H31B109.5
C26—N4—C27120.0 (2)C25—C31—H31C109.5
O3—C7—C6123.0 (2)H31A—C31—H31C109.5
O3—C7—C8120.1 (2)H31B—C31—H31C109.5
C6—C7—C8116.8 (2)N2—C18—C19120.1 (2)
C1—C6—C7120.2 (2)N2—C18—C24118.3 (2)
C1—C6—C5117.4 (2)C19—C18—C24121.6 (2)
C7—C6—C5122.4 (2)N3—C25—C26121.2 (2)
N1—C16—C17120.3 (2)N3—C25—C31117.3 (2)
N1—C16—C22118.3 (2)C26—C25—C31121.6 (2)
C17—C16—C22121.3 (2)C18—C24—H24A109.5
O5—C12—C11123.0 (2)C18—C24—H24B109.5
O5—C12—C13117.1 (2)H24A—C24—H24B109.5
C11—C12—C13119.9 (2)C18—C24—H24C109.5
C15—C10—C11118.4 (2)H24A—C24—H24C109.5
C15—C10—C9120.4 (2)H24B—C24—H24C109.5
C11—C10—C9121.2 (2)C17—C23—H23A109.5
N4—C26—C25119.5 (2)C17—C23—H23B109.5
N4—C26—C32117.8 (2)H23A—C23—H23B109.5
C25—C26—C32122.7 (2)C17—C23—H23C109.5
C1—C2—C3117.6 (2)H23A—C23—H23C109.5
C1—C2—H2121.2H23B—C23—H23C109.5
C3—C2—H2121.2N4—C27—C28119.9 (2)
O6—C13—C14118.8 (2)N4—C27—C30117.8 (2)
O6—C13—C12121.9 (2)C28—C27—C30122.3 (2)
C14—C13—C12119.3 (2)N2—C17—C16120.5 (2)
N1—C19—C18120.8 (2)N2—C17—C23117.5 (2)
N1—C19—C21118.3 (2)C16—C17—C23121.9 (2)
C18—C19—C21120.9 (2)N3—C28—C27121.0 (2)
C5—C4—C3120.4 (2)N3—C28—C29117.2 (2)
C5—C4—H4119.8C27—C28—C29121.8 (3)
C3—C4—H4119.8C28—C29—H29A109.5
O4—C8—C9121.2 (2)C28—C29—H29B109.5
O4—C8—C7117.8 (2)H29A—C29—H29B109.5
C9—C8—C7121.0 (2)C28—C29—H29C109.5
C26—C32—H32A109.5H29A—C29—H29C109.5
C26—C32—H32B109.5H29B—C29—H29C109.5
H32A—C32—H32B109.5C27—C30—H30A109.5
C26—C32—H32C109.5C27—C30—H30B109.5
H32A—C32—H32C109.5H30A—C30—H30B109.5
H32B—C32—H32C109.5C27—C30—H30C109.5
O2—C5—C4119.6 (2)H30A—C30—H30C109.5
O2—C5—C6120.0 (2)H30B—C30—H30C109.5
C4—C5—C6120.4 (2)C16—C22—H22A109.5
C8—C9—O7120.0 (2)C16—C22—H22B109.5
C8—C9—C10128.7 (2)H22A—C22—H22B109.5
O7—C9—C10111.25 (19)C16—C22—H22C109.5
C14—C15—C10120.0 (2)H22A—C22—H22C109.5
C14—C15—H15120.0H22B—C22—H22C109.5
C10—C15—H15120.0C19—C21—H21A109.5
C12—C11—C10121.1 (2)C19—C21—H21B109.5
C12—C11—H11119.4H21A—C21—H21B109.5
C10—C11—H11119.4C19—C21—H21C109.5
O7—C1—C2116.5 (2)H21A—C21—H21C109.5
O7—C1—C6120.2 (2)H21B—C21—H21C109.5
C2—C1—C6123.3 (2)
O3—C7—C6—C1179.7 (2)C9—O7—C1—C61.6 (3)
C8—C7—C6—C11.1 (3)C3—C2—C1—O7179.2 (2)
O3—C7—C6—C50.7 (4)C3—C2—C1—C60.5 (4)
C8—C7—C6—C5178.4 (2)C7—C6—C1—O70.1 (3)
C19—N1—C16—C170.1 (3)C5—C6—C1—O7179.5 (2)
C19—N1—C16—C22179.7 (2)C7—C6—C1—C2179.8 (2)
C27—N4—C26—C250.1 (3)C5—C6—C1—C20.2 (3)
C27—N4—C26—C32179.9 (2)O6—C13—C14—C15180.0 (2)
O5—C12—C13—O60.5 (3)C12—C13—C14—C150.1 (4)
C11—C12—C13—O6178.9 (2)C10—C15—C14—C130.9 (4)
O5—C12—C13—C14179.6 (2)C1—C2—C3—O1179.5 (2)
C11—C12—C13—C141.0 (4)C1—C2—C3—C40.7 (4)
C16—N1—C19—C180.6 (3)C5—C4—C3—O1179.5 (2)
C16—N1—C19—C21179.1 (2)C5—C4—C3—C20.7 (4)
O3—C7—C8—O40.6 (4)C17—N2—C18—C190.8 (3)
C6—C7—C8—O4178.7 (2)C17—N2—C18—C24178.1 (2)
O3—C7—C8—C9179.7 (2)N1—C19—C18—N20.3 (4)
C6—C7—C8—C90.5 (3)C21—C19—C18—N2179.4 (2)
C3—C4—C5—O2179.3 (2)N1—C19—C18—C24179.1 (2)
C3—C4—C5—C60.4 (4)C21—C19—C18—C240.5 (4)
C1—C6—C5—O2179.6 (2)C28—N3—C25—C260.1 (4)
C7—C6—C5—O20.0 (3)C28—N3—C25—C31178.7 (2)
C1—C6—C5—C40.1 (3)N4—C26—C25—N30.3 (4)
C7—C6—C5—C4179.7 (2)C32—C26—C25—N3179.9 (2)
O4—C8—C9—O7179.7 (2)N4—C26—C25—C31179.0 (2)
C7—C8—C9—O71.1 (4)C32—C26—C25—C311.2 (4)
O4—C8—C9—C101.2 (4)C26—N4—C27—C280.4 (3)
C7—C8—C9—C10177.9 (2)C26—N4—C27—C30179.8 (2)
C1—O7—C9—C82.2 (3)C18—N2—C17—C161.5 (3)
C1—O7—C9—C10176.97 (19)C18—N2—C17—C23175.2 (2)
C15—C10—C9—C8178.2 (2)N1—C16—C17—N21.2 (3)
C11—C10—C9—C82.1 (4)C22—C16—C17—N2179.3 (2)
C15—C10—C9—O70.9 (3)N1—C16—C17—C23175.3 (2)
C11—C10—C9—O7178.8 (2)C22—C16—C17—C234.2 (4)
C11—C10—C15—C140.5 (4)C25—N3—C28—C270.6 (4)
C9—C10—C15—C14179.7 (2)C25—N3—C28—C29178.1 (2)
O5—C12—C11—C10179.3 (2)N4—C27—C28—N30.8 (4)
C13—C12—C11—C101.3 (4)C30—C27—C28—N3179.5 (2)
C15—C10—C11—C120.6 (3)N4—C27—C28—C29177.9 (2)
C9—C10—C11—C12179.2 (2)C30—C27—C28—C291.9 (4)
C9—O7—C1—C2178.1 (2)
(QTMP_III) top
Crystal data top
C27H30N2O9V = 1274.26 (17) Å3
Mr = 526.53Z = 2
Triclinic, P1F(000) = 556
a = 9.3506 (7) ÅDx = 1.372 Mg m3
b = 10.9120 (8) ÅMo Kα radiation, λ = 0.71073 Å
c = 13.002 (1) ŵ = 0.10 mm1
α = 76.798 (5)°T = 150 K
β = 84.048 (6)°Plate, yellow
γ = 81.580 (6)°0.40 × 0.40 × 0.15 mm
Data collection top
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
Rint = 0.034
Tmin = 0.752, Tmax = 1.000θmax = 27.5°, θmin = 3.1°
13650 measured reflectionsh = 1212
5832 independent reflectionsk = 1414
4470 reflections with I > 2σ(I)l = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.0967P)2 + 0.5735P]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max < 0.001
5832 reflectionsΔρmax = 0.29 e Å3
363 parametersΔρmin = 0.39 e Å3
Crystal data top
C27H30N2O9γ = 81.580 (6)°
Mr = 526.53V = 1274.26 (17) Å3
Triclinic, P1Z = 2
a = 9.3506 (7) ÅMo Kα radiation
b = 10.9120 (8) ŵ = 0.10 mm1
c = 13.002 (1) ÅT = 150 K
α = 76.798 (5)°0.40 × 0.40 × 0.15 mm
β = 84.048 (6)°
Data collection top
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
5832 independent reflections
Tmin = 0.752, Tmax = 1.0004470 reflections with I > 2σ(I)
13650 measured reflectionsRint = 0.034
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 0.93Δρmax = 0.29 e Å3
5832 reflectionsΔρmin = 0.39 e Å3
363 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H2O0.401 (3)0.039 (2)0.245 (2)0.049 (7)*
H4O0.393 (3)0.014 (3)0.071 (2)0.063 (8)*
H6O0.278 (3)0.361 (3)0.385 (2)0.064 (8)*
H1O0.159 (3)0.229 (3)0.404 (2)0.063 (8)*
H5O0.009 (2)0.184 (2)0.4441 (19)0.036 (6)*
O70.00089 (12)0.15555 (11)0.06354 (8)0.0189 (3)
O30.40478 (12)0.03076 (12)0.10536 (9)0.0239 (3)
O60.19940 (13)0.30927 (12)0.39807 (9)0.0263 (3)
O50.06944 (13)0.17310 (12)0.40176 (9)0.0255 (3)
O10.07879 (14)0.17774 (12)0.42433 (9)0.0269 (3)
O20.36444 (13)0.02698 (12)0.30596 (10)0.0245 (3)
C90.08455 (17)0.12474 (15)0.02195 (12)0.0171 (3)
O40.30582 (13)0.02676 (13)0.09031 (9)0.0277 (3)
C60.18581 (16)0.06154 (14)0.18050 (12)0.0170 (3)
C10.04779 (17)0.12647 (14)0.16239 (12)0.0171 (3)
C70.27708 (16)0.02602 (15)0.09456 (12)0.0179 (3)
C20.04529 (17)0.16701 (15)0.24132 (12)0.0203 (3)
H20.13870.21140.22680.024*
N10.55404 (15)0.52338 (13)0.36960 (11)0.0231 (3)
C110.07365 (17)0.14958 (15)0.21765 (12)0.0176 (3)
H110.16670.10160.22110.021*
C80.21964 (17)0.06006 (15)0.00806 (12)0.0186 (3)
C100.01099 (17)0.17223 (14)0.11973 (12)0.0171 (3)
C40.14063 (18)0.07395 (15)0.36523 (12)0.0204 (3)
H40.17110.05610.43520.025*
N20.31543 (15)0.34390 (13)0.37044 (11)0.0235 (3)
C30.00312 (18)0.14028 (15)0.34273 (12)0.0201 (3)
C50.23074 (17)0.03510 (14)0.28527 (12)0.0182 (3)
C140.19908 (18)0.28815 (16)0.20867 (13)0.0239 (4)
H140.29270.33520.20530.029*
C120.00213 (17)0.19592 (15)0.30880 (12)0.0183 (3)
C180.56997 (19)0.39977 (17)0.39218 (13)0.0253 (4)
C130.13595 (17)0.26644 (15)0.30524 (12)0.0195 (3)
C170.42143 (18)0.55876 (16)0.34363 (13)0.0229 (4)
C160.29984 (18)0.46761 (16)0.34386 (14)0.0251 (4)
C150.12719 (18)0.24204 (16)0.11715 (13)0.0215 (3)
H150.17210.25790.05170.026*
C190.44805 (19)0.30829 (16)0.39407 (13)0.0246 (4)
C230.4586 (2)0.16842 (18)0.42178 (18)0.0381 (5)
H23A0.36120.12130.41830.057*
H23B0.51710.14730.37150.057*
H23C0.50420.14530.49370.057*
C210.4110 (2)0.69836 (17)0.31353 (17)0.0348 (4)
H21A0.50810.74560.31890.052*
H21B0.36860.72030.24060.052*
H21C0.34950.72050.36140.052*
C200.1486 (2)0.5019 (2)0.3161 (2)0.0419 (5)
H20A0.07980.42430.32070.063*
H20B0.12550.55040.36570.063*
H20C0.14200.55350.24380.063*
C220.7217 (2)0.3655 (2)0.41336 (19)0.0405 (5)
H22A0.79070.44310.40830.061*
H22B0.73270.31200.48460.061*
H22C0.74080.31910.36100.061*
C250.4750 (4)0.3027 (3)0.1093 (3)0.0719 (9)
H25A0.44140.22180.14860.086*
H25B0.57610.30200.12590.086*
C260.2419 (4)0.4077 (3)0.1167 (3)0.0761 (10)
H26A0.17990.48070.13820.091*
H26B0.20360.32900.15630.091*
O90.3858 (3)0.40578 (19)0.14219 (16)0.0746 (7)
O80.3266 (3)0.3163 (2)0.03274 (17)0.0784 (7)
C240.4703 (4)0.3132 (3)0.0064 (3)0.0703 (9)
H24A0.50950.39150.04580.084*
H24B0.53180.23990.02760.084*
C270.2367 (4)0.4181 (3)0.0017 (3)0.0825 (10)
H27A0.13560.41790.01440.099*
H27B0.26890.49960.03750.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O70.0173 (5)0.0259 (6)0.0129 (5)0.0035 (4)0.0023 (4)0.0062 (4)
O30.0159 (6)0.0330 (7)0.0206 (6)0.0025 (5)0.0016 (5)0.0050 (5)
O60.0245 (6)0.0350 (7)0.0166 (6)0.0089 (5)0.0054 (5)0.0059 (5)
O50.0204 (6)0.0416 (7)0.0140 (6)0.0027 (5)0.0014 (5)0.0089 (5)
O10.0271 (7)0.0352 (7)0.0164 (6)0.0115 (5)0.0041 (5)0.0103 (5)
O20.0197 (6)0.0314 (7)0.0199 (6)0.0073 (5)0.0057 (5)0.0053 (5)
C90.0171 (7)0.0192 (7)0.0154 (7)0.0023 (6)0.0003 (6)0.0054 (6)
O40.0164 (6)0.0471 (8)0.0183 (6)0.0060 (5)0.0014 (5)0.0110 (5)
C60.0171 (7)0.0164 (7)0.0178 (7)0.0027 (6)0.0017 (6)0.0040 (6)
C10.0195 (8)0.0167 (7)0.0151 (7)0.0010 (6)0.0043 (6)0.0027 (6)
C70.0148 (7)0.0182 (7)0.0205 (8)0.0025 (6)0.0018 (6)0.0032 (6)
C20.0188 (8)0.0230 (8)0.0190 (8)0.0044 (6)0.0037 (6)0.0079 (6)
N10.0227 (7)0.0251 (7)0.0201 (7)0.0025 (6)0.0036 (6)0.0046 (5)
C110.0154 (7)0.0197 (7)0.0175 (7)0.0010 (6)0.0014 (6)0.0043 (6)
C80.0167 (7)0.0234 (8)0.0161 (7)0.0022 (6)0.0007 (6)0.0060 (6)
C100.0173 (7)0.0178 (7)0.0163 (7)0.0027 (6)0.0020 (6)0.0035 (6)
C40.0235 (8)0.0210 (8)0.0164 (7)0.0022 (6)0.0064 (6)0.0043 (6)
N20.0249 (7)0.0226 (7)0.0224 (7)0.0022 (6)0.0034 (6)0.0062 (6)
C30.0224 (8)0.0199 (8)0.0175 (7)0.0013 (6)0.0006 (6)0.0059 (6)
C50.0175 (7)0.0164 (7)0.0196 (8)0.0007 (6)0.0037 (6)0.0026 (6)
C140.0201 (8)0.0292 (9)0.0201 (8)0.0057 (7)0.0029 (6)0.0059 (7)
C120.0188 (8)0.0209 (8)0.0158 (7)0.0035 (6)0.0012 (6)0.0054 (6)
C180.0236 (8)0.0283 (9)0.0234 (8)0.0017 (7)0.0045 (7)0.0045 (7)
C130.0194 (8)0.0226 (8)0.0160 (7)0.0009 (6)0.0029 (6)0.0032 (6)
C170.0231 (8)0.0223 (8)0.0223 (8)0.0008 (6)0.0020 (7)0.0049 (6)
C160.0227 (8)0.0242 (8)0.0276 (9)0.0002 (7)0.0006 (7)0.0066 (7)
C150.0200 (8)0.0266 (8)0.0172 (7)0.0025 (6)0.0007 (6)0.0072 (6)
C190.0271 (9)0.0243 (8)0.0236 (8)0.0012 (7)0.0057 (7)0.0070 (6)
C230.0411 (11)0.0247 (10)0.0481 (12)0.0042 (8)0.0063 (10)0.0056 (8)
C210.0325 (10)0.0228 (9)0.0452 (11)0.0001 (8)0.0023 (9)0.0019 (8)
C200.0256 (10)0.0337 (11)0.0627 (14)0.0024 (8)0.0055 (10)0.0077 (10)
C220.0266 (10)0.0409 (12)0.0528 (13)0.0071 (8)0.0014 (9)0.0067 (10)
C250.081 (2)0.0552 (17)0.080 (2)0.0285 (16)0.0148 (17)0.0122 (15)
C260.085 (2)0.0514 (16)0.101 (3)0.0333 (16)0.0383 (19)0.0389 (16)
O90.1090 (17)0.0654 (13)0.0628 (12)0.0511 (12)0.0260 (12)0.0307 (10)
O80.1057 (17)0.0691 (14)0.0771 (14)0.0462 (13)0.0217 (13)0.0403 (11)
C240.083 (2)0.0509 (16)0.083 (2)0.0355 (15)0.0362 (17)0.0286 (14)
C270.088 (2)0.0623 (19)0.105 (3)0.0309 (18)0.000 (2)0.0219 (18)
Geometric parameters (Å, º) top
O7—C11.3610 (18)C14—H140.9500
O7—C91.3764 (18)C12—C131.405 (2)
O3—C71.2680 (19)C18—C191.399 (2)
O6—C131.3553 (19)C18—C221.502 (3)
O6—H6O0.88 (3)C17—C161.396 (2)
O5—C121.3612 (18)C17—C211.499 (2)
O5—H5O0.80 (2)C16—C201.502 (3)
O1—C31.3481 (19)C15—H150.9500
O1—H1O0.90 (3)C19—C231.501 (3)
O2—C51.3538 (18)C23—H23A0.9800
O2—H2O0.87 (3)C23—H23B0.9800
C9—C81.362 (2)C23—H23C0.9800
C9—C101.461 (2)C21—H21A0.9800
O4—C81.3557 (18)C21—H21B0.9800
O4—H4O0.86 (3)C21—H21C0.9800
C6—C11.394 (2)C20—H20A0.9800
C6—C51.421 (2)C20—H20B0.9800
C6—C71.425 (2)C20—H20C0.9800
C1—C21.384 (2)C22—H22A0.9800
C7—C81.439 (2)C22—H22B0.9800
C2—C31.392 (2)C22—H22C0.9800
C2—H20.9500C25—O91.420 (4)
N1—C171.340 (2)C25—C241.487 (5)
N1—C181.340 (2)C25—H25A0.9900
C11—C121.378 (2)C25—H25B0.9900
C11—C101.404 (2)C26—O91.415 (4)
C11—H110.9500C26—C271.480 (5)
C10—C151.402 (2)C26—H26A0.9900
C4—C51.373 (2)C26—H26B0.9900
C4—C31.404 (2)O8—C241.414 (4)
C4—H40.9500O8—C271.420 (4)
N2—C191.338 (2)C24—H24A0.9900
N2—C161.341 (2)C24—H24B0.9900
C14—C151.384 (2)C27—H27A0.9900
C14—C131.386 (2)C27—H27B0.9900
C1—O7—C9121.61 (12)C17—C16—C20122.60 (16)
C13—O6—H6O106.6 (18)C14—C15—C10120.89 (15)
C12—O5—H5O108.4 (16)C14—C15—H15119.6
C3—O1—H1O112.4 (18)C10—C15—H15119.6
C5—O2—H2O103.4 (17)N2—C19—C18120.17 (16)
C8—C9—O7119.95 (13)N2—C19—C23117.24 (16)
C8—C9—C10128.94 (14)C18—C19—C23122.59 (17)
O7—C9—C10111.10 (12)C19—C23—H23A109.5
C8—O4—H4O106.3 (19)C19—C23—H23B109.5
C1—C6—C5117.88 (14)H23A—C23—H23B109.5
C1—C6—C7119.64 (14)C19—C23—H23C109.5
C5—C6—C7122.47 (14)H23A—C23—H23C109.5
O7—C1—C2116.49 (13)H23B—C23—H23C109.5
O7—C1—C6120.62 (14)C17—C21—H21A109.5
C2—C1—C6122.88 (14)C17—C21—H21B109.5
O3—C7—C6122.72 (14)H21A—C21—H21B109.5
O3—C7—C8120.19 (14)C17—C21—H21C109.5
C6—C7—C8117.07 (13)H21A—C21—H21C109.5
C1—C2—C3117.53 (14)H21B—C21—H21C109.5
C1—C2—H2121.2C16—C20—H20A109.5
C3—C2—H2121.2C16—C20—H20B109.5
C17—N1—C18119.53 (14)H20A—C20—H20B109.5
C12—C11—C10120.97 (14)C16—C20—H20C109.5
C12—C11—H11119.5H20A—C20—H20C109.5
C10—C11—H11119.5H20B—C20—H20C109.5
O4—C8—C9121.45 (14)C18—C22—H22A109.5
O4—C8—C7117.46 (13)C18—C22—H22B109.5
C9—C8—C7121.09 (14)H22A—C22—H22B109.5
C15—C10—C11118.08 (14)C18—C22—H22C109.5
C15—C10—C9119.77 (14)H22A—C22—H22C109.5
C11—C10—C9122.15 (14)H22B—C22—H22C109.5
C5—C4—C3119.43 (14)O9—C25—C24110.7 (3)
C5—C4—H4120.3O9—C25—H25A109.5
C3—C4—H4120.3C24—C25—H25A109.5
C19—N2—C16119.76 (14)O9—C25—H25B109.5
O1—C3—C2121.85 (14)C24—C25—H25B109.5
O1—C3—C4116.41 (14)H25A—C25—H25B108.1
C2—C3—C4121.73 (14)O9—C26—C27110.5 (3)
O2—C5—C4119.78 (14)O9—C26—H26A109.5
O2—C5—C6119.68 (14)C27—C26—H26A109.5
C4—C5—C6120.53 (14)O9—C26—H26B109.5
C15—C14—C13120.71 (15)C27—C26—H26B109.5
C15—C14—H14119.6H26A—C26—H26B108.1
C13—C14—H14119.6C26—O9—C25109.4 (2)
O5—C12—C11118.35 (14)C24—O8—C27109.7 (2)
O5—C12—C13121.26 (14)O8—C24—C25110.8 (2)
C11—C12—C13120.38 (14)O8—C24—H24A109.5
N1—C18—C19120.09 (16)C25—C24—H24A109.5
N1—C18—C22117.43 (16)O8—C24—H24B109.5
C19—C18—C22122.48 (17)C25—C24—H24B109.5
O6—C13—C14123.98 (14)H24A—C24—H24B108.1
O6—C13—C12117.05 (14)O8—C27—C26111.4 (3)
C14—C13—C12118.97 (14)O8—C27—H27A109.4
N1—C17—C16120.38 (15)C26—C27—H27A109.4
N1—C17—C21117.19 (15)O8—C27—H27B109.4
C16—C17—C21122.43 (16)C26—C27—H27B109.4
N2—C16—C17119.99 (16)H27A—C27—H27B108.0
N2—C16—C20117.41 (15)
(QTMP_IV) top
Crystal data top
C27H30N2O8V = 1266.0 (2) Å3
Mr = 510.53Z = 2
Triclinic, P1F(000) = 540
a = 9.3202 (10) ÅDx = 1.339 Mg m3
b = 10.7538 (12) ÅMo Kα radiation, λ = 0.71073 Å
c = 12.9869 (14) ŵ = 0.10 mm1
α = 79.471 (6)°T = 150 K
β = 85.133 (6)°Plate, yellow
γ = 82.377 (6)°0.60 × 0.40 × 0.15 mm
Data collection top
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
Rint = 0.030
Tmin = 0.844, Tmax = 1.000θmax = 27.5°, θmin = 3.1°
13412 measured reflectionsh = 1211
5779 independent reflectionsk = 1313
4277 reflections with I > 2σ(I)l = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.070H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.202 w = 1/[σ2(Fo2) + (0.102P)2 + 1.1876P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.020
5779 reflectionsΔρmax = 0.80 e Å3
354 parametersΔρmin = 0.62 e Å3
Crystal data top
C27H30N2O8γ = 82.377 (6)°
Mr = 510.53V = 1266.0 (2) Å3
Triclinic, P1Z = 2
a = 9.3202 (10) ÅMo Kα radiation
b = 10.7538 (12) ŵ = 0.10 mm1
c = 12.9869 (14) ÅT = 150 K
α = 79.471 (6)°0.60 × 0.40 × 0.15 mm
β = 85.133 (6)°
Data collection top
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
5779 independent reflections
Tmin = 0.844, Tmax = 1.0004277 reflections with I > 2σ(I)
13412 measured reflectionsRint = 0.030
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.202H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.80 e Å3
5779 reflectionsΔρmin = 0.62 e Å3
354 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C261.1488 (15)0.0610 (10)0.5799 (5)0.167 (5)
H26A1.16270.08520.64800.200*
H26B1.10890.02170.59190.200*
C271.2612 (19)0.0600 (15)0.5222 (13)0.280 (11)
H27A1.31430.02650.53990.336*
H27B1.32030.11900.54470.336*
C280.7352 (10)0.0876 (5)0.5820 (6)0.131 (3)
H28A0.66860.15220.60900.158*
H28B0.70240.01030.61300.158*
C290.8915 (12)0.1398 (10)0.6089 (6)0.187 (5)
H29A0.89720.21900.66170.224*
H29B0.94390.07600.63130.224*
O81.0552 (10)0.1655 (6)0.5099 (6)0.197 (3)
H4O0.102 (4)0.477 (3)0.575 (3)0.044 (9)*
H2O0.099 (4)0.539 (3)0.252 (3)0.051 (10)*
H6O0.781 (4)0.146 (3)0.874 (3)0.044 (9)*
H1O0.664 (4)0.275 (3)0.091 (3)0.048 (10)*
H5O0.493 (4)0.298 (3)0.945 (3)0.045 (9)*
C10.4548 (2)0.3729 (2)0.33454 (16)0.0150 (4)
C20.5478 (2)0.3347 (2)0.25425 (17)0.0184 (5)
H20.64140.29050.26770.022*
C30.4996 (2)0.3634 (2)0.15333 (17)0.0173 (4)
C40.3623 (2)0.4298 (2)0.13218 (17)0.0178 (4)
H40.33250.44970.06230.021*
C50.2716 (2)0.4659 (2)0.21306 (17)0.0163 (4)
C60.3159 (2)0.4365 (2)0.31765 (16)0.0154 (4)
C70.2236 (2)0.4682 (2)0.40435 (17)0.0173 (4)
C80.2809 (2)0.4320 (2)0.50682 (17)0.0187 (5)
C90.4180 (2)0.3708 (2)0.51889 (16)0.0160 (4)
C100.4927 (2)0.3254 (2)0.61601 (17)0.0159 (4)
C110.4273 (2)0.3451 (2)0.71410 (17)0.0160 (4)
H110.33250.38960.71830.019*
C120.4996 (2)0.3005 (2)0.80463 (17)0.0165 (4)
C130.6401 (2)0.2345 (2)0.79958 (17)0.0173 (4)
C140.7055 (2)0.2169 (2)0.70281 (18)0.0213 (5)
H140.80110.17380.69860.026*
C150.6331 (2)0.2613 (2)0.61195 (17)0.0197 (5)
H150.67940.24810.54610.024*
C160.9308 (3)0.1003 (2)0.88717 (19)0.0231 (5)
C171.0513 (3)0.1935 (2)0.89471 (18)0.0223 (5)
C181.2037 (2)0.0349 (2)0.85578 (19)0.0222 (5)
C191.0832 (2)0.0582 (2)0.85053 (18)0.0209 (5)
C201.3561 (3)0.0024 (3)0.8373 (3)0.0379 (7)
H20A1.42380.08090.84480.057*
H20B1.37490.04900.88870.057*
H20C1.36940.04620.76630.057*
C221.0954 (3)0.1977 (2)0.8230 (2)0.0323 (6)
H22A0.99820.24540.82360.048*
H22B1.14380.21650.75290.048*
H22C1.15210.22260.87440.048*
C230.7780 (3)0.1338 (3)0.8993 (3)0.0377 (7)
H23A0.70990.05550.89150.057*
H23B0.76080.18460.96900.057*
H23C0.76360.18320.84540.057*
C241.0390 (3)0.3334 (3)0.9196 (3)0.0375 (7)
H24A1.13630.38110.92090.056*
H24B0.98550.35720.86580.056*
H24C0.98730.35360.98830.056*
N10.9486 (2)0.02339 (19)0.86718 (15)0.0214 (4)
N21.1856 (2)0.15823 (18)0.87904 (15)0.0208 (4)
O10.58152 (18)0.32790 (17)0.07046 (12)0.0230 (4)
O20.13815 (18)0.52870 (16)0.19359 (14)0.0227 (4)
O30.09570 (17)0.52380 (17)0.39523 (13)0.0243 (4)
O40.19412 (19)0.46146 (19)0.58985 (13)0.0296 (4)
O50.43028 (18)0.31907 (17)0.89816 (13)0.0237 (4)
O60.70256 (19)0.19225 (17)0.89220 (12)0.0235 (4)
O70.50375 (16)0.34319 (15)0.43279 (11)0.0174 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C260.316 (15)0.141 (7)0.066 (4)0.122 (9)0.022 (6)0.003 (4)
C270.36 (2)0.286 (18)0.258 (17)0.255 (19)0.132 (17)0.135 (14)
C280.209 (9)0.060 (3)0.135 (6)0.076 (4)0.087 (6)0.047 (4)
C290.211 (10)0.227 (10)0.114 (6)0.147 (9)0.015 (6)0.066 (6)
O80.282 (9)0.145 (5)0.181 (7)0.109 (6)0.103 (7)0.063 (5)
C10.0160 (10)0.0163 (10)0.0126 (10)0.0010 (8)0.0043 (8)0.0014 (8)
C20.0163 (10)0.0206 (11)0.0167 (11)0.0035 (8)0.0029 (8)0.0024 (8)
C30.0205 (11)0.0168 (10)0.0144 (10)0.0015 (8)0.0003 (8)0.0048 (8)
C40.0214 (11)0.0177 (11)0.0141 (10)0.0009 (8)0.0061 (8)0.0024 (8)
C50.0157 (10)0.0160 (10)0.0168 (10)0.0007 (8)0.0048 (8)0.0009 (8)
C60.0147 (10)0.0176 (10)0.0144 (10)0.0017 (8)0.0019 (8)0.0036 (8)
C70.0134 (10)0.0200 (11)0.0174 (11)0.0004 (8)0.0014 (8)0.0015 (8)
C80.0130 (10)0.0270 (12)0.0150 (10)0.0003 (8)0.0006 (8)0.0030 (8)
C90.0141 (10)0.0209 (11)0.0130 (10)0.0017 (8)0.0001 (8)0.0038 (8)
C100.0157 (10)0.0169 (10)0.0146 (10)0.0013 (8)0.0026 (8)0.0013 (8)
C110.0132 (10)0.0188 (10)0.0159 (10)0.0011 (8)0.0016 (8)0.0032 (8)
C120.0161 (10)0.0201 (11)0.0137 (10)0.0026 (8)0.0003 (8)0.0037 (8)
C130.0188 (11)0.0176 (11)0.0149 (10)0.0002 (8)0.0046 (8)0.0009 (8)
C140.0164 (11)0.0279 (12)0.0179 (11)0.0060 (9)0.0036 (9)0.0046 (9)
C150.0184 (11)0.0265 (12)0.0132 (10)0.0017 (9)0.0011 (8)0.0055 (8)
C160.0195 (11)0.0284 (13)0.0216 (11)0.0024 (9)0.0047 (9)0.0034 (9)
C170.0243 (12)0.0223 (12)0.0213 (11)0.0019 (9)0.0040 (9)0.0058 (9)
C180.0189 (11)0.0229 (12)0.0238 (12)0.0014 (9)0.0014 (9)0.0042 (9)
C190.0194 (11)0.0218 (11)0.0199 (11)0.0006 (9)0.0015 (9)0.0015 (9)
C200.0207 (13)0.0309 (15)0.061 (2)0.0012 (10)0.0031 (13)0.0076 (13)
C220.0274 (13)0.0209 (13)0.0461 (16)0.0008 (10)0.0030 (12)0.0006 (11)
C230.0231 (13)0.0376 (16)0.0520 (18)0.0057 (11)0.0040 (12)0.0043 (13)
C240.0372 (15)0.0228 (13)0.0529 (18)0.0044 (11)0.0066 (13)0.0055 (12)
N10.0185 (9)0.0250 (10)0.0193 (10)0.0018 (8)0.0048 (8)0.0018 (8)
N20.0200 (10)0.0216 (10)0.0205 (10)0.0024 (7)0.0030 (8)0.0053 (7)
O10.0227 (8)0.0309 (9)0.0130 (8)0.0106 (7)0.0029 (6)0.0071 (6)
O20.0161 (8)0.0315 (9)0.0184 (8)0.0064 (7)0.0048 (7)0.0043 (7)
O30.0121 (8)0.0392 (10)0.0189 (8)0.0044 (7)0.0014 (6)0.0027 (7)
O40.0141 (8)0.0568 (12)0.0153 (8)0.0084 (8)0.0015 (6)0.0080 (8)
O50.0189 (8)0.0393 (10)0.0123 (8)0.0020 (7)0.0010 (6)0.0067 (7)
O60.0215 (9)0.0328 (10)0.0139 (8)0.0090 (7)0.0058 (7)0.0045 (7)
O70.0145 (7)0.0257 (8)0.0109 (7)0.0027 (6)0.0020 (6)0.0036 (6)
Geometric parameters (Å, º) top
C26—C271.235 (16)C11—H110.9500
C26—O81.533 (12)C12—O51.362 (3)
C26—H26A0.9900C12—C131.406 (3)
C26—H26B0.9900C13—O61.357 (3)
C27—C28i1.331 (17)C13—C141.384 (3)
C27—H27A0.9900C14—C151.386 (3)
C27—H27B0.9900C14—H140.9500
C28—C27i1.331 (17)C15—H150.9500
C28—C291.535 (12)C16—N11.338 (3)
C28—H28A0.9900C16—C171.400 (3)
C28—H28B0.9900C16—C231.504 (3)
C29—O8i1.641 (12)C17—N21.344 (3)
C29—H29A0.9900C17—C241.498 (3)
C29—H29B0.9900C18—N21.336 (3)
O8—C29i1.641 (12)C18—C191.399 (3)
C1—O71.360 (2)C18—C201.497 (3)
C1—C21.384 (3)C19—N11.345 (3)
C1—C61.396 (3)C19—C221.494 (3)
C2—C31.389 (3)C20—H20A0.9800
C2—H20.9500C20—H20B0.9800
C3—O11.349 (3)C20—H20C0.9800
C3—C41.403 (3)C22—H22A0.9800
C4—C51.371 (3)C22—H22B0.9800
C4—H40.9500C22—H22C0.9800
C5—O21.354 (3)C23—H23A0.9800
C5—C61.421 (3)C23—H23B0.9800
C6—C71.422 (3)C23—H23C0.9800
C7—O31.265 (3)C24—H24A0.9800
C7—C81.444 (3)C24—H24B0.9800
C8—O41.351 (3)C24—H24C0.9800
C8—C91.364 (3)O1—H1O0.93 (4)
C9—O71.373 (2)O2—H2O0.83 (4)
C9—C101.465 (3)O4—H4O0.88 (4)
C10—C151.397 (3)O5—H5O0.86 (4)
C10—C111.404 (3)O6—H6O0.87 (4)
C11—C121.381 (3)
C27—C26—O898.1 (11)C10—C11—H11119.7
C27—C26—H26A112.2O5—C12—C11118.50 (19)
O8—C26—H26A112.1O5—C12—C13121.24 (19)
C27—C26—H26B112.2C11—C12—C13120.2 (2)
O8—C26—H26B112.2O6—C13—C14124.3 (2)
H26A—C26—H26B109.8O6—C13—C12116.52 (19)
C26—C27—C28i124.3 (18)C14—C13—C12119.16 (19)
C26—C27—H27A106.2C13—C14—C15120.7 (2)
C28i—C27—H27A106.2C13—C14—H14119.7
C26—C27—H27B106.2C15—C14—H14119.7
C28i—C27—H27B106.2C14—C15—C10120.8 (2)
H27A—C27—H27B106.4C14—C15—H15119.6
C27i—C28—C29105.4 (9)C10—C15—H15119.6
C27i—C28—H28A110.7N1—C16—C17120.4 (2)
C29—C28—H28A110.7N1—C16—C23117.4 (2)
C27i—C28—H28B110.7C17—C16—C23122.2 (2)
C29—C28—H28B110.7N2—C17—C16119.7 (2)
H28A—C28—H28B108.8N2—C17—C24117.2 (2)
C28—C29—O8i94.9 (7)C16—C17—C24123.1 (2)
C28—C29—H29A112.8N2—C18—C19120.2 (2)
O8i—C29—H29A112.8N2—C18—C20117.3 (2)
C28—C29—H29B112.8C19—C18—C20122.5 (2)
O8i—C29—H29B112.8N1—C19—C18119.9 (2)
H29A—C29—H29B110.2N1—C19—C22117.0 (2)
C26—O8—C29i103.1 (7)C18—C19—C22123.0 (2)
O7—C1—C2116.73 (18)C18—C20—H20A109.5
O7—C1—C6120.69 (19)C18—C20—H20B109.5
C2—C1—C6122.57 (19)H20A—C20—H20B109.5
C1—C2—C3117.67 (19)C18—C20—H20C109.5
C1—C2—H2121.2H20A—C20—H20C109.5
C3—C2—H2121.2H20B—C20—H20C109.5
O1—C3—C2121.87 (19)C19—C22—H22A109.5
O1—C3—C4116.33 (19)C19—C22—H22B109.5
C2—C3—C4121.8 (2)H22A—C22—H22B109.5
C5—C4—C3119.53 (19)C19—C22—H22C109.5
C5—C4—H4120.2H22A—C22—H22C109.5
C3—C4—H4120.2H22B—C22—H22C109.5
O2—C5—C4119.96 (19)C16—C23—H23A109.5
O2—C5—C6119.65 (19)C16—C23—H23B109.5
C4—C5—C6120.38 (19)H23A—C23—H23B109.5
C1—C6—C5118.02 (19)C16—C23—H23C109.5
C1—C6—C7119.68 (19)H23A—C23—H23C109.5
C5—C6—C7122.29 (19)H23B—C23—H23C109.5
O3—C7—C6123.2 (2)C17—C24—H24A109.5
O3—C7—C8119.9 (2)C17—C24—H24B109.5
C6—C7—C8116.94 (19)H24A—C24—H24B109.5
O4—C8—C9121.5 (2)C17—C24—H24C109.5
O4—C8—C7117.49 (19)H24A—C24—H24C109.5
C9—C8—C7121.0 (2)H24B—C24—H24C109.5
C8—C9—O7120.00 (19)C16—N1—C19119.7 (2)
C8—C9—C10128.5 (2)C18—N2—C17120.1 (2)
O7—C9—C10111.49 (17)C3—O1—H1O112 (2)
C15—C10—C11118.48 (19)C5—O2—H2O106 (3)
C15—C10—C9119.73 (19)C8—O4—H4O112 (2)
C11—C10—C9121.78 (19)C12—O5—H5O107 (2)
C12—C11—C10120.68 (19)C13—O6—H6O103 (2)
C12—C11—H11119.7C1—O7—C9121.65 (16)
Symmetry code: (i) x+2, y, z+1.
(QBP_I) top
Crystal data top
C29H26N2O9V = 1268.29 (17) Å3
Mr = 546.52Z = 2
Triclinic, P1F(000) = 572
a = 9.8334 (7) ÅDx = 1.431 Mg m3
b = 10.7098 (8) ÅMo Kα radiation, λ = 0.71073 Å
c = 13.0790 (9) ŵ = 0.11 mm1
α = 102.815 (7)°T = 150 K
β = 95.031 (7)°Prism, yellow
γ = 106.846 (7)°1.00 × 0.50 × 0.20 mm
Data collection top
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
Rint = 0.016
Tmin = 0.898, Tmax = 1.000θmax = 27.5°, θmin = 3.1°
13454 measured reflectionsh = 1212
5791 independent reflectionsk = 1313
5160 reflections with I > 2σ(I)l = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0579P)2 + 0.5172P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
5791 reflectionsΔρmax = 0.34 e Å3
381 parametersΔρmin = 0.23 e Å3
Crystal data top
C29H26N2O9γ = 106.846 (7)°
Mr = 546.52V = 1268.29 (17) Å3
Triclinic, P1Z = 2
a = 9.8334 (7) ÅMo Kα radiation
b = 10.7098 (8) ŵ = 0.11 mm1
c = 13.0790 (9) ÅT = 150 K
α = 102.815 (7)°1.00 × 0.50 × 0.20 mm
β = 95.031 (7)°
Data collection top
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
5791 independent reflections
Tmin = 0.898, Tmax = 1.0005160 reflections with I > 2σ(I)
13454 measured reflectionsRint = 0.016
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.34 e Å3
5791 reflectionsΔρmin = 0.23 e Å3
381 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H6O0.145 (2)0.808 (2)0.3830 (17)0.050 (6)*
H1O0.059 (2)0.706 (2)0.4034 (16)0.046 (5)*
H2O0.417 (2)0.502 (2)0.2448 (18)0.048 (6)*
H5O0.076 (2)0.6585 (18)0.4404 (15)0.037 (5)*
H4O0.418 (2)0.536 (2)0.0677 (16)0.049 (6)*
O40.34381 (10)0.56223 (10)0.08956 (7)0.0196 (2)
O50.09286 (9)0.66914 (8)0.06248 (6)0.01333 (17)
O70.07250 (9)0.77159 (9)0.39368 (7)0.01733 (19)
O30.41733 (9)0.50858 (9)0.10629 (7)0.01772 (19)
O10.01337 (9)0.66939 (9)0.42443 (6)0.01673 (19)
O20.38140 (10)0.51086 (9)0.30610 (7)0.0192 (2)
O60.13133 (9)0.64637 (9)0.39238 (7)0.01538 (18)
C70.31720 (12)0.55992 (11)0.09447 (9)0.0132 (2)
C90.16145 (12)0.64101 (11)0.02148 (9)0.0120 (2)
C20.05183 (12)0.67459 (11)0.23981 (9)0.0133 (2)
H20.02180.71370.22480.016*
C100.09942 (12)0.67357 (11)0.11798 (9)0.0122 (2)
C140.06751 (12)0.76883 (12)0.20777 (9)0.0147 (2)
H140.14000.81100.20590.018*
C60.24165 (12)0.58954 (11)0.17970 (9)0.0126 (2)
C10.13030 (12)0.64403 (11)0.16097 (9)0.0121 (2)
C110.14277 (12)0.64187 (11)0.21200 (9)0.0122 (2)
H110.21310.59710.21350.015*
C40.19565 (13)0.59002 (12)0.36474 (9)0.0149 (2)
H40.21600.57090.43510.018*
C80.27235 (12)0.58924 (12)0.00789 (9)0.0136 (2)
C120.08344 (12)0.67561 (11)0.30213 (9)0.0123 (2)
C30.08526 (12)0.64575 (11)0.34182 (9)0.0132 (2)
C50.27391 (12)0.56343 (11)0.28457 (9)0.0136 (2)
C150.00755 (12)0.73640 (12)0.11731 (9)0.0143 (2)
H150.03930.75700.05420.017*
C130.02239 (12)0.74008 (11)0.30118 (9)0.0132 (2)
N10.19762 (12)0.22733 (11)0.38214 (8)0.0197 (2)
N20.72501 (12)0.10917 (11)0.37290 (9)0.0211 (2)
C210.51872 (13)0.02605 (12)0.37025 (10)0.0162 (2)
C180.40857 (13)0.09659 (12)0.37189 (9)0.0158 (2)
C220.65845 (13)0.09109 (12)0.42469 (10)0.0182 (2)
H220.68640.18360.46250.022*
C230.75710 (13)0.02094 (13)0.42389 (10)0.0188 (2)
H230.85200.06780.46140.023*
C200.16759 (14)0.09933 (14)0.32669 (11)0.0237 (3)
H200.07220.05240.29020.028*
C190.26792 (14)0.03112 (13)0.31947 (11)0.0218 (3)
H190.24070.06010.27880.026*
C250.48646 (15)0.10901 (14)0.31565 (13)0.0297 (3)
H250.39310.15800.27610.036*
C170.43971 (15)0.23047 (15)0.42872 (14)0.0330 (4)
H170.53450.28060.46520.040*
C160.33234 (16)0.29065 (15)0.43203 (13)0.0325 (3)
H160.35620.38190.47200.039*
C240.59124 (16)0.17161 (15)0.31927 (13)0.0318 (3)
H240.56680.26390.28160.038*
O90.82828 (11)0.97350 (11)0.06621 (9)0.0312 (2)
O80.54964 (11)0.84048 (11)0.05471 (9)0.0337 (3)
C260.70432 (16)1.00025 (15)0.10238 (13)0.0314 (3)
H26A0.69061.07830.07920.038*
H26B0.71901.02370.18100.038*
C280.67319 (17)0.81241 (15)0.09036 (13)0.0329 (3)
H28A0.65870.78780.16900.039*
H28B0.68680.73500.06610.039*
C270.57145 (16)0.87812 (16)0.05860 (13)0.0338 (3)
H27A0.58260.80170.08560.041*
H27B0.48630.89910.08320.041*
C290.80567 (17)0.93506 (16)0.04703 (13)0.0332 (3)
H29A0.89090.91440.07180.040*
H29B0.79381.01110.07430.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0194 (4)0.0352 (5)0.0138 (4)0.0195 (4)0.0044 (3)0.0105 (4)
O50.0149 (4)0.0184 (4)0.0102 (4)0.0102 (3)0.0023 (3)0.0042 (3)
O70.0186 (4)0.0258 (5)0.0134 (4)0.0143 (4)0.0059 (3)0.0057 (3)
O30.0173 (4)0.0263 (5)0.0158 (4)0.0149 (4)0.0038 (3)0.0069 (3)
O10.0190 (4)0.0257 (5)0.0122 (4)0.0149 (4)0.0037 (3)0.0076 (3)
O20.0207 (4)0.0302 (5)0.0146 (4)0.0185 (4)0.0052 (3)0.0065 (4)
O60.0173 (4)0.0218 (4)0.0108 (4)0.0101 (3)0.0033 (3)0.0061 (3)
C70.0120 (5)0.0144 (5)0.0143 (5)0.0054 (4)0.0018 (4)0.0041 (4)
C90.0120 (5)0.0141 (5)0.0104 (5)0.0047 (4)0.0001 (4)0.0039 (4)
C20.0130 (5)0.0152 (5)0.0138 (5)0.0080 (4)0.0029 (4)0.0035 (4)
C100.0114 (5)0.0129 (5)0.0125 (5)0.0047 (4)0.0017 (4)0.0028 (4)
C140.0136 (5)0.0174 (5)0.0154 (5)0.0085 (4)0.0019 (4)0.0041 (4)
C60.0124 (5)0.0133 (5)0.0127 (5)0.0052 (4)0.0015 (4)0.0034 (4)
C10.0134 (5)0.0118 (5)0.0110 (5)0.0045 (4)0.0025 (4)0.0023 (4)
C110.0111 (5)0.0124 (5)0.0134 (5)0.0046 (4)0.0013 (4)0.0031 (4)
C40.0162 (6)0.0185 (6)0.0122 (5)0.0080 (5)0.0045 (4)0.0041 (4)
C80.0131 (5)0.0170 (5)0.0121 (5)0.0065 (4)0.0005 (4)0.0048 (4)
C120.0119 (5)0.0129 (5)0.0119 (5)0.0036 (4)0.0006 (4)0.0038 (4)
C30.0144 (5)0.0141 (5)0.0121 (5)0.0056 (4)0.0007 (4)0.0049 (4)
C50.0136 (5)0.0141 (5)0.0148 (5)0.0071 (4)0.0035 (4)0.0032 (4)
C150.0144 (5)0.0171 (5)0.0131 (5)0.0069 (4)0.0012 (4)0.0052 (4)
C130.0122 (5)0.0143 (5)0.0127 (5)0.0043 (4)0.0029 (4)0.0023 (4)
N10.0202 (5)0.0244 (5)0.0198 (5)0.0131 (4)0.0054 (4)0.0075 (4)
N20.0184 (5)0.0247 (6)0.0238 (5)0.0126 (4)0.0059 (4)0.0051 (4)
C210.0144 (5)0.0178 (6)0.0185 (6)0.0071 (4)0.0053 (4)0.0054 (5)
C180.0151 (5)0.0173 (6)0.0177 (6)0.0073 (4)0.0057 (4)0.0064 (4)
C220.0181 (6)0.0173 (6)0.0193 (6)0.0066 (5)0.0011 (5)0.0041 (5)
C230.0157 (6)0.0235 (6)0.0185 (6)0.0075 (5)0.0020 (5)0.0066 (5)
C200.0176 (6)0.0229 (6)0.0305 (7)0.0091 (5)0.0023 (5)0.0055 (5)
C190.0195 (6)0.0169 (6)0.0280 (7)0.0082 (5)0.0013 (5)0.0030 (5)
C250.0156 (6)0.0206 (7)0.0453 (9)0.0072 (5)0.0029 (6)0.0058 (6)
C170.0161 (6)0.0235 (7)0.0509 (9)0.0086 (5)0.0019 (6)0.0075 (6)
C160.0237 (7)0.0226 (7)0.0462 (9)0.0129 (6)0.0009 (6)0.0066 (6)
C240.0221 (7)0.0211 (7)0.0476 (9)0.0118 (5)0.0004 (6)0.0047 (6)
O90.0219 (5)0.0345 (6)0.0339 (6)0.0060 (4)0.0031 (4)0.0091 (4)
O80.0232 (5)0.0297 (5)0.0406 (6)0.0044 (4)0.0057 (4)0.0034 (5)
C260.0250 (7)0.0268 (7)0.0372 (8)0.0046 (6)0.0014 (6)0.0050 (6)
C280.0301 (8)0.0281 (7)0.0367 (8)0.0064 (6)0.0013 (6)0.0063 (6)
C270.0248 (7)0.0299 (8)0.0399 (9)0.0022 (6)0.0024 (6)0.0050 (6)
C290.0267 (7)0.0347 (8)0.0349 (8)0.0043 (6)0.0014 (6)0.0114 (6)
Geometric parameters (Å, º) top
O4—C81.3571 (14)N1—C201.3339 (17)
O4—H4O0.90 (2)N2—C231.3349 (17)
O5—C11.3617 (13)N2—C241.3378 (18)
O5—C91.3734 (13)C21—C221.3906 (17)
O7—C131.3565 (14)C21—C251.3925 (18)
O7—H6O0.92 (2)C21—C181.4885 (16)
O3—C71.2644 (14)C18—C191.3903 (17)
O1—C31.3499 (13)C18—C171.3910 (18)
O1—H1O0.94 (2)C22—C231.3879 (17)
O2—C51.3565 (14)C22—H220.9500
O2—H2O0.88 (2)C23—H230.9500
O6—C121.3658 (13)C20—C191.3855 (18)
O6—H5O0.88 (2)C20—H200.9500
C7—C61.4295 (15)C19—H190.9500
C7—C81.4431 (16)C25—C241.3854 (19)
C9—C81.3671 (16)C25—H250.9500
C9—C101.4662 (15)C17—C161.3864 (19)
C2—C11.3865 (16)C17—H170.9500
C2—C31.3916 (16)C16—H160.9500
C2—H20.9500C24—H240.9500
C10—C151.4038 (15)O9—C291.4252 (19)
C10—C111.4092 (15)O9—C261.4265 (19)
C14—C151.3882 (16)O8—C281.426 (2)
C14—C131.3911 (16)O8—C271.426 (2)
C14—H140.9500C26—C271.514 (2)
C6—C11.3977 (15)C26—H26A0.9900
C6—C51.4204 (16)C26—H26B0.9900
C11—C121.3836 (15)C28—C291.514 (2)
C11—H110.9500C28—H28A0.9900
C4—C51.3751 (16)C28—H28B0.9900
C4—C31.4063 (16)C27—H27A0.9900
C4—H40.9500C27—H27B0.9900
C12—C131.4064 (16)C29—H29A0.9900
C15—H150.9500C29—H29B0.9900
N1—C161.3312 (18)
C8—O4—H4O109.4 (13)C25—C21—C18121.72 (11)
C1—O5—C9121.62 (9)C19—C18—C17116.38 (11)
C13—O7—H6O109.3 (13)C19—C18—C21121.85 (11)
C3—O1—H1O111.6 (12)C17—C18—C21121.74 (11)
C5—O2—H2O104.9 (14)C23—C22—C21120.05 (11)
C12—O6—H5O110.4 (12)C23—C22—H22120.0
O3—C7—C6122.88 (10)C21—C22—H22120.0
O3—C7—C8120.33 (10)N2—C23—C22123.14 (12)
C6—C7—C8116.78 (10)N2—C23—H23118.4
C8—C9—O5120.03 (10)C22—C23—H23118.4
C8—C9—C10128.67 (10)N1—C20—C19123.58 (12)
O5—C9—C10111.30 (9)N1—C20—H20118.2
C1—C2—C3117.35 (10)C19—C20—H20118.2
C1—C2—H2121.3C20—C19—C18119.82 (12)
C3—C2—H2121.3C20—C19—H19120.1
C15—C10—C11118.53 (10)C18—C19—H19120.1
C15—C10—C9119.66 (10)C24—C25—C21119.65 (13)
C11—C10—C9121.81 (10)C24—C25—H25120.2
C15—C14—C13120.62 (11)C21—C25—H25120.2
C15—C14—H14119.7C16—C17—C18119.93 (13)
C13—C14—H14119.7C16—C17—H17120.0
C1—C6—C5118.09 (10)C18—C17—H17120.0
C1—C6—C7119.62 (10)N1—C16—C17123.47 (13)
C5—C6—C7122.28 (10)N1—C16—H16118.3
O5—C1—C2116.39 (10)C17—C16—H16118.3
O5—C1—C6120.77 (10)N2—C24—C25123.56 (13)
C2—C1—C6122.84 (10)N2—C24—H24118.2
C12—C11—C10120.35 (10)C25—C24—H24118.2
C12—C11—H11119.8C29—O9—C26109.72 (11)
C10—C11—H11119.8C28—O8—C27109.64 (12)
C5—C4—C3119.56 (10)O9—C26—C27110.61 (13)
C5—C4—H4120.2O9—C26—H26A109.5
C3—C4—H4120.2C27—C26—H26A109.5
O4—C8—C9121.52 (10)O9—C26—H26B109.5
O4—C8—C7117.31 (10)C27—C26—H26B109.5
C9—C8—C7121.17 (10)H26A—C26—H26B108.1
O6—C12—C11118.46 (10)O8—C28—C29110.08 (13)
O6—C12—C13120.78 (10)O8—C28—H28A109.6
C11—C12—C13120.76 (10)C29—C28—H28A109.6
O1—C3—C2121.91 (10)O8—C28—H28B109.6
O1—C3—C4116.21 (10)C29—C28—H28B109.6
C2—C3—C4121.88 (10)H28A—C28—H28B108.2
O2—C5—C4119.77 (10)O8—C27—C26110.62 (13)
O2—C5—C6119.97 (10)O8—C27—H27A109.5
C4—C5—C6120.26 (10)C26—C27—H27A109.5
C14—C15—C10120.77 (10)O8—C27—H27B109.5
C14—C15—H15119.6C26—C27—H27B109.5
C10—C15—H15119.6H27A—C27—H27B108.1
O7—C13—C14124.36 (10)O9—C29—C28110.80 (13)
O7—C13—C12116.68 (10)O9—C29—H29A109.5
C14—C13—C12118.95 (10)C28—C29—H29A109.5
C16—N1—C20116.82 (11)O9—C29—H29B109.5
C23—N2—C24116.98 (11)C28—C29—H29B109.5
C22—C21—C25116.61 (11)H29A—C29—H29B108.1
C22—C21—C18121.66 (11)
(QBP_II) top
Crystal data top
C29H18N2O8V = 1271.6 (5) Å3
Mr = 522.45Z = 2
Triclinic, P1F(000) = 540
a = 9.806 (2) ÅDx = 1.365 Mg m3
b = 10.778 (2) ÅMo Kα radiation, λ = 0.71073 Å
c = 13.055 (3) ŵ = 0.10 mm1
α = 102.833 (7)°T = 150 K
β = 94.525 (7)°Plate, yellow
γ = 106.943 (7)°0.60 × 0.30 × 0.25 mm
Data collection top
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
Rint = 0.037
Tmin = 0.741, Tmax = 1.000θmax = 26.0°, θmin = 3.1°
10628 measured reflectionsh = 1212
4943 independent reflectionsk = 1313
3753 reflections with I > 2σ(I)l = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.075H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.214 w = 1/[σ2(Fo2) + (0.103P)2 + 1.8694P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4943 reflectionsΔρmax = 1.14 e Å3
372 parametersΔρmin = 0.90 e Å3
Crystal data top
C29H18N2O8γ = 106.943 (7)°
Mr = 522.45V = 1271.6 (5) Å3
Triclinic, P1Z = 2
a = 9.806 (2) ÅMo Kα radiation
b = 10.778 (2) ŵ = 0.10 mm1
c = 13.055 (3) ÅT = 150 K
α = 102.833 (7)°0.60 × 0.30 × 0.25 mm
β = 94.525 (7)°
Data collection top
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
4943 independent reflections
Tmin = 0.741, Tmax = 1.0003753 reflections with I > 2σ(I)
10628 measured reflectionsRint = 0.037
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.214H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 1.14 e Å3
4943 reflectionsΔρmin = 0.90 e Å3
372 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H5O0.076 (4)0.668 (3)0.943 (3)0.025 (9)*
H6O0.146 (5)0.809 (4)0.889 (3)0.054 (13)*
H4O0.419 (4)0.539 (4)0.571 (3)0.033 (10)*
H2O0.412 (5)0.495 (5)0.250 (4)0.058 (14)*
H1O0.063 (5)0.704 (4)0.099 (4)0.057 (13)*
O70.0898 (2)0.66444 (19)0.43931 (14)0.0165 (4)
O40.3453 (2)0.5638 (2)0.59061 (15)0.0233 (5)
O20.3758 (2)0.5070 (2)0.19129 (17)0.0239 (5)
O50.1335 (2)0.6521 (2)0.89714 (15)0.0204 (5)
O30.4134 (2)0.5038 (2)0.39225 (15)0.0214 (5)
O10.0122 (2)0.6716 (2)0.07879 (15)0.0219 (5)
O60.0737 (2)0.7738 (2)0.89673 (15)0.0231 (5)
C90.1602 (3)0.6388 (3)0.5235 (2)0.0154 (6)
C20.0500 (3)0.6736 (3)0.2629 (2)0.0175 (6)
H20.02320.71300.27920.021*
C70.3137 (3)0.5556 (3)0.4050 (2)0.0167 (6)
C60.2388 (3)0.5867 (3)0.3208 (2)0.0163 (6)
C110.1447 (3)0.6450 (3)0.7158 (2)0.0150 (6)
H110.21710.60280.71800.018*
C100.0989 (3)0.6724 (3)0.6207 (2)0.0157 (6)
C10.1279 (3)0.6412 (3)0.3405 (2)0.0161 (6)
C40.1926 (3)0.5897 (3)0.1356 (2)0.0200 (6)
H40.21280.57120.06480.024*
C140.0690 (3)0.7652 (3)0.7099 (2)0.0200 (6)
H140.14310.80550.70770.024*
C120.0847 (3)0.6792 (3)0.8061 (2)0.0168 (6)
C30.0834 (3)0.6464 (3)0.1601 (2)0.0179 (6)
C80.2713 (3)0.5874 (3)0.5086 (2)0.0167 (6)
C130.0222 (3)0.7412 (3)0.8047 (2)0.0181 (6)
C150.0104 (3)0.7319 (3)0.6189 (2)0.0175 (6)
H150.04420.74950.55510.021*
C50.2704 (3)0.5609 (3)0.2145 (2)0.0184 (6)
N10.8028 (3)0.7741 (3)0.1238 (2)0.0245 (6)
N20.2757 (3)1.1078 (3)0.1329 (2)0.0291 (6)
C180.5909 (3)0.9023 (3)0.1355 (2)0.0209 (6)
C210.4808 (3)0.9723 (3)0.1378 (2)0.0217 (6)
C250.3462 (3)0.9126 (3)0.0753 (2)0.0261 (7)
H250.32110.82330.03220.031*
C240.2486 (3)0.9830 (3)0.0758 (2)0.0260 (7)
H240.15690.93920.03270.031*
C220.5076 (4)1.1015 (4)0.2018 (3)0.0452 (10)
H220.59591.14600.24900.054*
C170.7283 (4)0.9642 (4)0.1915 (3)0.0384 (9)
H170.75371.05290.23570.046*
C160.8288 (4)0.8972 (4)0.1833 (3)0.0414 (9)
H160.92260.94240.22290.050*
C190.5635 (4)0.7735 (4)0.0729 (4)0.0483 (11)
H190.47080.72580.03220.058*
C200.6706 (4)0.7142 (4)0.0694 (3)0.0442 (10)
H200.64860.62560.02570.053*
C230.4034 (4)1.1640 (4)0.1955 (4)0.0509 (12)
H230.42421.25270.23870.061*
C290.6812 (5)0.7838 (5)0.4219 (5)0.0745 (17)
O80.8218 (4)0.8793 (3)0.4389 (4)0.0797 (12)
C280.6085 (12)0.8341 (11)0.5020 (12)0.259 (10)
C260.8146 (7)1.0005 (5)0.5100 (8)0.115 (3)
C270.7097 (11)0.9830 (10)0.5565 (12)0.249 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O70.0193 (10)0.0241 (10)0.0112 (9)0.0129 (8)0.0021 (7)0.0066 (7)
O40.0255 (11)0.0405 (13)0.0139 (10)0.0226 (10)0.0041 (8)0.0105 (9)
O20.0254 (11)0.0381 (12)0.0165 (10)0.0213 (10)0.0055 (9)0.0080 (9)
O50.0241 (11)0.0301 (11)0.0121 (9)0.0140 (9)0.0047 (8)0.0077 (8)
O30.0223 (10)0.0325 (11)0.0160 (10)0.0177 (9)0.0036 (8)0.0072 (8)
O10.0261 (11)0.0346 (12)0.0138 (10)0.0195 (9)0.0044 (8)0.0104 (8)
O60.0247 (11)0.0354 (12)0.0157 (10)0.0192 (10)0.0061 (8)0.0057 (9)
C90.0177 (13)0.0154 (13)0.0126 (13)0.0045 (10)0.0004 (10)0.0042 (10)
C20.0197 (14)0.0219 (14)0.0153 (13)0.0120 (11)0.0042 (11)0.0060 (11)
C70.0149 (13)0.0175 (13)0.0168 (13)0.0054 (11)0.0010 (11)0.0031 (11)
C60.0175 (13)0.0179 (13)0.0142 (13)0.0077 (11)0.0013 (11)0.0034 (10)
C110.0163 (13)0.0173 (13)0.0138 (13)0.0081 (11)0.0026 (10)0.0051 (10)
C100.0181 (13)0.0157 (13)0.0134 (13)0.0061 (11)0.0025 (10)0.0032 (10)
C10.0193 (14)0.0174 (13)0.0120 (13)0.0069 (11)0.0033 (10)0.0029 (10)
C40.0240 (15)0.0255 (15)0.0127 (13)0.0105 (12)0.0039 (11)0.0054 (11)
C140.0183 (14)0.0260 (15)0.0206 (14)0.0137 (12)0.0039 (11)0.0066 (12)
C120.0176 (13)0.0205 (14)0.0124 (13)0.0059 (11)0.0012 (10)0.0053 (10)
C30.0206 (14)0.0215 (14)0.0146 (13)0.0096 (11)0.0024 (11)0.0068 (11)
C80.0180 (13)0.0209 (14)0.0135 (13)0.0084 (11)0.0005 (10)0.0064 (10)
C130.0188 (14)0.0222 (14)0.0146 (13)0.0083 (11)0.0057 (11)0.0042 (11)
C150.0209 (14)0.0230 (14)0.0120 (12)0.0115 (11)0.0004 (11)0.0062 (10)
C50.0208 (14)0.0214 (14)0.0155 (13)0.0098 (11)0.0040 (11)0.0053 (11)
N10.0285 (14)0.0315 (14)0.0210 (13)0.0173 (11)0.0057 (11)0.0104 (11)
N20.0242 (14)0.0319 (15)0.0332 (15)0.0162 (12)0.0055 (11)0.0022 (12)
C180.0218 (15)0.0235 (15)0.0201 (14)0.0082 (12)0.0066 (12)0.0080 (11)
C210.0209 (15)0.0243 (15)0.0210 (14)0.0082 (12)0.0054 (12)0.0059 (12)
C250.0273 (16)0.0245 (15)0.0260 (15)0.0118 (13)0.0017 (13)0.0029 (12)
C240.0252 (16)0.0296 (16)0.0239 (15)0.0100 (13)0.0013 (12)0.0072 (13)
C220.0225 (17)0.037 (2)0.063 (3)0.0142 (15)0.0086 (17)0.0145 (18)
C170.0341 (19)0.0318 (18)0.044 (2)0.0192 (15)0.0134 (16)0.0067 (15)
C160.0321 (19)0.0344 (19)0.050 (2)0.0163 (16)0.0178 (17)0.0038 (16)
C190.0211 (17)0.037 (2)0.071 (3)0.0124 (15)0.0039 (17)0.0169 (19)
C200.0294 (19)0.0331 (19)0.059 (2)0.0152 (15)0.0010 (17)0.0143 (17)
C230.0294 (19)0.036 (2)0.074 (3)0.0177 (16)0.0067 (19)0.0181 (19)
C290.044 (3)0.046 (3)0.121 (5)0.005 (2)0.017 (3)0.032 (3)
O80.052 (2)0.0438 (18)0.129 (3)0.0028 (15)0.006 (2)0.026 (2)
C280.132 (8)0.135 (8)0.332 (17)0.097 (7)0.121 (10)0.139 (10)
C260.060 (4)0.029 (3)0.228 (9)0.002 (2)0.011 (5)0.003 (4)
C270.115 (7)0.117 (7)0.357 (18)0.084 (6)0.123 (10)0.123 (9)
Geometric parameters (Å, º) top
O7—C11.362 (3)C14—C131.389 (4)
O7—C91.373 (3)C14—H140.9500
O4—C81.358 (3)C12—C131.399 (4)
O4—H4O0.88 (4)C15—H150.9500
O2—C51.349 (3)N1—C161.320 (4)
O2—H2O0.87 (5)N1—C201.328 (4)
O5—C121.369 (3)N2—C241.323 (4)
O5—H5O0.88 (4)N2—C231.334 (5)
O3—C71.264 (3)C18—C171.378 (5)
O1—C31.345 (3)C18—C191.383 (5)
O1—H1O0.93 (5)C18—C211.485 (4)
O6—C131.355 (3)C21—C251.387 (4)
O6—H6O0.90 (5)C21—C221.393 (5)
C9—C81.367 (4)C25—C241.383 (4)
C9—C101.466 (4)C25—H250.9500
C2—C11.386 (4)C24—H240.9500
C2—C31.395 (4)C22—C231.384 (5)
C2—H20.9500C22—H220.9500
C7—C61.428 (4)C17—C161.380 (5)
C7—C81.444 (4)C17—H170.9500
C6—C11.395 (4)C16—H160.9500
C6—C51.430 (4)C19—C201.378 (5)
C11—C121.383 (4)C19—H190.9500
C11—C101.408 (4)C20—H200.9500
C11—H110.9500C23—H230.9500
C10—C151.402 (4)C29—C281.409 (11)
C4—C51.375 (4)C29—O81.426 (5)
C4—C31.404 (4)O8—C261.449 (8)
C4—H40.9500C28—C271.587 (9)
C14—C151.382 (4)C26—C271.224 (11)
C1—O7—C9122.0 (2)C14—C13—C12118.5 (2)
C8—O4—H4O111 (2)C14—C15—C10120.0 (2)
C5—O2—H2O107 (3)C14—C15—H15120.0
C12—O5—H5O107 (2)C10—C15—H15120.0
C3—O1—H1O112 (3)O2—C5—C4119.9 (2)
C13—O6—H6O113 (3)O2—C5—C6119.8 (2)
C8—C9—O7119.7 (2)C4—C5—C6120.2 (3)
C8—C9—C10129.0 (2)C16—N1—C20116.2 (3)
O7—C9—C10111.3 (2)C24—N2—C23116.4 (3)
C1—C2—C3117.4 (2)C17—C18—C19116.2 (3)
C1—C2—H2121.3C17—C18—C21121.9 (3)
C3—C2—H2121.3C19—C18—C21121.8 (3)
O3—C7—C6123.1 (2)C25—C21—C22116.6 (3)
O3—C7—C8120.2 (2)C25—C21—C18121.5 (3)
C6—C7—C8116.7 (2)C22—C21—C18121.9 (3)
C1—C6—C7119.8 (2)C24—C25—C21120.0 (3)
C1—C6—C5117.7 (2)C24—C25—H25120.0
C7—C6—C5122.5 (2)C21—C25—H25120.0
C12—C11—C10120.3 (2)N2—C24—C25123.7 (3)
C12—C11—H11119.8N2—C24—H24118.1
C10—C11—H11119.8C25—C24—H24118.1
C15—C10—C11118.7 (2)C23—C22—C21118.9 (3)
C15—C10—C9119.1 (2)C23—C22—H22120.5
C11—C10—C9122.2 (2)C21—C22—H22120.5
O7—C1—C2116.3 (2)C18—C17—C16119.9 (3)
O7—C1—C6120.5 (2)C18—C17—H17120.0
C2—C1—C6123.2 (2)C16—C17—H17120.0
C5—C4—C3119.8 (2)N1—C16—C17124.0 (3)
C5—C4—H4120.1N1—C16—H16118.0
C3—C4—H4120.1C17—C16—H16118.0
C15—C14—C13121.5 (3)C20—C19—C18120.0 (3)
C15—C14—H14119.2C20—C19—H19120.0
C13—C14—H14119.2C18—C19—H19120.0
O5—C12—C11118.4 (2)N1—C20—C19123.7 (3)
O5—C12—C13120.8 (2)N1—C20—H20118.2
C11—C12—C13120.8 (2)C19—C20—H20118.2
O1—C3—C2122.1 (2)N2—C23—C22124.3 (3)
O1—C3—C4116.3 (2)N2—C23—H23117.8
C2—C3—C4121.7 (2)C22—C23—H23117.8
O4—C8—C9121.2 (2)C28—C29—O8106.3 (5)
O4—C8—C7117.6 (2)C29—O8—C26106.1 (5)
C9—C8—C7121.2 (2)C29—C28—C27105.1 (7)
O6—C13—C14124.1 (3)C27—C26—O8113.9 (6)
O6—C13—C12117.4 (2)C26—C27—C28106.0 (8)
(QBP_III) top
Crystal data top
C30H22N3O7V = 1277.0 (11) Å3
Mr = 536.50Z = 2
Triclinic, P1F(000) = 558
a = 9.844 (5) ÅDx = 1.395 Mg m3
b = 10.636 (6) ÅMo Kα radiation, λ = 0.71073 Å
c = 13.071 (7) ŵ = 0.10 mm1
α = 98.324 (7)°T = 150 K
β = 94.601 (7)°Plate, yellow
γ = 107.947 (8)°0.65 × 0.45 × 0.30 mm
Data collection top
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
Rint = 0.022
Tmin = 0.857, Tmax = 1.000θmax = 27.4°, θmin = 3.2°
13246 measured reflectionsh = 1212
5767 independent reflectionsk = 1313
4834 reflections with I > 2σ(I)l = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0543P)2 + 0.4614P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
5767 reflectionsΔρmax = 0.34 e Å3
381 parametersΔρmin = 0.21 e Å3
Crystal data top
C30H22N3O7γ = 107.947 (8)°
Mr = 536.50V = 1277.0 (11) Å3
Triclinic, P1Z = 2
a = 9.844 (5) ÅMo Kα radiation
b = 10.636 (6) ŵ = 0.10 mm1
c = 13.071 (7) ÅT = 150 K
α = 98.324 (7)°0.65 × 0.45 × 0.30 mm
β = 94.601 (7)°
Data collection top
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
5767 independent reflections
Tmin = 0.857, Tmax = 1.0004834 reflections with I > 2σ(I)
13246 measured reflectionsRint = 0.022
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.34 e Å3
5767 reflectionsΔρmin = 0.21 e Å3
381 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.80415 (13)1.22475 (13)0.89128 (9)0.0267 (3)
N20.26719 (13)0.90374 (13)0.84950 (10)0.0283 (3)
H1O0.060 (2)0.704 (2)0.0858 (15)0.048 (5)*
H2O0.400 (2)0.481 (2)0.2524 (17)0.052 (6)*
H5O0.087 (2)0.671 (2)0.9361 (16)0.046 (6)*
H6O0.134 (2)0.821 (2)0.8669 (16)0.052 (6)*
H4O0.416 (2)0.535 (2)0.5702 (17)0.057 (6)*
O70.08547 (9)0.65708 (9)0.42939 (6)0.0177 (2)
O60.06310 (11)0.78516 (10)0.88240 (7)0.0239 (2)
O50.14461 (10)0.66456 (10)0.89168 (7)0.0218 (2)
O20.36727 (11)0.49535 (11)0.19050 (8)0.0271 (2)
O40.34852 (12)0.56629 (13)0.58842 (7)0.0356 (3)
O10.00907 (10)0.66737 (10)0.06784 (7)0.0228 (2)
C20.04386 (13)0.66487 (13)0.25172 (9)0.0176 (3)
H20.02920.70380.26540.021*
O30.40841 (11)0.49651 (11)0.39194 (7)0.0285 (2)
C90.16055 (13)0.63687 (13)0.51583 (9)0.0173 (3)
C70.30868 (14)0.54787 (14)0.40213 (10)0.0200 (3)
C60.23103 (13)0.57569 (13)0.31483 (9)0.0168 (3)
C100.10402 (13)0.67676 (13)0.61167 (9)0.0169 (3)
C110.15182 (13)0.65227 (13)0.70965 (9)0.0167 (2)
H110.22400.61050.71480.020*
C10.12102 (13)0.63166 (13)0.33151 (9)0.0161 (2)
C140.06157 (14)0.77377 (14)0.69502 (10)0.0205 (3)
H140.13430.81500.69000.025*
C40.18654 (14)0.58137 (13)0.12986 (10)0.0194 (3)
H40.20760.56430.06050.023*
C150.00405 (14)0.73746 (14)0.60594 (10)0.0200 (3)
H150.03810.75380.54070.024*
C120.09419 (13)0.68879 (13)0.79803 (9)0.0164 (2)
C30.07772 (14)0.63890 (13)0.15072 (9)0.0178 (3)
C80.27104 (14)0.58508 (14)0.50414 (10)0.0211 (3)
C50.26212 (14)0.55005 (13)0.21048 (10)0.0185 (3)
C130.01358 (13)0.75030 (13)0.79185 (9)0.0175 (3)
C180.47659 (14)1.03481 (14)0.85957 (10)0.0216 (3)
C210.58885 (14)1.10239 (14)0.86858 (10)0.0215 (3)
C160.24600 (15)1.01614 (15)0.91837 (11)0.0267 (3)
H160.15791.05180.96410.032*
C170.34658 (15)1.08367 (15)0.92649 (11)0.0251 (3)
H170.32681.16270.97730.030*
C250.72872 (15)1.04105 (15)0.81593 (12)0.0276 (3)
H250.75340.95640.77110.033*
C190.49705 (16)0.91959 (16)0.78522 (13)0.0317 (3)
H190.58230.88390.73650.038*
C220.56059 (16)1.22742 (16)0.93211 (13)0.0340 (4)
H220.46691.27390.96860.041*
C240.83135 (16)1.10535 (15)0.82995 (12)0.0291 (3)
H240.92591.06200.79400.035*
C230.67028 (17)1.28348 (17)0.94160 (13)0.0357 (4)
H230.64921.36790.98610.043*
C200.39110 (17)0.85775 (17)0.78337 (13)0.0346 (4)
H200.40710.77910.73290.042*
C300.5486 (2)0.8659 (2)0.41156 (16)0.0473 (5)
H300.45950.82250.36780.057*
C320.56137 (17)0.97420 (17)0.49022 (14)0.0387 (4)
N30.79633 (17)0.87863 (18)0.45260 (15)0.0531 (4)
C310.69687 (19)1.03207 (19)0.55032 (17)0.0480 (5)
H310.71241.10490.60630.058*
C290.6656 (2)0.8211 (2)0.39678 (17)0.0526 (5)
H290.65200.74530.34400.063*
C270.8085 (2)0.9828 (2)0.52799 (18)0.0532 (5)
H270.89981.02600.56900.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0277 (6)0.0357 (7)0.0250 (6)0.0205 (5)0.0061 (5)0.0077 (5)
N20.0270 (6)0.0369 (7)0.0282 (6)0.0202 (6)0.0068 (5)0.0051 (5)
O70.0207 (4)0.0283 (5)0.0098 (4)0.0156 (4)0.0027 (3)0.0039 (3)
O60.0286 (5)0.0377 (6)0.0147 (4)0.0233 (5)0.0066 (4)0.0045 (4)
O50.0244 (5)0.0363 (6)0.0112 (4)0.0181 (4)0.0036 (4)0.0060 (4)
O20.0296 (5)0.0472 (6)0.0163 (5)0.0289 (5)0.0051 (4)0.0052 (4)
O40.0380 (6)0.0741 (8)0.0137 (5)0.0446 (6)0.0046 (4)0.0090 (5)
O10.0272 (5)0.0383 (6)0.0129 (4)0.0230 (5)0.0044 (4)0.0076 (4)
C20.0187 (6)0.0235 (6)0.0154 (6)0.0136 (5)0.0034 (5)0.0037 (5)
O30.0298 (5)0.0509 (7)0.0173 (5)0.0309 (5)0.0037 (4)0.0060 (4)
C90.0191 (6)0.0239 (6)0.0117 (5)0.0111 (5)0.0006 (5)0.0037 (5)
C70.0198 (6)0.0282 (7)0.0159 (6)0.0136 (5)0.0023 (5)0.0037 (5)
C60.0174 (6)0.0219 (6)0.0137 (6)0.0103 (5)0.0017 (5)0.0027 (5)
C100.0176 (6)0.0213 (6)0.0137 (6)0.0095 (5)0.0024 (5)0.0016 (5)
C110.0167 (6)0.0206 (6)0.0152 (6)0.0099 (5)0.0019 (5)0.0024 (5)
C10.0181 (6)0.0202 (6)0.0116 (5)0.0086 (5)0.0030 (4)0.0023 (5)
C140.0219 (6)0.0277 (7)0.0181 (6)0.0164 (6)0.0036 (5)0.0049 (5)
C40.0233 (6)0.0271 (7)0.0116 (5)0.0135 (5)0.0043 (5)0.0024 (5)
C150.0220 (6)0.0280 (7)0.0144 (6)0.0140 (6)0.0017 (5)0.0053 (5)
C120.0176 (6)0.0204 (6)0.0117 (5)0.0075 (5)0.0003 (4)0.0030 (5)
C30.0203 (6)0.0230 (6)0.0131 (6)0.0108 (5)0.0014 (5)0.0047 (5)
C80.0224 (6)0.0331 (7)0.0128 (6)0.0166 (6)0.0007 (5)0.0041 (5)
C50.0189 (6)0.0240 (7)0.0156 (6)0.0115 (5)0.0037 (5)0.0023 (5)
C130.0187 (6)0.0219 (6)0.0140 (6)0.0097 (5)0.0040 (5)0.0021 (5)
C180.0200 (6)0.0237 (7)0.0245 (7)0.0106 (5)0.0061 (5)0.0054 (5)
C210.0206 (6)0.0256 (7)0.0228 (6)0.0124 (5)0.0061 (5)0.0062 (5)
C160.0224 (7)0.0350 (8)0.0260 (7)0.0142 (6)0.0024 (5)0.0054 (6)
C170.0237 (7)0.0267 (7)0.0264 (7)0.0119 (6)0.0022 (5)0.0012 (6)
C250.0228 (7)0.0264 (7)0.0348 (8)0.0119 (6)0.0010 (6)0.0019 (6)
C190.0244 (7)0.0349 (8)0.0352 (8)0.0149 (6)0.0013 (6)0.0042 (6)
C220.0244 (7)0.0342 (8)0.0411 (9)0.0140 (6)0.0018 (6)0.0070 (7)
C240.0223 (7)0.0331 (8)0.0341 (8)0.0138 (6)0.0004 (6)0.0045 (6)
C230.0345 (8)0.0342 (8)0.0405 (9)0.0210 (7)0.0015 (7)0.0068 (7)
C200.0337 (8)0.0358 (9)0.0367 (8)0.0208 (7)0.0015 (7)0.0055 (7)
C300.0333 (9)0.0505 (11)0.0502 (11)0.0012 (8)0.0014 (8)0.0152 (9)
C320.0297 (8)0.0348 (9)0.0474 (10)0.0007 (7)0.0031 (7)0.0232 (8)
N30.0408 (9)0.0551 (11)0.0686 (11)0.0151 (8)0.0016 (8)0.0311 (9)
C310.0343 (9)0.0394 (10)0.0631 (12)0.0034 (8)0.0113 (8)0.0151 (9)
C290.0457 (11)0.0518 (12)0.0586 (12)0.0098 (9)0.0055 (9)0.0180 (10)
C270.0337 (9)0.0517 (12)0.0708 (14)0.0072 (8)0.0112 (9)0.0244 (11)
Geometric parameters (Å, º) top
N1—C241.337 (2)C4—C51.3798 (18)
N1—C231.339 (2)C4—C31.4138 (18)
N2—C161.337 (2)C4—H40.9500
N2—C201.347 (2)C15—H150.9500
O7—C11.3646 (15)C12—C131.4104 (18)
O7—C91.3796 (15)C18—C171.397 (2)
O6—C131.3612 (16)C18—C191.399 (2)
O6—H6O0.91 (2)C18—C211.4959 (18)
O5—C121.3725 (15)C21—C221.397 (2)
O5—H5O0.85 (2)C21—C251.400 (2)
O2—C51.3597 (16)C16—C171.3930 (19)
O2—H2O0.90 (2)C16—H160.9500
O4—C81.3631 (16)C17—H170.9500
O4—H4O0.87 (2)C25—C241.393 (2)
O1—C31.3511 (15)C25—H250.9500
O1—H1O0.92 (2)C19—C201.394 (2)
C2—C11.3909 (17)C19—H190.9500
C2—C31.3972 (18)C22—C231.391 (2)
C2—H20.9500C22—H220.9500
O3—C71.2691 (16)C24—H240.9500
C9—C81.3716 (18)C23—H230.9500
C9—C101.4705 (18)C20—H200.9500
C7—C61.4391 (17)C30—C291.392 (3)
C7—C81.4453 (18)C30—C321.395 (3)
C6—C11.4044 (17)C30—H300.9500
C6—C51.4280 (18)C32—C311.400 (2)
C10—C151.4067 (18)C32—C32i1.498 (4)
C10—C111.4160 (18)N3—C291.341 (3)
C11—C121.3851 (18)N3—C271.341 (3)
C11—H110.9500C31—C271.389 (3)
C14—C151.3914 (18)C31—H310.9500
C14—C131.3985 (18)C29—H290.9500
C14—H140.9500C27—H270.9500
C24—N1—C23117.02 (12)O6—C13—C14123.95 (11)
C16—N2—C20117.11 (12)O6—C13—C12117.06 (11)
C1—O7—C9121.92 (10)C14—C13—C12118.98 (11)
C13—O6—H6O107.9 (13)C17—C18—C19116.98 (12)
C12—O5—H5O110.1 (13)C17—C18—C21121.07 (13)
C5—O2—H2O105.1 (13)C19—C18—C21121.94 (13)
C8—O4—H4O111.6 (14)C22—C21—C25116.88 (12)
C3—O1—H1O112.5 (13)C22—C21—C18121.75 (13)
C1—C2—C3117.54 (11)C25—C21—C18121.34 (13)
C1—C2—H2121.2N2—C16—C17123.35 (13)
C3—C2—H2121.2N2—C16—H16118.3
C8—C9—O7119.89 (11)C17—C16—H16118.3
C8—C9—C10129.17 (11)C16—C17—C18119.77 (13)
O7—C9—C10110.95 (10)C16—C17—H17120.1
O3—C7—C6122.50 (12)C18—C17—H17120.1
O3—C7—C8120.67 (11)C24—C25—C21119.35 (14)
C6—C7—C8116.81 (11)C24—C25—H25120.3
C1—C6—C5117.83 (11)C21—C25—H25120.3
C1—C6—C7119.57 (11)C20—C19—C18119.36 (14)
C5—C6—C7122.60 (11)C20—C19—H19120.3
C15—C10—C11118.62 (11)C18—C19—H19120.3
C15—C10—C9119.32 (11)C23—C22—C21119.64 (14)
C11—C10—C9122.03 (11)C23—C22—H22120.2
C12—C11—C10120.51 (11)C21—C22—H22120.2
C12—C11—H11119.7N1—C24—C25123.63 (14)
C10—C11—H11119.7N1—C24—H24118.2
O7—C1—C2116.52 (11)C25—C24—H24118.2
O7—C1—C6120.47 (11)N1—C23—C22123.48 (15)
C2—C1—C6123.01 (11)N1—C23—H23118.3
C15—C14—C13120.74 (12)C22—C23—H23118.3
C15—C14—H14119.6N2—C20—C19123.39 (14)
C13—C14—H14119.6N2—C20—H20118.3
C5—C4—C3119.82 (11)C19—C20—H20118.3
C5—C4—H4120.1C29—C30—C32120.39 (17)
C3—C4—H4120.1C29—C30—H30119.8
C14—C15—C10120.56 (11)C32—C30—H30119.8
C14—C15—H15119.7C30—C32—C31115.68 (18)
C10—C15—H15119.7C30—C32—C32i122.51 (19)
O5—C12—C11118.67 (11)C31—C32—C32i121.8 (2)
O5—C12—C13120.75 (11)C29—N3—C27115.58 (18)
C11—C12—C13120.58 (11)C27—C31—C32119.9 (2)
O1—C3—C2122.15 (11)C27—C31—H31120.1
O1—C3—C4116.32 (11)C32—C31—H31120.1
C2—C3—C4121.52 (11)N3—C29—C30123.9 (2)
O4—C8—C9121.06 (11)N3—C29—H29118.0
O4—C8—C7117.77 (11)C30—C29—H29118.0
C9—C8—C7121.17 (11)N3—C27—C31124.52 (18)
O2—C5—C4119.81 (11)N3—C27—H27117.7
O2—C5—C6119.91 (11)C31—C27—H27117.7
C4—C5—C6120.28 (11)
Symmetry code: (i) x+1, y+2, z+1.
(QBP_IV) top
Crystal data top
C45H36N6O8V = 1860.6 (4) Å3
Mr = 788.80Z = 2
Triclinic, P1F(000) = 824
a = 10.0222 (12) ÅDx = 1.408 Mg m3
b = 12.8756 (16) ÅMo Kα radiation, λ = 0.71073 Å
c = 15.0597 (18) ŵ = 0.10 mm1
α = 81.685 (6)°T = 150 K
β = 83.118 (6)°Plate, yellow
γ = 76.273 (5)°0.65 × 0.50 × 0.25 mm
Data collection top
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
Rint = 0.031
Tmin = 0.804, Tmax = 1.000θmax = 27.5°, θmin = 3.0°
19338 measured reflectionsh = 1312
8502 independent reflectionsk = 1616
6720 reflections with I > 2σ(I)l = 1919
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0836P)2 + 0.7989P]
where P = (Fo2 + 2Fc2)/3
S = 0.88(Δ/σ)max = 0.001
8502 reflectionsΔρmax = 0.31 e Å3
560 parametersΔρmin = 0.21 e Å3
Crystal data top
C45H36N6O8γ = 76.273 (5)°
Mr = 788.80V = 1860.6 (4) Å3
Triclinic, P1Z = 2
a = 10.0222 (12) ÅMo Kα radiation
b = 12.8756 (16) ŵ = 0.10 mm1
c = 15.0597 (18) ÅT = 150 K
α = 81.685 (6)°0.65 × 0.50 × 0.25 mm
β = 83.118 (6)°
Data collection top
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
8502 independent reflections
Tmin = 0.804, Tmax = 1.0006720 reflections with I > 2σ(I)
19338 measured reflectionsRint = 0.031
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 0.88Δρmax = 0.31 e Å3
8502 reflectionsΔρmin = 0.21 e Å3
560 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O80.75617 (12)0.56108 (11)0.16403 (10)0.0418 (3)
H6O0.595 (2)0.6117 (18)0.1188 (15)0.055 (6)*
H4O0.180 (2)0.9253 (19)0.2227 (15)0.060 (7)*
H5O0.173 (3)0.7484 (19)0.0209 (15)0.061 (7)*
H1O0.137 (3)0.832 (2)0.7270 (16)0.072 (7)*
H2O0.340 (2)0.9677 (17)0.4786 (16)0.054 (6)*
H8A0.834 (3)0.528 (2)0.1363 (16)0.062 (7)*
H8B0.774 (3)0.554 (2)0.224 (2)0.085 (9)*
C10.03344 (14)0.85523 (10)0.48247 (9)0.0188 (3)
C20.08743 (14)0.84369 (11)0.56460 (9)0.0209 (3)
H20.18290.81530.57060.025*
C30.00402 (15)0.87539 (11)0.63830 (9)0.0222 (3)
C40.14506 (15)0.91790 (11)0.62952 (10)0.0241 (3)
H40.20510.93990.68050.029*
C50.19632 (14)0.92775 (11)0.54738 (9)0.0222 (3)
C60.10671 (14)0.89630 (10)0.47079 (9)0.0196 (3)
C70.15483 (14)0.90758 (11)0.38322 (9)0.0217 (3)
C80.05135 (14)0.87577 (11)0.31030 (9)0.0210 (3)
C90.08289 (14)0.83165 (10)0.32688 (9)0.0189 (3)
C100.19848 (13)0.78637 (10)0.26419 (9)0.0183 (3)
C110.17967 (13)0.77746 (11)0.17490 (9)0.0198 (3)
H110.09140.80600.15330.024*
C120.28689 (14)0.72805 (11)0.11764 (9)0.0199 (3)
C130.41857 (13)0.68535 (11)0.14859 (9)0.0201 (3)
C140.43743 (14)0.69521 (11)0.23640 (9)0.0219 (3)
H140.52610.66770.25760.026*
C150.32986 (14)0.74443 (11)0.29424 (9)0.0208 (3)
H150.34540.74970.35430.025*
C260.36115 (14)1.07102 (12)0.10190 (10)0.0247 (3)
H260.28651.10360.07840.030*
C270.48688 (14)1.11209 (12)0.06654 (9)0.0223 (3)
H270.49761.17210.02110.027*
C280.59767 (13)1.06476 (11)0.09806 (9)0.0188 (3)
C290.57329 (15)0.97705 (12)0.16457 (10)0.0269 (3)
H290.64460.94070.18750.032*
C300.44450 (16)0.94305 (13)0.19719 (11)0.0296 (3)
H300.43100.88420.24360.035*
C310.73626 (13)1.10646 (11)0.06445 (9)0.0190 (3)
C350.76145 (15)1.19159 (12)0.00436 (10)0.0272 (3)
H350.68831.22290.03330.033*
C340.89365 (16)1.23008 (13)0.03011 (11)0.0312 (3)
H340.90831.28780.07750.037*
C330.97755 (15)1.10894 (14)0.07216 (11)0.0310 (3)
H331.05271.07910.09950.037*
C320.84867 (15)1.06439 (13)0.10198 (10)0.0278 (3)
H320.83701.00510.14810.033*
N30.33830 (12)0.98844 (10)0.16700 (8)0.0247 (3)
N41.00225 (13)1.19122 (11)0.00748 (8)0.0281 (3)
O10.03813 (11)0.86759 (9)0.72072 (7)0.0292 (2)
O20.33269 (11)0.96839 (9)0.53943 (8)0.0314 (3)
O30.27940 (10)0.94225 (9)0.36894 (7)0.0297 (2)
O40.09149 (11)0.88677 (9)0.22658 (7)0.0300 (3)
O50.26954 (10)0.71790 (9)0.03150 (7)0.0266 (2)
O60.51954 (10)0.63680 (9)0.08952 (7)0.0266 (2)
O70.12378 (9)0.82190 (8)0.41195 (6)0.0203 (2)
C400.58922 (17)0.19344 (13)0.29587 (10)0.0309 (3)
H400.60200.13850.34550.037*
C390.45736 (16)0.23515 (12)0.27093 (10)0.0268 (3)
H390.38190.20940.30320.032*
C380.43552 (14)0.31553 (11)0.19788 (9)0.0222 (3)
C370.55130 (16)0.34889 (13)0.15379 (11)0.0295 (3)
H370.54220.40290.10340.035*
C360.67927 (16)0.30271 (14)0.18398 (11)0.0325 (3)
H360.75690.32680.15330.039*
C410.29549 (14)0.36182 (11)0.16778 (9)0.0217 (3)
C450.18479 (16)0.31500 (12)0.20007 (11)0.0281 (3)
H450.19800.25090.24120.034*
C440.05554 (16)0.36218 (14)0.17212 (12)0.0331 (4)
H440.01870.32930.19590.040*
C430.13559 (16)0.49480 (13)0.08118 (11)0.0332 (4)
H430.11950.55730.03840.040*
C420.26868 (15)0.45432 (12)0.10609 (10)0.0279 (3)
H420.34070.48920.08140.033*
N50.70001 (14)0.22607 (11)0.25395 (9)0.0313 (3)
N60.02873 (13)0.45116 (12)0.11372 (9)0.0334 (3)
C231.4491 (2)0.27893 (17)0.51380 (13)0.0467 (5)
H231.46820.21590.55580.056*
C221.31420 (19)0.31732 (15)0.49139 (12)0.0406 (4)
H221.24420.28160.51880.049*
C211.28183 (16)0.40760 (12)0.42921 (10)0.0278 (3)
C251.38970 (19)0.45547 (14)0.39453 (15)0.0448 (5)
H251.37400.51820.35190.054*
C241.5205 (2)0.41221 (16)0.42172 (17)0.0533 (5)
H241.59190.44750.39670.064*
C181.14084 (16)0.44901 (12)0.39878 (10)0.0260 (3)
C171.03657 (17)0.39380 (13)0.42374 (12)0.0358 (4)
H171.05280.32860.46350.043*
C160.90907 (18)0.43356 (14)0.39083 (13)0.0403 (4)
H160.83960.39410.40970.048*
C200.9774 (2)0.57746 (15)0.31187 (13)0.0430 (4)
H200.95780.64320.27310.052*
C191.1078 (2)0.54378 (14)0.34126 (12)0.0401 (4)
H191.17470.58550.32210.048*
N21.55306 (16)0.32453 (13)0.48045 (12)0.0462 (4)
N10.87720 (15)0.52385 (12)0.33425 (10)0.0374 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O80.0195 (6)0.0570 (8)0.0425 (7)0.0062 (5)0.0085 (5)0.0050 (6)
C10.0184 (6)0.0151 (6)0.0216 (6)0.0038 (5)0.0007 (5)0.0007 (5)
C20.0194 (6)0.0206 (6)0.0227 (7)0.0045 (5)0.0039 (5)0.0008 (5)
C30.0244 (7)0.0216 (7)0.0210 (7)0.0065 (5)0.0039 (5)0.0006 (5)
C40.0237 (7)0.0242 (7)0.0222 (7)0.0041 (6)0.0015 (5)0.0004 (5)
C50.0167 (6)0.0209 (7)0.0260 (7)0.0015 (5)0.0008 (5)0.0013 (5)
C60.0177 (6)0.0178 (6)0.0219 (7)0.0035 (5)0.0027 (5)0.0023 (5)
C70.0176 (6)0.0197 (6)0.0254 (7)0.0016 (5)0.0034 (5)0.0017 (5)
C80.0192 (6)0.0225 (6)0.0199 (6)0.0025 (5)0.0049 (5)0.0006 (5)
C90.0189 (6)0.0189 (6)0.0189 (6)0.0046 (5)0.0043 (5)0.0005 (5)
C100.0155 (6)0.0183 (6)0.0206 (6)0.0047 (5)0.0023 (5)0.0013 (5)
C110.0142 (6)0.0214 (6)0.0230 (7)0.0027 (5)0.0048 (5)0.0007 (5)
C120.0185 (6)0.0215 (6)0.0193 (6)0.0047 (5)0.0044 (5)0.0021 (5)
C130.0152 (6)0.0204 (6)0.0228 (7)0.0034 (5)0.0006 (5)0.0017 (5)
C140.0145 (6)0.0245 (7)0.0253 (7)0.0026 (5)0.0064 (5)0.0026 (5)
C150.0196 (6)0.0225 (7)0.0206 (6)0.0050 (5)0.0065 (5)0.0006 (5)
C260.0168 (6)0.0325 (8)0.0249 (7)0.0054 (6)0.0030 (5)0.0034 (6)
C270.0201 (7)0.0275 (7)0.0190 (6)0.0058 (6)0.0030 (5)0.0001 (5)
C280.0167 (6)0.0205 (6)0.0198 (6)0.0017 (5)0.0042 (5)0.0059 (5)
C290.0203 (7)0.0271 (7)0.0327 (8)0.0074 (6)0.0081 (6)0.0063 (6)
C300.0239 (7)0.0281 (8)0.0354 (8)0.0044 (6)0.0120 (6)0.0059 (6)
C310.0163 (6)0.0220 (6)0.0189 (6)0.0027 (5)0.0039 (5)0.0042 (5)
C350.0208 (7)0.0311 (8)0.0278 (7)0.0058 (6)0.0050 (6)0.0054 (6)
C340.0246 (8)0.0354 (8)0.0292 (8)0.0015 (6)0.0084 (6)0.0066 (6)
C330.0177 (7)0.0440 (9)0.0310 (8)0.0094 (6)0.0061 (6)0.0033 (7)
C320.0201 (7)0.0331 (8)0.0291 (8)0.0071 (6)0.0079 (6)0.0068 (6)
N30.0171 (6)0.0286 (6)0.0279 (6)0.0005 (5)0.0071 (5)0.0051 (5)
N40.0185 (6)0.0389 (7)0.0252 (6)0.0008 (5)0.0082 (5)0.0029 (5)
O10.0273 (6)0.0388 (6)0.0200 (5)0.0036 (5)0.0048 (4)0.0029 (4)
O20.0180 (5)0.0429 (7)0.0271 (6)0.0029 (5)0.0006 (4)0.0013 (5)
O30.0164 (5)0.0396 (6)0.0278 (5)0.0033 (4)0.0051 (4)0.0003 (5)
O40.0173 (5)0.0447 (7)0.0230 (5)0.0061 (5)0.0073 (4)0.0048 (5)
O50.0190 (5)0.0379 (6)0.0204 (5)0.0012 (4)0.0039 (4)0.0024 (4)
O60.0151 (5)0.0352 (6)0.0252 (5)0.0019 (4)0.0019 (4)0.0023 (4)
O70.0160 (4)0.0247 (5)0.0189 (5)0.0017 (4)0.0032 (4)0.0019 (4)
C400.0340 (8)0.0305 (8)0.0248 (7)0.0013 (7)0.0083 (6)0.0009 (6)
C390.0278 (7)0.0263 (7)0.0244 (7)0.0029 (6)0.0034 (6)0.0016 (6)
C380.0223 (7)0.0217 (7)0.0225 (7)0.0014 (5)0.0051 (5)0.0051 (5)
C370.0247 (7)0.0311 (8)0.0315 (8)0.0063 (6)0.0071 (6)0.0042 (6)
C360.0230 (7)0.0405 (9)0.0340 (8)0.0075 (7)0.0065 (6)0.0008 (7)
C410.0199 (7)0.0238 (7)0.0215 (7)0.0024 (5)0.0033 (5)0.0061 (5)
C450.0250 (7)0.0267 (7)0.0327 (8)0.0067 (6)0.0048 (6)0.0005 (6)
C440.0218 (7)0.0372 (9)0.0411 (9)0.0078 (6)0.0046 (6)0.0038 (7)
C430.0266 (8)0.0339 (8)0.0342 (8)0.0004 (7)0.0059 (6)0.0026 (7)
C420.0224 (7)0.0292 (8)0.0295 (8)0.0036 (6)0.0021 (6)0.0012 (6)
N50.0266 (7)0.0366 (7)0.0297 (7)0.0006 (6)0.0113 (5)0.0064 (6)
N60.0222 (6)0.0383 (8)0.0370 (7)0.0003 (6)0.0068 (6)0.0032 (6)
C230.0486 (11)0.0497 (11)0.0427 (10)0.0101 (9)0.0229 (9)0.0059 (8)
C220.0419 (10)0.0451 (10)0.0374 (9)0.0172 (8)0.0148 (8)0.0082 (8)
C210.0317 (8)0.0256 (7)0.0283 (7)0.0076 (6)0.0046 (6)0.0073 (6)
C250.0339 (9)0.0280 (8)0.0701 (13)0.0085 (7)0.0059 (9)0.0052 (8)
C240.0318 (10)0.0404 (10)0.0885 (16)0.0114 (8)0.0089 (10)0.0018 (10)
C180.0310 (8)0.0221 (7)0.0266 (7)0.0079 (6)0.0037 (6)0.0048 (6)
C170.0328 (9)0.0269 (8)0.0454 (10)0.0068 (7)0.0043 (7)0.0044 (7)
C160.0299 (9)0.0330 (9)0.0575 (11)0.0091 (7)0.0053 (8)0.0014 (8)
C200.0503 (11)0.0331 (9)0.0478 (10)0.0133 (8)0.0220 (9)0.0088 (8)
C190.0448 (10)0.0344 (9)0.0463 (10)0.0203 (8)0.0195 (8)0.0106 (7)
N20.0386 (8)0.0445 (9)0.0592 (10)0.0070 (7)0.0182 (8)0.0106 (8)
N10.0337 (8)0.0334 (7)0.0451 (8)0.0035 (6)0.0118 (6)0.0050 (6)
Geometric parameters (Å, º) top
O8—H8A0.88 (3)C33—H330.9500
O8—H8B0.93 (3)C32—H320.9500
C1—O71.3597 (16)O1—H1O1.00 (3)
C1—C21.3833 (19)O2—H2O0.93 (2)
C1—C61.4012 (18)O4—H4O0.91 (2)
C2—C31.3957 (19)O5—H5O0.98 (2)
C2—H20.9500O6—H6O0.89 (2)
C3—O11.3411 (17)C40—N51.336 (2)
C3—C41.4042 (19)C40—C391.378 (2)
C4—C51.373 (2)C40—H400.9500
C4—H40.9500C39—C381.396 (2)
C5—O21.3557 (16)C39—H390.9500
C5—C61.4195 (19)C38—C371.393 (2)
C6—C71.4341 (19)C38—C411.4858 (19)
C7—O31.2555 (16)C37—C361.380 (2)
C7—C81.4508 (19)C37—H370.9500
C8—O41.3470 (16)C36—N51.335 (2)
C8—C91.3681 (18)C36—H360.9500
C9—O71.3711 (15)C41—C451.391 (2)
C9—C101.4663 (18)C41—C421.393 (2)
C10—C151.4017 (18)C45—C441.381 (2)
C10—C111.4044 (19)C45—H450.9500
C11—C121.3839 (19)C44—N61.333 (2)
C11—H110.9500C44—H440.9500
C12—O51.3580 (17)C43—N61.335 (2)
C12—C131.4107 (18)C43—C421.387 (2)
C13—O61.3605 (16)C43—H430.9500
C13—C141.3859 (19)C42—H420.9500
C14—C151.390 (2)C23—N21.327 (3)
C14—H140.9500C23—C221.389 (3)
C15—H150.9500C23—H230.9500
C26—N31.3345 (19)C22—C211.383 (2)
C26—C271.3836 (19)C22—H220.9500
C26—H260.9500C21—C251.382 (2)
C27—C281.3931 (19)C21—C181.489 (2)
C27—H270.9500C25—C241.383 (3)
C28—C291.3924 (19)C25—H250.9500
C28—C311.4865 (18)C24—N21.330 (3)
C29—C301.386 (2)C24—H240.9500
C29—H290.9500C18—C171.386 (2)
C30—N31.335 (2)C18—C191.386 (2)
C30—H300.9500C17—C161.382 (2)
C31—C321.389 (2)C17—H170.9500
C31—C351.3935 (19)C16—N11.335 (2)
C35—C341.381 (2)C16—H160.9500
C35—H350.9500C20—N11.334 (2)
C34—N41.336 (2)C20—C191.380 (2)
C34—H340.9500C20—H200.9500
C33—N41.329 (2)C19—H190.9500
C33—C321.383 (2)
H8A—O8—H8B105 (2)C33—C32—H32120.0
O7—C1—C2116.37 (12)C31—C32—H32120.0
O7—C1—C6120.46 (12)C26—N3—C30116.49 (12)
C2—C1—C6123.15 (12)C33—N4—C34116.37 (13)
C1—C2—C3117.32 (12)C3—O1—H1O115.7 (14)
C1—C2—H2121.3C5—O2—H2O103.1 (14)
C3—C2—H2121.3C8—O4—H4O112.4 (14)
O1—C3—C2121.90 (13)C12—O5—H5O108.5 (13)
O1—C3—C4116.63 (13)C13—O6—H6O107.2 (15)
C2—C3—C4121.46 (13)C1—O7—C9121.63 (10)
C5—C4—C3120.09 (13)N5—C40—C39123.52 (14)
C5—C4—H4120.0N5—C40—H40118.2
C3—C4—H4120.0C39—C40—H40118.2
O2—C5—C4119.82 (13)C40—C39—C38119.52 (14)
O2—C5—C6120.01 (12)C40—C39—H39120.2
C4—C5—C6120.17 (12)C38—C39—H39120.2
C1—C6—C5117.80 (12)C37—C38—C39116.91 (13)
C1—C6—C7120.01 (12)C37—C38—C41121.68 (13)
C5—C6—C7122.18 (12)C39—C38—C41121.41 (13)
O3—C7—C6122.84 (13)C36—C37—C38119.41 (14)
O3—C7—C8120.74 (13)C36—C37—H37120.3
C6—C7—C8116.42 (12)C38—C37—H37120.3
O4—C8—C9120.80 (12)N5—C36—C37123.64 (15)
O4—C8—C7118.47 (12)N5—C36—H36118.2
C9—C8—C7120.67 (12)C37—C36—H36118.2
C8—C9—O7120.65 (12)C45—C41—C42116.81 (13)
C8—C9—C10128.57 (12)C45—C41—C38121.55 (13)
O7—C9—C10110.75 (11)C42—C41—C38121.64 (13)
C15—C10—C11118.24 (12)C44—C45—C41119.70 (14)
C15—C10—C9120.13 (12)C44—C45—H45120.1
C11—C10—C9121.51 (12)C41—C45—H45120.1
C12—C11—C10121.43 (12)N6—C44—C45123.87 (15)
C12—C11—H11119.3N6—C44—H44118.1
C10—C11—H11119.3C45—C44—H44118.1
O5—C12—C11121.95 (12)N6—C43—C42123.95 (15)
O5—C12—C13118.06 (12)N6—C43—H43118.0
C11—C12—C13119.99 (12)C42—C43—H43118.0
O6—C13—C14124.12 (12)C43—C42—C41119.21 (14)
O6—C13—C12117.33 (12)C43—C42—H42120.4
C14—C13—C12118.54 (12)C41—C42—H42120.4
C13—C14—C15121.64 (12)C36—N5—C40117.01 (13)
C13—C14—H14119.2C44—N6—C43116.43 (13)
C15—C14—H14119.2N2—C23—C22124.35 (18)
C14—C15—C10120.15 (12)N2—C23—H23117.8
C14—C15—H15119.9C22—C23—H23117.8
C10—C15—H15119.9C21—C22—C23119.95 (17)
N3—C26—C27123.98 (13)C21—C22—H22120.0
N3—C26—H26118.0C23—C22—H22120.0
C27—C26—H26118.0C25—C21—C22115.86 (15)
C26—C27—C28119.51 (13)C25—C21—C18121.71 (15)
C26—C27—H27120.2C22—C21—C18122.40 (15)
C28—C27—H27120.2C21—C25—C24120.09 (17)
C29—C28—C27116.63 (12)C21—C25—H25120.0
C29—C28—C31121.15 (12)C24—C25—H25120.0
C27—C28—C31122.21 (12)N2—C24—C25124.51 (18)
C30—C29—C28119.71 (13)N2—C24—H24117.7
C30—C29—H29120.1C25—C24—H24117.7
C28—C29—H29120.1C17—C18—C19116.09 (15)
N3—C30—C29123.66 (14)C17—C18—C21122.26 (14)
N3—C30—H30118.2C19—C18—C21121.62 (14)
C29—C30—H30118.2C16—C17—C18120.00 (15)
C32—C31—C35116.44 (12)C16—C17—H17120.0
C32—C31—C28121.55 (12)C18—C17—H17120.0
C35—C31—C28121.99 (12)N1—C16—C17124.23 (16)
C34—C35—C31119.43 (14)N1—C16—H16117.9
C34—C35—H35120.3C17—C16—H16117.9
C31—C35—H35120.3N1—C20—C19124.40 (16)
N4—C34—C35124.06 (14)N1—C20—H20117.8
N4—C34—H34118.0C19—C20—H20117.8
C35—C34—H34118.0C20—C19—C18119.92 (16)
N4—C33—C32123.74 (14)C20—C19—H19120.0
N4—C33—H33118.1C18—C19—H19120.0
C32—C33—H33118.1C23—N2—C24115.22 (16)
C33—C32—C31119.93 (13)C20—N1—C16115.34 (15)
(QDP_I) top
Crystal data top
C31H28N2O9V = 1367.8 (2) Å3
Mr = 572.55Z = 2
Triclinic, P1F(000) = 600
a = 10.1899 (9) ÅDx = 1.390 Mg m3
b = 11.6532 (11) ÅMo Kα radiation, λ = 0.71073 Å
c = 13.0214 (12) ŵ = 0.10 mm1
α = 97.351 (7)°T = 150 K
β = 95.446 (7)°Plate, yellow
γ = 115.237 (8)°0.50 × 0.25 × 0.15 mm
Data collection top
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
Rint = 0.035
Tmin = 0.818, Tmax = 1.000θmax = 27.5°, θmin = 3.2°
14650 measured reflectionsh = 1313
6248 independent reflectionsk = 1515
4498 reflections with I > 2σ(I)l = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0598P)2 + 0.4848P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
6248 reflectionsΔρmax = 0.28 e Å3
407 parametersΔρmin = 0.23 e Å3
Crystal data top
C31H28N2O9γ = 115.237 (8)°
Mr = 572.55V = 1367.8 (2) Å3
Triclinic, P1Z = 2
a = 10.1899 (9) ÅMo Kα radiation
b = 11.6532 (11) ŵ = 0.10 mm1
c = 13.0214 (12) ÅT = 150 K
α = 97.351 (7)°0.50 × 0.25 × 0.15 mm
β = 95.446 (7)°
Data collection top
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
6248 independent reflections
Tmin = 0.818, Tmax = 1.0004498 reflections with I > 2σ(I)
14650 measured reflectionsRint = 0.035
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.28 e Å3
6248 reflectionsΔρmin = 0.23 e Å3
407 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.35328 (15)0.05476 (13)0.09077 (9)0.0271 (3)
O70.11320 (12)0.14386 (11)0.06881 (8)0.0195 (3)
O30.40849 (14)0.00032 (13)0.10365 (9)0.0260 (3)
O10.03938 (15)0.15683 (13)0.43080 (9)0.0270 (3)
O50.17883 (15)0.16402 (14)0.39659 (9)0.0274 (3)
O60.00814 (15)0.27378 (13)0.38164 (9)0.0276 (3)
O20.37686 (15)0.01072 (14)0.30471 (10)0.0298 (3)
C90.18247 (18)0.12430 (16)0.01843 (12)0.0177 (3)
C20.07294 (19)0.15191 (16)0.24689 (12)0.0201 (4)
H20.00420.18490.23380.024*
C60.24734 (18)0.07437 (16)0.18198 (12)0.0184 (3)
C100.13392 (18)0.16309 (16)0.11366 (12)0.0176 (3)
C70.31675 (18)0.04606 (16)0.09501 (13)0.0186 (3)
C40.20703 (19)0.08420 (17)0.36681 (13)0.0222 (4)
H40.22770.07160.43580.027*
N10.15995 (19)0.75960 (17)0.39455 (12)0.0324 (4)
C80.28177 (18)0.07560 (16)0.00676 (12)0.0191 (4)
C110.17951 (18)0.14431 (16)0.21328 (12)0.0185 (3)
H110.24370.10490.22010.022*
C10.14506 (18)0.12250 (16)0.16664 (12)0.0169 (3)
N20.79557 (18)0.36859 (16)0.34805 (12)0.0298 (4)
C140.01013 (19)0.25805 (17)0.19431 (13)0.0219 (4)
H140.07460.29720.18770.026*
C120.13140 (18)0.18292 (17)0.30097 (12)0.0188 (3)
C240.2373 (2)0.6028 (2)0.32310 (15)0.0314 (4)
H240.21520.52660.27420.038*
C170.5682 (2)0.35796 (19)0.26865 (16)0.0315 (4)
H170.48300.31460.21610.038*
C220.4834 (2)0.61773 (19)0.39464 (15)0.0273 (4)
C50.27738 (19)0.05605 (17)0.28562 (13)0.0204 (4)
C210.4760 (2)0.5154 (2)0.33149 (16)0.0289 (4)
C230.3719 (2)0.66556 (18)0.39126 (14)0.0249 (4)
C180.5879 (2)0.46780 (18)0.33836 (15)0.0255 (4)
C30.10430 (19)0.13167 (17)0.34740 (13)0.0206 (4)
C130.03551 (19)0.24001 (16)0.29242 (13)0.0194 (4)
C190.7163 (2)0.52659 (19)0.41278 (14)0.0280 (4)
H190.73560.60190.46190.034*
C150.03747 (19)0.21956 (17)0.10638 (13)0.0214 (4)
H150.00420.23160.03980.026*
C270.3966 (2)0.77736 (19)0.46033 (15)0.0301 (4)
H270.48690.82400.50780.036*
C160.6731 (2)0.31271 (19)0.27634 (16)0.0318 (4)
H160.65730.23790.22810.038*
C200.8146 (2)0.4746 (2)0.41439 (15)0.0299 (4)
H200.90140.51630.46570.036*
C260.2891 (2)0.8199 (2)0.45930 (15)0.0342 (5)
H260.30790.89600.50720.041*
C250.1369 (2)0.6529 (2)0.32769 (15)0.0331 (5)
H250.04600.60910.28070.040*
O90.3638 (2)0.5450 (2)0.08366 (15)0.0695 (6)
O80.1964 (2)0.6054 (2)0.06407 (16)0.0720 (6)
C280.3849 (3)0.6714 (3)0.0861 (2)0.0681 (8)
H28A0.46380.71460.04570.082*
H28B0.41740.71880.15970.082*
C290.2492 (4)0.6771 (3)0.0417 (3)0.0805 (10)
H29A0.17260.64090.08560.097*
H29B0.26970.76820.04220.097*
C310.3172 (3)0.4775 (3)0.0222 (3)0.0763 (10)
H31A0.29890.38660.02450.092*
H31B0.39600.51730.06370.092*
C300.1825 (4)0.4813 (3)0.0686 (3)0.0924 (12)
H30A0.15510.43690.14300.111*
H30B0.10170.43320.03130.111*
H220.568 (2)0.6674 (19)0.4497 (16)0.030 (5)*
H210.395 (3)0.469 (2)0.2770 (17)0.041 (6)*
H6O0.073 (3)0.306 (2)0.3670 (19)0.056 (7)*
H5O0.118 (3)0.168 (2)0.441 (2)0.059 (8)*
H4O0.417 (3)0.030 (2)0.0682 (19)0.054 (7)*
H1O0.031 (3)0.188 (2)0.414 (2)0.063 (8)*
H2O0.407 (3)0.000 (2)0.244 (2)0.053 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0348 (7)0.0488 (8)0.0145 (6)0.0339 (7)0.0043 (5)0.0073 (6)
O70.0248 (6)0.0310 (7)0.0114 (5)0.0198 (6)0.0045 (5)0.0049 (5)
O30.0330 (7)0.0415 (8)0.0173 (6)0.0296 (7)0.0042 (5)0.0051 (5)
O10.0380 (8)0.0466 (8)0.0149 (6)0.0339 (7)0.0078 (5)0.0107 (6)
O50.0353 (7)0.0487 (8)0.0132 (6)0.0311 (7)0.0064 (5)0.0087 (6)
O60.0391 (8)0.0460 (8)0.0154 (6)0.0344 (7)0.0081 (5)0.0064 (6)
O20.0394 (8)0.0533 (9)0.0170 (6)0.0387 (7)0.0075 (6)0.0075 (6)
C90.0202 (8)0.0217 (9)0.0135 (8)0.0114 (7)0.0018 (6)0.0039 (6)
C20.0249 (9)0.0269 (9)0.0174 (8)0.0192 (8)0.0056 (7)0.0054 (7)
C60.0210 (8)0.0228 (9)0.0144 (8)0.0129 (7)0.0026 (6)0.0024 (7)
C100.0197 (8)0.0201 (8)0.0155 (8)0.0108 (7)0.0042 (6)0.0031 (7)
C70.0198 (8)0.0215 (9)0.0178 (8)0.0127 (7)0.0019 (7)0.0023 (7)
C40.0304 (9)0.0326 (10)0.0132 (8)0.0216 (8)0.0077 (7)0.0058 (7)
N10.0427 (10)0.0514 (11)0.0228 (8)0.0371 (9)0.0101 (7)0.0113 (8)
C80.0231 (9)0.0243 (9)0.0136 (8)0.0140 (8)0.0018 (7)0.0045 (7)
C110.0194 (8)0.0239 (9)0.0179 (8)0.0146 (7)0.0039 (7)0.0046 (7)
C10.0200 (8)0.0209 (8)0.0131 (7)0.0117 (7)0.0054 (6)0.0031 (6)
N20.0344 (9)0.0402 (10)0.0288 (8)0.0278 (8)0.0103 (7)0.0094 (7)
C140.0267 (9)0.0305 (10)0.0190 (8)0.0210 (8)0.0057 (7)0.0080 (7)
C120.0215 (8)0.0245 (9)0.0139 (8)0.0130 (7)0.0027 (7)0.0055 (7)
C240.0312 (10)0.0366 (11)0.0326 (10)0.0226 (9)0.0028 (8)0.0017 (9)
C170.0262 (10)0.0322 (11)0.0364 (11)0.0155 (9)0.0025 (8)0.0003 (9)
C220.0242 (9)0.0328 (11)0.0311 (10)0.0183 (9)0.0042 (8)0.0065 (8)
C50.0250 (9)0.0263 (9)0.0167 (8)0.0180 (8)0.0047 (7)0.0018 (7)
C210.0261 (10)0.0334 (11)0.0309 (10)0.0187 (9)0.0006 (8)0.0016 (9)
C230.0273 (9)0.0311 (10)0.0247 (9)0.0194 (9)0.0076 (8)0.0082 (8)
C180.0251 (9)0.0271 (10)0.0301 (10)0.0166 (8)0.0065 (8)0.0059 (8)
C30.0260 (9)0.0277 (9)0.0144 (8)0.0176 (8)0.0033 (7)0.0053 (7)
C130.0239 (9)0.0228 (9)0.0158 (8)0.0137 (8)0.0058 (7)0.0043 (7)
C190.0305 (10)0.0334 (11)0.0255 (9)0.0209 (9)0.0037 (8)0.0005 (8)
C150.0264 (9)0.0300 (10)0.0150 (8)0.0182 (8)0.0042 (7)0.0075 (7)
C270.0311 (10)0.0354 (11)0.0282 (10)0.0206 (9)0.0026 (8)0.0015 (8)
C160.0346 (11)0.0318 (11)0.0351 (11)0.0208 (9)0.0098 (9)0.0023 (9)
C200.0293 (10)0.0431 (12)0.0253 (9)0.0241 (9)0.0034 (8)0.0045 (8)
C260.0472 (12)0.0430 (12)0.0270 (10)0.0337 (11)0.0080 (9)0.0048 (9)
C250.0312 (10)0.0488 (13)0.0285 (10)0.0269 (10)0.0037 (8)0.0063 (9)
O90.0522 (11)0.0840 (15)0.0603 (12)0.0171 (11)0.0080 (9)0.0333 (11)
O80.0867 (15)0.0776 (14)0.0648 (13)0.0468 (13)0.0015 (11)0.0304 (11)
C280.0556 (17)0.0592 (19)0.0606 (18)0.0020 (15)0.0081 (14)0.0004 (15)
C290.082 (2)0.074 (2)0.095 (3)0.039 (2)0.026 (2)0.023 (2)
C310.076 (2)0.0386 (15)0.091 (2)0.0167 (15)0.0366 (18)0.0047 (15)
C300.095 (3)0.059 (2)0.097 (3)0.0248 (19)0.048 (2)0.0081 (18)
Geometric parameters (Å, º) top
O4—C81.3617 (19)C24—C251.379 (3)
O4—H4O0.87 (3)C24—C231.397 (3)
O7—C11.3625 (18)C24—H240.9500
O7—C91.3755 (18)C17—C161.379 (3)
O3—C71.2650 (19)C17—C181.397 (3)
O1—C31.347 (2)C17—H170.9500
O1—H1O0.97 (3)C22—C211.328 (3)
O5—C121.3708 (19)C22—C231.463 (2)
O5—H5O0.90 (3)C22—H220.97 (2)
O6—C131.3538 (19)C21—C181.467 (2)
O6—H6O0.91 (3)C21—H210.94 (2)
O2—C51.3561 (19)C23—C271.395 (3)
O2—H2O0.86 (3)C18—C191.394 (3)
C9—C81.366 (2)C19—C201.374 (2)
C9—C101.466 (2)C19—H190.9500
C2—C11.382 (2)C15—H150.9500
C2—C31.391 (2)C27—C261.382 (3)
C2—H20.9500C27—H270.9500
C6—C11.396 (2)C16—H160.9500
C6—C51.422 (2)C20—H200.9500
C6—C71.426 (2)C26—H260.9500
C10—C151.399 (2)C25—H250.9500
C10—C111.411 (2)O9—C281.390 (3)
C7—C81.442 (2)O9—C311.423 (3)
C4—C51.373 (2)O8—C301.384 (4)
C4—C31.405 (2)O8—C291.438 (4)
C4—H40.9500C28—C291.479 (4)
N1—C261.336 (3)C28—H28A0.9900
N1—C251.340 (3)C28—H28B0.9900
C11—C121.382 (2)C29—H29A0.9900
C11—H110.9500C29—H29B0.9900
N2—C161.336 (3)C31—C301.467 (4)
N2—C201.342 (2)C31—H31A0.9900
C14—C151.381 (2)C31—H31B0.9900
C14—C131.390 (2)C30—H30A0.9900
C14—H140.9500C30—H30B0.9900
C12—C131.401 (2)
C8—O4—H4O107.7 (16)C24—C23—C22123.23 (17)
C1—O7—C9122.44 (12)C19—C18—C17116.75 (16)
C3—O1—H1O113.4 (15)C19—C18—C21123.20 (17)
C12—O5—H5O109.1 (16)C17—C18—C21120.04 (17)
C13—O6—H6O110.1 (16)O1—C3—C2122.31 (14)
C5—O2—H2O104.6 (16)O1—C3—C4116.45 (15)
C8—C9—O7119.29 (14)C2—C3—C4121.24 (15)
C8—C9—C10130.01 (15)O6—C13—C14123.78 (15)
O7—C9—C10110.70 (13)O6—C13—C12117.20 (14)
C1—C2—C3117.83 (14)C14—C13—C12119.01 (15)
C1—C2—H2121.1C20—C19—C18119.36 (17)
C3—C2—H2121.1C20—C19—H19120.3
C1—C6—C5117.40 (14)C18—C19—H19120.3
C1—C6—C7119.67 (14)C14—C15—C10121.13 (15)
C5—C6—C7122.93 (14)C14—C15—H15119.4
C15—C10—C11118.18 (14)C10—C15—H15119.4
C15—C10—C9119.38 (14)C26—C27—C23119.60 (18)
C11—C10—C9122.43 (14)C26—C27—H27120.2
O3—C7—C6122.96 (15)C23—C27—H27120.2
O3—C7—C8119.92 (14)N2—C16—C17123.46 (18)
C6—C7—C8117.09 (14)N2—C16—H16118.3
C5—C4—C3119.74 (15)C17—C16—H16118.3
C5—C4—H4120.1N2—C20—C19124.07 (18)
C3—C4—H4120.1N2—C20—H20118.0
C26—N1—C25116.86 (16)C19—C20—H20118.0
O4—C8—C9121.44 (15)N1—C26—C27123.46 (18)
O4—C8—C7117.31 (14)N1—C26—H26118.3
C9—C8—C7121.24 (14)C27—C26—H26118.3
C12—C11—C10120.42 (14)N1—C25—C24123.88 (19)
C12—C11—H11119.8N1—C25—H25118.1
C10—C11—H11119.8C24—C25—H25118.1
O7—C1—C2116.76 (13)C28—O9—C31108.9 (2)
O7—C1—C6120.13 (14)C30—O8—C29110.7 (2)
C2—C1—C6123.11 (14)O9—C28—C29112.0 (2)
C16—N2—C20116.59 (15)O9—C28—H28A109.2
C15—C14—C13120.57 (15)C29—C28—H28A109.2
C15—C14—H14119.7O9—C28—H28B109.2
C13—C14—H14119.7C29—C28—H28B109.2
O5—C12—C11118.81 (14)H28A—C28—H28B107.9
O5—C12—C13120.51 (14)O8—C29—C28110.5 (3)
C11—C12—C13120.68 (14)O8—C29—H29A109.5
C25—C24—C23119.20 (18)C28—C29—H29A109.5
C25—C24—H24120.4O8—C29—H29B109.5
C23—C24—H24120.4C28—C29—H29B109.5
C16—C17—C18119.77 (18)H29A—C29—H29B108.1
C16—C17—H17120.1O9—C31—C30110.7 (3)
C18—C17—H17120.1O9—C31—H31A109.5
C21—C22—C23125.88 (18)C30—C31—H31A109.5
C21—C22—H22120.1 (12)O9—C31—H31B109.5
C23—C22—H22114.0 (12)C30—C31—H31B109.5
O2—C5—C4119.50 (15)H31A—C31—H31B108.1
O2—C5—C6119.82 (14)O8—C30—C31113.3 (3)
C4—C5—C6120.68 (14)O8—C30—H30A108.9
C22—C21—C18124.69 (19)C31—C30—H30A108.9
C22—C21—H21120.0 (13)O8—C30—H30B108.9
C18—C21—H21115.3 (13)C31—C30—H30B108.9
C27—C23—C24116.99 (16)H30A—C30—H30B107.7
C27—C23—C22119.76 (17)
(QDP_II) top
Crystal data top
C31H28N2O8V = 1340.13 (17) Å3
Mr = 556.55Z = 2
Triclinic, P1F(000) = 584
a = 10.0381 (7) ÅDx = 1.379 Mg m3
b = 11.5707 (8) ÅMo Kα radiation, λ = 0.71073 Å
c = 13.0194 (9) ŵ = 0.10 mm1
α = 76.744 (5)°T = 293 K
β = 84.502 (6)°Plate, yellow
γ = 65.573 (5)°0.40 × 0.20 × 0.20 mm
Data collection top
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
Rint = 0.034
Tmin = 0.794, Tmax = 1.000θmax = 27.5°, θmin = 3.0°
14382 measured reflectionsh = 1312
6106 independent reflectionsk = 1515
4337 reflections with I > 2σ(I)l = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.0802P)2 + 0.6053P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
6106 reflectionsΔρmax = 0.48 e Å3
398 parametersΔρmin = 0.48 e Å3
Crystal data top
C31H28N2O8γ = 65.573 (5)°
Mr = 556.55V = 1340.13 (17) Å3
Triclinic, P1Z = 2
a = 10.0381 (7) ÅMo Kα radiation
b = 11.5707 (8) ŵ = 0.10 mm1
c = 13.0194 (9) ÅT = 293 K
α = 76.744 (5)°0.40 × 0.20 × 0.20 mm
β = 84.502 (6)°
Data collection top
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
6106 independent reflections
Tmin = 0.794, Tmax = 1.0004337 reflections with I > 2σ(I)
14382 measured reflectionsRint = 0.034
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.48 e Å3
6106 reflectionsΔρmin = 0.48 e Å3
398 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.20231 (15)0.44770 (15)0.59077 (11)0.0257 (3)
O30.09228 (14)0.49729 (15)0.39653 (11)0.0248 (3)
H211.405 (3)0.165 (2)0.0558 (19)0.030 (6)*
H221.420 (3)0.042 (3)0.224 (2)0.049 (8)*
H5O0.556 (3)0.328 (3)0.941 (2)0.055 (9)*
H1O0.708 (4)0.315 (3)0.089 (2)0.059 (9)*
H2O0.094 (3)0.497 (3)0.257 (2)0.055 (9)*
H6O0.874 (3)0.202 (3)0.867 (2)0.040 (7)*
H4O0.116 (3)0.475 (3)0.566 (2)0.055 (9)*
O70.53200 (14)0.34737 (13)0.43400 (10)0.0185 (3)
O10.61708 (16)0.34008 (15)0.07185 (11)0.0256 (4)
O50.48500 (15)0.33911 (15)0.89707 (11)0.0258 (3)
C90.4428 (2)0.37189 (18)0.52011 (14)0.0163 (4)
O20.13312 (15)0.48916 (16)0.19586 (11)0.0283 (4)
C60.3272 (2)0.42022 (18)0.31970 (14)0.0173 (4)
C20.5793 (2)0.34111 (19)0.25600 (15)0.0201 (4)
H20.67920.30710.26920.024*
O60.78169 (16)0.23014 (15)0.88426 (11)0.0251 (3)
C70.2294 (2)0.45003 (19)0.40601 (14)0.0178 (4)
C80.2946 (2)0.42239 (19)0.50779 (14)0.0177 (4)
C100.5295 (2)0.33630 (18)0.61556 (14)0.0163 (4)
C110.4657 (2)0.35691 (18)0.71409 (14)0.0179 (4)
H110.36440.39610.72000.021*
C40.3766 (2)0.4141 (2)0.13466 (15)0.0209 (4)
H40.34400.42830.06660.025*
C10.4784 (2)0.36986 (18)0.33607 (14)0.0167 (4)
C30.5270 (2)0.36451 (19)0.15524 (15)0.0195 (4)
C140.7684 (2)0.24251 (19)0.69748 (15)0.0203 (4)
H140.86970.20400.69170.024*
C50.2781 (2)0.44150 (19)0.21555 (15)0.0196 (4)
C120.5518 (2)0.31958 (19)0.80244 (14)0.0180 (4)
C130.7047 (2)0.26253 (19)0.79474 (14)0.0180 (4)
C150.6828 (2)0.27924 (19)0.60900 (14)0.0191 (4)
H150.72730.26600.54420.023*
N20.90039 (19)0.25732 (19)0.11058 (14)0.0301 (4)
N11.92605 (18)0.13443 (18)0.14926 (14)0.0273 (4)
C221.4598 (2)0.0103 (2)0.17171 (18)0.0277 (5)
C171.1308 (2)0.1016 (2)0.18489 (18)0.0313 (5)
H171.18160.02700.23440.038*
C181.2062 (2)0.1645 (2)0.11545 (17)0.0254 (5)
C231.6196 (2)0.0365 (2)0.16335 (17)0.0242 (4)
C241.7088 (2)0.1457 (2)0.23461 (18)0.0290 (5)
H241.66730.18810.28870.035*
C211.3661 (2)0.1171 (2)0.11180 (19)0.0275 (5)
C271.6897 (2)0.0225 (2)0.08549 (17)0.0279 (5)
H271.63530.09600.03630.033*
C191.1222 (2)0.2763 (2)0.04449 (17)0.0289 (5)
H191.16700.32260.00290.035*
C200.9724 (2)0.3181 (2)0.04478 (17)0.0320 (5)
H200.91840.39270.00360.038*
C261.8403 (2)0.0288 (2)0.08176 (17)0.0301 (5)
H261.88500.01230.02920.036*
C251.8595 (2)0.1906 (2)0.22449 (18)0.0293 (5)
H251.91700.26370.27270.035*
C160.9807 (2)0.1507 (2)0.17970 (18)0.0326 (5)
H160.93240.10740.22680.039*
O80.9212 (3)0.9114 (3)0.4308 (2)0.1020 (10)
C290.7547 (5)0.8597 (4)0.5466 (3)0.0880 (13)
H29A0.70330.82320.51320.106*
H29B0.74490.83690.62250.106*
C280.9102 (5)0.8140 (4)0.5149 (3)0.0865 (12)
H28A0.97110.80110.57350.104*
H28B0.94130.73240.49220.104*
C310.7966 (6)1.0237 (3)0.4287 (4)0.1018 (17)
H31A0.74961.05130.36040.122*
H31B0.82241.09220.43940.122*
C300.6989 (5)1.0016 (4)0.5091 (5)0.1097 (18)
H30A0.60061.03570.48130.132*
H30B0.69681.04330.56630.132*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0122 (7)0.0459 (9)0.0146 (7)0.0065 (7)0.0016 (5)0.0084 (6)
O30.0128 (7)0.0393 (9)0.0168 (7)0.0059 (6)0.0003 (5)0.0045 (6)
O70.0138 (6)0.0282 (7)0.0112 (6)0.0055 (6)0.0005 (5)0.0057 (5)
O10.0140 (7)0.0446 (9)0.0136 (7)0.0048 (7)0.0009 (5)0.0112 (6)
O50.0174 (7)0.0455 (9)0.0129 (7)0.0095 (7)0.0007 (6)0.0099 (6)
C90.0162 (9)0.0203 (9)0.0121 (8)0.0068 (8)0.0021 (7)0.0046 (7)
O20.0135 (7)0.0491 (10)0.0161 (7)0.0056 (7)0.0010 (6)0.0081 (7)
C60.0146 (9)0.0206 (10)0.0144 (9)0.0046 (8)0.0012 (7)0.0032 (7)
C20.0119 (9)0.0271 (11)0.0174 (9)0.0031 (8)0.0009 (7)0.0063 (8)
O60.0145 (7)0.0405 (9)0.0147 (7)0.0048 (7)0.0023 (5)0.0065 (6)
C70.0138 (9)0.0223 (10)0.0156 (9)0.0065 (8)0.0003 (7)0.0019 (7)
C80.0158 (9)0.0218 (10)0.0136 (9)0.0061 (8)0.0022 (7)0.0038 (7)
C100.0157 (9)0.0181 (9)0.0150 (9)0.0068 (8)0.0000 (7)0.0030 (7)
C110.0143 (9)0.0218 (10)0.0162 (9)0.0058 (8)0.0004 (7)0.0043 (7)
C40.0189 (10)0.0298 (11)0.0125 (9)0.0074 (9)0.0032 (7)0.0049 (8)
C10.0167 (9)0.0192 (9)0.0131 (9)0.0059 (8)0.0018 (7)0.0032 (7)
C30.0166 (9)0.0248 (10)0.0145 (9)0.0052 (8)0.0014 (7)0.0061 (8)
C140.0131 (9)0.0265 (10)0.0182 (9)0.0048 (8)0.0002 (7)0.0050 (8)
C50.0148 (9)0.0236 (10)0.0178 (9)0.0046 (8)0.0029 (7)0.0045 (8)
C120.0183 (9)0.0230 (10)0.0125 (9)0.0079 (8)0.0019 (7)0.0050 (7)
C130.0172 (9)0.0222 (10)0.0133 (9)0.0066 (8)0.0032 (7)0.0022 (7)
C150.0171 (9)0.0248 (10)0.0128 (9)0.0055 (8)0.0014 (7)0.0054 (7)
N20.0168 (8)0.0459 (12)0.0224 (9)0.0049 (8)0.0020 (7)0.0115 (8)
N10.0160 (8)0.0340 (10)0.0284 (9)0.0051 (8)0.0036 (7)0.0082 (8)
C220.0176 (10)0.0273 (11)0.0352 (12)0.0071 (9)0.0003 (9)0.0049 (9)
C170.0206 (10)0.0312 (12)0.0351 (12)0.0065 (9)0.0029 (9)0.0002 (10)
C180.0171 (10)0.0276 (11)0.0295 (11)0.0050 (9)0.0007 (8)0.0093 (9)
C230.0169 (10)0.0238 (11)0.0296 (11)0.0055 (8)0.0035 (8)0.0054 (9)
C240.0213 (10)0.0270 (11)0.0356 (12)0.0093 (9)0.0043 (9)0.0002 (9)
C210.0190 (10)0.0272 (11)0.0352 (12)0.0091 (9)0.0002 (9)0.0052 (9)
C270.0183 (10)0.0321 (12)0.0272 (11)0.0068 (9)0.0040 (8)0.0001 (9)
C190.0219 (10)0.0315 (12)0.0290 (11)0.0079 (9)0.0022 (9)0.0031 (9)
C200.0225 (11)0.0380 (13)0.0264 (11)0.0027 (10)0.0045 (9)0.0059 (10)
C260.0190 (10)0.0431 (13)0.0249 (11)0.0117 (10)0.0006 (8)0.0029 (10)
C250.0202 (10)0.0271 (11)0.0353 (12)0.0054 (9)0.0063 (9)0.0021 (9)
C160.0201 (10)0.0461 (14)0.0299 (12)0.0127 (10)0.0020 (9)0.0070 (10)
O80.111 (2)0.0655 (17)0.108 (2)0.0251 (17)0.0533 (19)0.0217 (16)
C290.128 (4)0.064 (2)0.093 (3)0.060 (3)0.040 (3)0.030 (2)
C280.099 (3)0.054 (2)0.084 (3)0.015 (2)0.003 (2)0.006 (2)
C310.136 (4)0.039 (2)0.105 (3)0.021 (2)0.053 (3)0.015 (2)
C300.089 (3)0.057 (2)0.184 (5)0.035 (2)0.056 (3)0.039 (3)
Geometric parameters (Å, º) top
O4—C81.356 (2)N1—C251.331 (3)
O4—H4O0.86 (3)N1—C261.337 (3)
O3—C71.260 (2)C22—C211.325 (3)
O7—C11.359 (2)C22—C231.468 (3)
O7—C91.372 (2)C22—H220.97 (3)
O1—C31.348 (2)C17—C161.375 (3)
O1—H1O0.87 (3)C17—C181.394 (3)
O5—C121.365 (2)C17—H170.9300
O5—H5O0.91 (3)C18—C191.392 (3)
C9—C81.366 (3)C18—C211.466 (3)
C9—C101.465 (3)C23—C271.389 (3)
O2—C51.353 (2)C23—C241.394 (3)
O2—H2O0.87 (3)C24—C251.385 (3)
C6—C11.401 (3)C24—H240.9300
C6—C51.420 (3)C21—H210.96 (2)
C6—C71.426 (3)C27—C261.378 (3)
C2—C11.379 (3)C27—H270.9300
C2—C31.386 (3)C19—C201.376 (3)
C2—H20.9300C19—H190.9300
O6—C131.353 (2)C20—H200.9300
O6—H6O0.87 (3)C26—H260.9300
C7—C81.444 (3)C25—H250.9300
C10—C111.403 (3)C16—H160.9300
C10—C151.404 (3)O8—C311.379 (5)
C11—C121.383 (3)O8—C281.413 (4)
C11—H110.9300C29—C301.473 (5)
C4—C51.372 (3)C29—C281.476 (6)
C4—C31.404 (3)C29—H29A0.9700
C4—H40.9300C29—H29B0.9700
C14—C151.382 (3)C28—H28A0.9700
C14—C131.387 (3)C28—H28B0.9700
C14—H140.9300C31—C301.419 (5)
C12—C131.401 (3)C31—H31A0.9700
C15—H150.9300C31—H31B0.9700
N2—C201.332 (3)C30—H30A0.9700
N2—C161.337 (3)C30—H30B0.9700
C8—O4—H4O106 (2)C16—C17—H17120.2
C1—O7—C9122.39 (14)C18—C17—H17120.2
C3—O1—H1O111 (2)C19—C18—C17116.72 (19)
C12—O5—H5O106.4 (19)C19—C18—C21119.6 (2)
C8—C9—O7119.43 (16)C17—C18—C21123.7 (2)
C8—C9—C10129.77 (17)C27—C23—C24116.81 (19)
O7—C9—C10110.80 (15)C27—C23—C22122.98 (19)
C5—O2—H2O103 (2)C24—C23—C22120.20 (19)
C1—C6—C5117.57 (17)C25—C24—C23119.7 (2)
C1—C6—C7119.68 (16)C25—C24—H24120.2
C5—C6—C7122.74 (16)C23—C24—H24120.2
C1—C2—C3117.81 (17)C22—C21—C18126.2 (2)
C1—C2—H2121.1C22—C21—H21117.9 (14)
C3—C2—H2121.1C18—C21—H21115.6 (14)
C13—O6—H6O107.2 (17)C26—C27—C23119.5 (2)
O3—C7—C6122.97 (17)C26—C27—H27120.3
O3—C7—C8120.25 (17)C23—C27—H27120.3
C6—C7—C8116.78 (16)C20—C19—C18119.7 (2)
O4—C8—C9121.43 (17)C20—C19—H19120.2
O4—C8—C7117.14 (16)C18—C19—H19120.2
C9—C8—C7121.43 (17)N2—C20—C19123.6 (2)
C11—C10—C15118.19 (17)N2—C20—H20118.2
C11—C10—C9122.70 (16)C19—C20—H20118.2
C15—C10—C9119.11 (16)N1—C26—C27123.8 (2)
C12—C11—C10120.68 (17)N1—C26—H26118.1
C12—C11—H11119.7C27—C26—H26118.1
C10—C11—H11119.7N1—C25—C24123.3 (2)
C5—C4—C3119.63 (17)N1—C25—H25118.3
C5—C4—H4120.2C24—C25—H25118.3
C3—C4—H4120.2N2—C16—C17123.6 (2)
O7—C1—C2116.84 (16)N2—C16—H16118.2
O7—C1—C6120.28 (16)C17—C16—H16118.2
C2—C1—C6122.87 (17)C31—O8—C28108.9 (3)
O1—C3—C2122.15 (17)C30—C29—C28103.5 (3)
O1—C3—C4116.23 (17)C30—C29—H29A111.1
C2—C3—C4121.61 (17)C28—C29—H29A111.1
C15—C14—C13120.65 (17)C30—C29—H29B111.1
C15—C14—H14119.7C28—C29—H29B111.1
C13—C14—H14119.7H29A—C29—H29B109.0
O2—C5—C4119.70 (17)O8—C28—C29106.4 (3)
O2—C5—C6119.80 (17)O8—C28—H28A110.4
C4—C5—C6120.51 (17)C29—C28—H28A110.4
O5—C12—C11118.68 (17)O8—C28—H28B110.4
O5—C12—C13120.82 (16)C29—C28—H28B110.4
C11—C12—C13120.49 (17)H28A—C28—H28B108.6
O6—C13—C14123.79 (17)O8—C31—C30109.8 (3)
O6—C13—C12117.13 (16)O8—C31—H31A109.7
C14—C13—C12119.09 (17)C30—C31—H31A109.7
C14—C15—C10120.90 (17)O8—C31—H31B109.7
C14—C15—H15119.6C30—C31—H31B109.7
C10—C15—H15119.6H31A—C31—H31B108.2
C20—N2—C16116.91 (18)C31—C30—C29106.0 (3)
C25—N1—C26116.90 (18)C31—C30—H30A110.5
C21—C22—C23124.7 (2)C29—C30—H30A110.5
C21—C22—H22117.8 (16)C31—C30—H30B110.5
C23—C22—H22117.5 (16)C29—C30—H30B110.5
C16—C17—C18119.6 (2)H30A—C30—H30B108.7
(QDP_III) top
Crystal data top
C30H26N3O8V = 1322.2 (4) Å3
Mr = 556.54Z = 2
Triclinic, P1F(000) = 582
a = 9.9867 (15) ÅDx = 1.398 Mg m3
b = 11.2949 (17) ÅMo Kα radiation, λ = 0.71073 Å
c = 13.040 (2) ŵ = 0.10 mm1
α = 79.558 (6)°T = 150 K
β = 85.192 (6)°Plate, yellow
γ = 66.082 (5)°0.40 × 0.20 × 0.12 mm
Data collection top
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
Rint = 0.052
Tmin = 0.747, Tmax = 1.000θmax = 27.5°, θmin = 3.0°
13781 measured reflectionsh = 1212
6040 independent reflectionsk = 1414
3745 reflections with I > 2σ(I)l = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.063H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.178 w = 1/[σ2(Fo2) + (0.0779P)2 + 0.8181P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
6040 reflectionsΔρmax = 0.49 e Å3
400 parametersΔρmin = 0.41 e Å3
Crystal data top
C30H26N3O8γ = 66.082 (5)°
Mr = 556.54V = 1322.2 (4) Å3
Triclinic, P1Z = 2
a = 9.9867 (15) ÅMo Kα radiation
b = 11.2949 (17) ŵ = 0.10 mm1
c = 13.040 (2) ÅT = 150 K
α = 79.558 (6)°0.40 × 0.20 × 0.12 mm
β = 85.192 (6)°
Data collection top
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
6040 independent reflections
Tmin = 0.747, Tmax = 1.0003745 reflections with I > 2σ(I)
13781 measured reflectionsRint = 0.052
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.178H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.49 e Å3
6040 reflectionsΔρmin = 0.41 e Å3
400 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H210.410 (3)0.325 (3)0.441 (2)0.023 (7)*
H220.421 (3)0.540 (3)0.281 (2)0.036 (9)*
H4O0.884 (4)0.026 (3)0.068 (2)0.037 (9)*
H1O0.291 (4)0.182 (4)0.414 (3)0.052 (11)*
H5O0.443 (4)0.171 (3)0.438 (3)0.051 (11)*
H6O0.109 (5)0.314 (4)0.369 (3)0.087 (14)*
H2O0.916 (4)0.019 (4)0.240 (3)0.064 (12)*
O70.46781 (17)0.15568 (18)0.06622 (12)0.0198 (4)
O40.7980 (2)0.0549 (2)0.09157 (14)0.0268 (5)
O30.90774 (18)0.00632 (19)0.10269 (13)0.0247 (4)
O10.3810 (2)0.15848 (19)0.42803 (13)0.0233 (4)
O50.5140 (2)0.16261 (19)0.39543 (13)0.0241 (4)
O20.86627 (19)0.0022 (2)0.30414 (14)0.0268 (5)
O60.2176 (2)0.28080 (19)0.38114 (13)0.0241 (4)
C20.4191 (3)0.1614 (3)0.24381 (19)0.0212 (6)
H20.31700.20010.23020.025*
C90.5576 (3)0.1322 (3)0.02008 (18)0.0178 (5)
C60.6720 (3)0.0745 (3)0.18020 (18)0.0180 (5)
C70.7699 (3)0.0449 (3)0.09392 (18)0.0184 (5)
C80.7053 (3)0.0780 (3)0.00765 (18)0.0193 (5)
C40.6217 (3)0.0789 (3)0.36537 (19)0.0204 (6)
H40.65490.06170.43480.025*
C10.5211 (3)0.1304 (2)0.16420 (18)0.0175 (5)
C100.4701 (3)0.1720 (2)0.11489 (18)0.0175 (5)
C110.5339 (3)0.1470 (3)0.21332 (18)0.0185 (5)
H110.63720.10310.21960.022*
C140.2324 (3)0.2730 (3)0.19569 (19)0.0224 (6)
H140.12910.31660.18950.027*
C130.2954 (3)0.2477 (3)0.29248 (19)0.0183 (5)
C30.4713 (3)0.1340 (3)0.34477 (18)0.0190 (5)
C120.4479 (3)0.1856 (3)0.30095 (18)0.0181 (5)
C50.7208 (3)0.0501 (3)0.28455 (19)0.0189 (5)
C150.3181 (3)0.2355 (3)0.10817 (19)0.0210 (6)
H150.27280.25320.04250.025*
N10.0991 (2)0.2330 (2)0.39415 (17)0.0274 (5)
N20.9263 (2)0.6276 (2)0.34570 (18)0.0271 (5)
C180.2072 (3)0.3292 (3)0.3879 (2)0.0231 (6)
C220.4594 (3)0.4847 (3)0.3317 (2)0.0252 (6)
C210.3676 (3)0.3782 (3)0.3910 (2)0.0260 (6)
C230.6192 (3)0.5318 (3)0.3373 (2)0.0243 (6)
C240.7058 (3)0.6358 (3)0.2639 (2)0.0291 (7)
H240.66140.67590.20920.035*
C190.1259 (3)0.2216 (3)0.4607 (2)0.0275 (6)
H190.17430.17870.50970.033*
C270.6924 (3)0.4769 (3)0.4140 (2)0.0271 (6)
H270.63860.40550.46540.032*
C170.1288 (3)0.3857 (3)0.3170 (2)0.0273 (6)
H170.17880.45850.26530.033*
C260.8425 (3)0.5264 (3)0.4149 (2)0.0278 (6)
H260.88990.48670.46760.033*
C200.0249 (3)0.1773 (3)0.4615 (2)0.0287 (7)
H200.07800.10430.51200.034*
C250.8567 (3)0.6801 (3)0.2716 (2)0.0295 (7)
H250.91380.75170.22160.035*
C160.0210 (3)0.3355 (3)0.3225 (2)0.0279 (6)
H160.07250.37490.27320.033*
N30.8016 (4)0.4054 (3)0.0184 (2)0.0511 (8)
C290.9415 (4)0.2947 (4)0.0374 (4)0.0644 (11)
H29A0.95310.23200.00920.097*
H29B0.94490.25150.11000.097*
H29C1.02080.32560.02420.097*
O80.8856 (5)0.5211 (4)0.1113 (3)0.1013 (12)
C300.6750 (5)0.3998 (5)0.0766 (3)0.0683 (12)
H30A0.59640.48790.06980.102*
H30B0.70040.36680.15020.102*
H30C0.64200.34090.04940.102*
C280.7850 (5)0.5093 (4)0.0565 (3)0.0621 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O70.0135 (8)0.0315 (11)0.0108 (8)0.0054 (8)0.0000 (6)0.0034 (7)
O40.0109 (9)0.0487 (13)0.0144 (9)0.0056 (9)0.0009 (7)0.0052 (8)
O30.0139 (9)0.0381 (12)0.0170 (9)0.0058 (8)0.0007 (7)0.0031 (8)
O10.0130 (9)0.0405 (12)0.0125 (9)0.0053 (9)0.0024 (7)0.0088 (8)
O50.0169 (9)0.0415 (12)0.0120 (9)0.0085 (9)0.0009 (7)0.0078 (8)
O20.0127 (9)0.0446 (13)0.0171 (9)0.0054 (9)0.0020 (7)0.0040 (9)
O60.0151 (9)0.0381 (12)0.0141 (9)0.0053 (8)0.0046 (7)0.0029 (8)
C20.0134 (12)0.0300 (15)0.0170 (12)0.0045 (11)0.0010 (10)0.0055 (11)
C90.0169 (12)0.0231 (14)0.0133 (12)0.0073 (11)0.0015 (9)0.0047 (10)
C60.0160 (12)0.0232 (14)0.0143 (12)0.0070 (11)0.0000 (9)0.0041 (10)
C70.0161 (12)0.0226 (14)0.0145 (12)0.0063 (11)0.0010 (9)0.0011 (10)
C80.0163 (12)0.0269 (14)0.0121 (12)0.0064 (11)0.0028 (9)0.0034 (10)
C40.0194 (13)0.0265 (15)0.0136 (12)0.0067 (11)0.0022 (10)0.0037 (10)
C10.0158 (12)0.0224 (14)0.0119 (11)0.0053 (11)0.0030 (9)0.0008 (10)
C100.0151 (12)0.0222 (14)0.0133 (12)0.0064 (11)0.0013 (9)0.0002 (10)
C110.0135 (12)0.0253 (14)0.0167 (12)0.0075 (11)0.0017 (9)0.0047 (10)
C140.0134 (12)0.0314 (16)0.0193 (13)0.0059 (11)0.0008 (10)0.0037 (11)
C130.0153 (12)0.0242 (14)0.0147 (12)0.0072 (11)0.0042 (9)0.0008 (10)
C30.0168 (12)0.0264 (14)0.0130 (12)0.0082 (11)0.0020 (9)0.0032 (10)
C120.0176 (12)0.0235 (14)0.0123 (12)0.0074 (11)0.0018 (9)0.0038 (10)
C50.0145 (12)0.0242 (14)0.0165 (12)0.0061 (11)0.0019 (9)0.0027 (10)
C150.0173 (12)0.0291 (15)0.0140 (12)0.0058 (11)0.0012 (10)0.0060 (11)
N10.0193 (11)0.0395 (15)0.0206 (12)0.0077 (11)0.0017 (9)0.0072 (10)
N20.0181 (11)0.0342 (14)0.0252 (12)0.0054 (10)0.0016 (9)0.0069 (10)
C180.0161 (13)0.0266 (15)0.0256 (14)0.0062 (11)0.0018 (10)0.0069 (11)
C220.0196 (13)0.0270 (15)0.0280 (15)0.0087 (12)0.0005 (11)0.0037 (12)
C210.0175 (13)0.0286 (16)0.0307 (15)0.0083 (12)0.0007 (11)0.0038 (12)
C230.0179 (13)0.0237 (15)0.0299 (15)0.0058 (11)0.0023 (11)0.0060 (12)
C240.0206 (14)0.0303 (16)0.0326 (16)0.0090 (12)0.0026 (11)0.0023 (13)
C190.0222 (14)0.0321 (16)0.0250 (14)0.0086 (12)0.0005 (11)0.0020 (12)
C270.0189 (13)0.0302 (16)0.0277 (15)0.0059 (12)0.0028 (11)0.0020 (12)
C170.0191 (13)0.0300 (16)0.0276 (15)0.0057 (12)0.0025 (11)0.0007 (12)
C260.0205 (13)0.0380 (17)0.0225 (14)0.0106 (13)0.0002 (11)0.0014 (12)
C200.0213 (14)0.0339 (17)0.0222 (14)0.0025 (13)0.0024 (11)0.0022 (12)
C250.0196 (14)0.0308 (16)0.0317 (16)0.0039 (12)0.0052 (12)0.0016 (13)
C160.0202 (13)0.0379 (17)0.0246 (14)0.0116 (13)0.0020 (11)0.0038 (12)
N30.067 (2)0.0468 (18)0.0438 (17)0.0253 (17)0.0084 (15)0.0152 (15)
C290.058 (3)0.049 (2)0.082 (3)0.016 (2)0.010 (2)0.018 (2)
O80.137 (3)0.121 (3)0.073 (2)0.085 (3)0.011 (2)0.006 (2)
C300.086 (3)0.076 (3)0.060 (3)0.048 (3)0.012 (2)0.020 (2)
C280.100 (3)0.061 (3)0.040 (2)0.049 (3)0.012 (2)0.0095 (19)
Geometric parameters (Å, º) top
O7—C11.362 (3)N1—C161.349 (4)
O7—C91.374 (3)N2—C251.335 (4)
O4—C81.364 (3)N2—C261.341 (4)
O4—H4O0.85 (3)C18—C171.395 (4)
O3—C71.265 (3)C18—C191.395 (4)
O1—C31.346 (3)C18—C211.467 (4)
O1—H1O0.86 (4)C22—C211.331 (4)
O5—C121.365 (3)C22—C231.464 (4)
O5—H5O0.90 (4)C22—H220.99 (3)
O2—C51.355 (3)C21—H210.99 (3)
O2—H2O0.94 (4)C23—C271.392 (4)
O6—C131.356 (3)C23—C241.396 (4)
O6—H6O1.01 (4)C24—C251.383 (4)
C2—C11.379 (3)C24—H240.9500
C2—C31.392 (3)C19—C201.381 (4)
C2—H20.9500C19—H190.9500
C9—C81.360 (3)C27—C261.371 (4)
C9—C101.468 (3)C27—H270.9500
C6—C11.396 (3)C17—C161.371 (4)
C6—C71.421 (3)C17—H170.9500
C6—C51.425 (3)C26—H260.9500
C7—C81.442 (3)C20—H200.9500
C4—C51.373 (3)C25—H250.9500
C4—C31.402 (3)C16—H160.9500
C4—H40.9500N3—C281.346 (5)
C10—C151.394 (3)N3—C301.436 (5)
C10—C111.408 (3)N3—C291.452 (5)
C11—C121.384 (3)C29—H29A0.9800
C11—H110.9500C29—H29B0.9800
C14—C151.382 (3)C29—H29C0.9800
C14—C131.386 (3)O8—C281.221 (5)
C14—H140.9500C30—H30A0.9800
C13—C121.399 (3)C30—H30B0.9800
C15—H150.9500C30—H30C0.9800
N1—C201.336 (4)
C1—O7—C9122.44 (18)C17—C18—C19116.9 (2)
C8—O4—H4O106 (2)C17—C18—C21123.8 (2)
C3—O1—H1O114 (2)C19—C18—C21119.3 (3)
C12—O5—H5O106 (2)C21—C22—C23124.7 (3)
C5—O2—H2O107 (2)C21—C22—H22120.2 (18)
C13—O6—H6O114 (2)C23—C22—H22115.0 (18)
C1—C2—C3117.5 (2)C22—C21—C18126.0 (3)
C1—C2—H2121.2C22—C21—H21117.6 (16)
C3—C2—H2121.2C18—C21—H21116.4 (16)
C8—C9—O7119.2 (2)C27—C23—C24116.8 (2)
C8—C9—C10130.4 (2)C27—C23—C22122.8 (2)
O7—C9—C10110.42 (19)C24—C23—C22120.4 (3)
C1—C6—C7119.8 (2)C25—C24—C23119.4 (3)
C1—C6—C5117.4 (2)C25—C24—H24120.3
C7—C6—C5122.8 (2)C23—C24—H24120.3
O3—C7—C6123.2 (2)C20—C19—C18120.1 (3)
O3—C7—C8119.9 (2)C20—C19—H19120.0
C6—C7—C8116.9 (2)C18—C19—H19120.0
C9—C8—O4120.9 (2)C26—C27—C23119.7 (3)
C9—C8—C7121.6 (2)C26—C27—H27120.1
O4—C8—C7117.5 (2)C23—C27—H27120.1
C5—C4—C3119.6 (2)C16—C17—C18119.5 (3)
C5—C4—H4120.2C16—C17—H17120.3
C3—C4—H4120.2C18—C17—H17120.3
O7—C1—C2116.7 (2)N2—C26—C27123.7 (3)
O7—C1—C6120.0 (2)N2—C26—H26118.1
C2—C1—C6123.3 (2)C27—C26—H26118.1
C15—C10—C11118.2 (2)N1—C20—C19122.7 (3)
C15—C10—C9119.5 (2)N1—C20—H20118.7
C11—C10—C9122.4 (2)C19—C20—H20118.7
C12—C11—C10120.7 (2)N2—C25—C24123.4 (3)
C12—C11—H11119.6N2—C25—H25118.3
C10—C11—H11119.6C24—C25—H25118.3
C15—C14—C13120.8 (2)N1—C16—C17123.4 (3)
C15—C14—H14119.6N1—C16—H16118.3
C13—C14—H14119.6C17—C16—H16118.3
O6—C13—C14123.8 (2)C28—N3—C30119.0 (4)
O6—C13—C12117.2 (2)C28—N3—C29122.1 (4)
C14—C13—C12119.0 (2)C30—N3—C29118.8 (3)
O1—C3—C2122.2 (2)N3—C29—H29A109.5
O1—C3—C4116.2 (2)N3—C29—H29B109.5
C2—C3—C4121.6 (2)H29A—C29—H29B109.5
O5—C12—C11119.0 (2)N3—C29—H29C109.5
O5—C12—C13120.7 (2)H29A—C29—H29C109.5
C11—C12—C13120.3 (2)H29B—C29—H29C109.5
O2—C5—C4119.7 (2)N3—C30—H30A109.5
O2—C5—C6119.7 (2)N3—C30—H30B109.5
C4—C5—C6120.5 (2)H30A—C30—H30B109.5
C14—C15—C10121.0 (2)N3—C30—H30C109.5
C14—C15—H15119.5H30A—C30—H30C109.5
C10—C15—H15119.5H30B—C30—H30C109.5
C20—N1—C16117.4 (2)O8—C28—N3123.5 (5)
C25—N2—C26116.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O40.952.252.905 (3)125
C20—H20···O2i0.952.473.325 (3)150
C16—H16···O8ii0.952.323.202 (4)155
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z.
(QDP_IV) top
Crystal data top
C39H30N4O7Z = 4
Mr = 666.67F(000) = 1392
Monoclinic, P21/cDx = 1.399 Mg m3
a = 18.0656 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.6584 (6) ŵ = 0.10 mm1
c = 16.661 (1) ÅT = 150 K
β = 115.565 (2)°Plate, yellow
V = 3165.5 (3) Å30.30 × 0.20 × 0.15 mm
Data collection top
Absorption correction: analytical
Bruker, AXS, 2008
Rint = 0.038
Tmin = 0.977, Tmax = 0.985θmax = 27.5°, θmin = 2.2°
27138 measured reflectionsh = 2223
7197 independent reflectionsk = 1415
5739 reflections with I > 2σ(I)l = 2119
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0488P)2 + 1.7932P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
7197 reflectionsΔρmax = 0.68 e Å3
497 parametersΔρmin = 0.44 e Å3
Crystal data top
C39H30N4O7V = 3165.5 (3) Å3
Mr = 666.67Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.0656 (11) ŵ = 0.10 mm1
b = 11.6584 (6) ÅT = 150 K
c = 16.661 (1) Å0.30 × 0.20 × 0.15 mm
β = 115.565 (2)°
Data collection top
Absorption correction: analytical
Bruker, AXS, 2008
7197 independent reflections
Tmin = 0.977, Tmax = 0.9855739 reflections with I > 2σ(I)
27138 measured reflectionsRint = 0.038
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.68 e Å3
7197 reflectionsΔρmin = 0.44 e Å3
497 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C80.24907 (9)0.83777 (13)0.24989 (10)0.0171 (3)
C70.20403 (9)0.75191 (13)0.18346 (10)0.0185 (3)
C60.13938 (9)0.69305 (12)0.19485 (9)0.0168 (3)
C50.08766 (9)0.61084 (13)0.13235 (10)0.0194 (3)
C40.02654 (9)0.55611 (14)0.14597 (10)0.0212 (3)
H40.00780.50170.10390.025*
C30.01522 (9)0.58113 (14)0.22248 (10)0.0207 (3)
C20.06473 (9)0.66085 (13)0.28514 (10)0.0196 (3)
H20.05710.67720.33690.023*
C10.12524 (9)0.71537 (12)0.26953 (9)0.0160 (3)
C90.23078 (8)0.85735 (12)0.32036 (9)0.0148 (3)
C100.26511 (9)0.94336 (12)0.39125 (9)0.0152 (3)
C110.33837 (9)1.00262 (12)0.40892 (10)0.0171 (3)
H110.36900.98380.37650.021*
C120.36656 (9)1.08819 (13)0.47304 (10)0.0179 (3)
C130.32267 (9)1.11430 (13)0.52301 (10)0.0182 (3)
C140.25069 (9)1.05487 (13)0.50593 (10)0.0185 (3)
H140.22081.07240.53930.022*
C150.22179 (9)0.97058 (13)0.44111 (9)0.0168 (3)
H150.17240.93100.43040.020*
O10.04539 (7)0.52590 (11)0.23338 (8)0.0294 (3)
O20.09958 (7)0.58703 (11)0.05914 (7)0.0267 (3)
O30.21968 (7)0.73393 (10)0.11786 (7)0.0277 (3)
O40.30761 (7)0.90017 (10)0.23958 (8)0.0234 (3)
O50.43663 (7)1.14884 (10)0.49117 (7)0.0248 (3)
O60.35355 (7)1.19665 (9)0.58681 (7)0.0234 (3)
O70.17189 (6)0.79333 (9)0.33133 (7)0.0170 (2)
C280.51394 (10)0.02744 (14)0.33534 (10)0.0226 (3)
H280.51210.04320.36290.027*
C290.54421 (10)0.02701 (14)0.27174 (11)0.0233 (3)
H290.56280.04250.25690.028*
C300.54715 (9)0.12933 (13)0.22959 (10)0.0188 (3)
C310.52020 (11)0.22703 (15)0.25600 (12)0.0293 (4)
H310.52190.29910.23030.035*
C320.49075 (11)0.21957 (15)0.31994 (12)0.0303 (4)
H320.47200.28780.33630.036*
C330.57657 (9)0.13835 (14)0.16021 (11)0.0216 (3)
C340.58913 (9)0.05178 (14)0.11567 (10)0.0209 (3)
C350.61757 (9)0.06396 (14)0.04543 (10)0.0201 (3)
C360.64047 (10)0.17002 (15)0.02398 (11)0.0261 (4)
H360.63770.23720.05480.031*
C370.66709 (11)0.17695 (15)0.04211 (11)0.0274 (4)
H370.68340.24960.05470.033*
C380.64847 (9)0.01577 (14)0.06959 (10)0.0218 (3)
H380.65030.08100.10290.026*
C400.62264 (9)0.03125 (14)0.00308 (10)0.0212 (3)
H400.60860.10550.00940.025*
N30.48725 (8)0.12187 (12)0.35991 (9)0.0216 (3)
N40.67101 (8)0.08547 (12)0.08968 (9)0.0231 (3)
C160.25596 (10)0.40652 (14)0.22258 (11)0.0250 (4)
H160.26800.47520.19980.030*
C170.21853 (11)0.41535 (15)0.27930 (11)0.0276 (4)
H170.20620.48860.29530.033*
C180.19901 (10)0.31580 (16)0.31290 (10)0.0267 (4)
C190.21883 (10)0.21217 (15)0.28634 (11)0.0282 (4)
H190.20590.14210.30640.034*
C200.25748 (10)0.21097 (15)0.23061 (11)0.0270 (4)
H200.27150.13880.21460.032*
C210.15987 (12)0.3112 (2)0.37430 (13)0.0220 (8)0.864 (10)
C21A0.1764 (8)0.3765 (16)0.3834 (8)0.020 (4)*0.136 (10)
C220.15435 (11)0.40133 (18)0.42012 (13)0.0241 (6)0.863 (6)
C22A0.1430 (6)0.3033 (9)0.4241 (7)0.016 (4)*0.137 (6)
C230.12065 (10)0.40073 (18)0.48708 (12)0.0342 (4)
C240.08726 (12)0.30336 (19)0.50876 (13)0.0403 (5)
H240.08380.23270.47890.048*
C250.05896 (11)0.31141 (18)0.57522 (13)0.0362 (4)
H250.03740.24480.59040.043*
C260.09219 (10)0.50152 (18)0.59378 (11)0.0318 (4)
H260.09290.57240.62220.038*
C270.12282 (11)0.50064 (19)0.53108 (12)0.0355 (4)
H270.14510.56840.51860.043*
N10.27623 (8)0.30606 (12)0.19792 (9)0.0240 (3)
N20.06143 (8)0.40985 (13)0.61773 (9)0.0290 (3)
H330.5842 (11)0.2176 (17)0.1471 (12)0.028 (5)*
H210.1770 (12)0.4730 (18)0.4117 (13)0.034 (5)*
H340.5795 (11)0.0267 (17)0.1282 (12)0.033 (5)*
H220.1373 (12)0.2356 (18)0.3841 (13)0.033 (5)*
H5O0.4549 (13)1.1322 (18)0.4452 (14)0.041 (6)*
H6O0.3228 (13)1.1962 (19)0.6217 (15)0.048 (6)*
H2O0.1411 (14)0.6301 (19)0.0626 (14)0.043 (6)*
H4O0.3070 (15)0.893 (2)0.1850 (18)0.063 (8)*
H1O0.0500 (14)0.556 (2)0.2841 (17)0.058 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C80.0187 (7)0.0172 (7)0.0177 (7)0.0020 (6)0.0100 (6)0.0004 (6)
C70.0218 (7)0.0195 (7)0.0162 (7)0.0000 (6)0.0102 (6)0.0010 (6)
C60.0180 (7)0.0176 (7)0.0150 (7)0.0001 (6)0.0074 (6)0.0001 (6)
C50.0208 (7)0.0228 (8)0.0154 (7)0.0001 (6)0.0086 (6)0.0022 (6)
C40.0192 (7)0.0241 (8)0.0197 (7)0.0048 (6)0.0078 (6)0.0059 (6)
C30.0164 (7)0.0250 (8)0.0215 (8)0.0034 (6)0.0090 (6)0.0017 (6)
C20.0194 (7)0.0245 (8)0.0177 (7)0.0018 (6)0.0108 (6)0.0031 (6)
C10.0157 (7)0.0164 (7)0.0142 (7)0.0007 (6)0.0050 (6)0.0011 (5)
C90.0151 (7)0.0146 (7)0.0155 (7)0.0000 (5)0.0075 (6)0.0011 (5)
C100.0182 (7)0.0157 (7)0.0125 (6)0.0021 (6)0.0072 (6)0.0013 (5)
C110.0204 (7)0.0181 (7)0.0160 (7)0.0007 (6)0.0108 (6)0.0002 (6)
C120.0204 (7)0.0191 (7)0.0166 (7)0.0034 (6)0.0103 (6)0.0004 (6)
C130.0246 (8)0.0163 (7)0.0152 (7)0.0011 (6)0.0099 (6)0.0015 (6)
C140.0220 (7)0.0220 (8)0.0167 (7)0.0008 (6)0.0131 (6)0.0009 (6)
C150.0168 (7)0.0191 (7)0.0159 (7)0.0016 (6)0.0083 (6)0.0008 (6)
O10.0256 (6)0.0414 (7)0.0276 (6)0.0163 (5)0.0174 (5)0.0134 (6)
O20.0296 (6)0.0348 (7)0.0216 (6)0.0119 (5)0.0166 (5)0.0118 (5)
O30.0353 (7)0.0335 (7)0.0240 (6)0.0127 (5)0.0218 (5)0.0110 (5)
O40.0294 (6)0.0282 (6)0.0199 (6)0.0118 (5)0.0176 (5)0.0078 (5)
O50.0285 (6)0.0304 (6)0.0225 (6)0.0131 (5)0.0176 (5)0.0091 (5)
O60.0320 (6)0.0231 (6)0.0218 (6)0.0092 (5)0.0178 (5)0.0093 (5)
O70.0190 (5)0.0198 (5)0.0152 (5)0.0043 (4)0.0101 (4)0.0033 (4)
C280.0284 (8)0.0219 (8)0.0216 (8)0.0040 (6)0.0145 (7)0.0003 (6)
C290.0304 (9)0.0205 (8)0.0253 (8)0.0021 (7)0.0180 (7)0.0018 (6)
C300.0171 (7)0.0239 (8)0.0168 (7)0.0010 (6)0.0086 (6)0.0006 (6)
C310.0409 (10)0.0239 (9)0.0348 (9)0.0083 (7)0.0274 (8)0.0099 (7)
C320.0406 (10)0.0253 (9)0.0385 (10)0.0087 (7)0.0296 (9)0.0053 (7)
C330.0225 (8)0.0243 (8)0.0214 (8)0.0014 (6)0.0128 (6)0.0026 (6)
C340.0222 (8)0.0247 (8)0.0184 (7)0.0046 (6)0.0113 (6)0.0005 (6)
C350.0184 (7)0.0265 (8)0.0162 (7)0.0045 (6)0.0083 (6)0.0021 (6)
C360.0347 (9)0.0260 (9)0.0246 (8)0.0114 (7)0.0194 (7)0.0092 (7)
C370.0359 (9)0.0272 (9)0.0276 (9)0.0124 (7)0.0215 (8)0.0067 (7)
C380.0227 (8)0.0254 (8)0.0192 (7)0.0025 (6)0.0109 (6)0.0039 (6)
C400.0216 (8)0.0225 (8)0.0211 (7)0.0036 (6)0.0107 (6)0.0005 (6)
N30.0211 (6)0.0267 (7)0.0208 (7)0.0013 (5)0.0127 (6)0.0002 (6)
N40.0261 (7)0.0282 (7)0.0202 (7)0.0070 (6)0.0149 (6)0.0045 (6)
C160.0308 (9)0.0241 (8)0.0204 (8)0.0004 (7)0.0113 (7)0.0046 (6)
C170.0332 (9)0.0292 (9)0.0210 (8)0.0096 (7)0.0122 (7)0.0010 (7)
C180.0209 (8)0.0421 (10)0.0174 (7)0.0077 (7)0.0086 (6)0.0073 (7)
C190.0284 (9)0.0312 (9)0.0268 (9)0.0028 (7)0.0135 (7)0.0118 (7)
C200.0319 (9)0.0241 (8)0.0268 (8)0.0065 (7)0.0145 (7)0.0054 (7)
C210.0212 (10)0.0259 (17)0.0209 (10)0.0013 (9)0.0110 (8)0.0035 (8)
C220.0219 (10)0.0296 (13)0.0222 (10)0.0017 (8)0.0108 (8)0.0015 (8)
C230.0182 (8)0.0568 (12)0.0277 (9)0.0009 (8)0.0099 (7)0.0021 (9)
C240.0306 (10)0.0538 (12)0.0310 (10)0.0022 (9)0.0081 (8)0.0195 (9)
C250.0272 (9)0.0467 (12)0.0379 (10)0.0102 (8)0.0170 (8)0.0162 (9)
C260.0216 (8)0.0488 (11)0.0255 (9)0.0110 (8)0.0104 (7)0.0061 (8)
C270.0230 (8)0.0570 (12)0.0270 (9)0.0069 (8)0.0112 (7)0.0013 (9)
N10.0271 (7)0.0280 (7)0.0203 (7)0.0044 (6)0.0136 (6)0.0054 (6)
N20.0232 (7)0.0428 (9)0.0260 (7)0.0105 (6)0.0154 (6)0.0111 (7)
Geometric parameters (Å, º) top
C8—O41.3543 (18)C34—C351.474 (2)
C8—C91.369 (2)C34—H340.97 (2)
C8—C71.453 (2)C35—C361.398 (2)
C7—O31.2590 (18)C35—C401.399 (2)
C7—C61.436 (2)C36—C371.381 (2)
C6—C11.398 (2)C36—H360.9500
C6—C51.427 (2)C37—N41.349 (2)
C5—O21.3558 (18)C37—H370.9500
C5—C41.376 (2)C38—N41.337 (2)
C4—C31.406 (2)C38—C401.387 (2)
C4—H40.9500C38—H380.9500
C3—O11.3485 (18)C40—H400.9500
C3—C21.396 (2)C16—N11.343 (2)
C2—C11.383 (2)C16—C171.383 (2)
C2—H20.9500C16—H160.9500
C1—O71.3593 (17)C17—C181.398 (2)
C9—O71.3749 (17)C17—H170.9500
C9—C101.467 (2)C18—C191.386 (3)
C10—C151.402 (2)C18—C211.474 (2)
C10—C111.407 (2)C18—C21A1.569 (14)
C11—C121.388 (2)C19—C201.382 (2)
C11—H110.9500C19—H190.9500
C12—O51.3652 (18)C20—N11.341 (2)
C12—C131.409 (2)C20—H200.9500
C13—O61.3605 (18)C21—C21A0.808 (17)
C13—C141.390 (2)C21—C22A1.003 (12)
C14—C151.385 (2)C21—C221.328 (3)
C14—H140.9500C21—H221.01 (2)
C15—H150.9500C21A—C220.909 (14)
O1—H1O0.95 (3)C21A—C22A1.38 (2)
O2—H2O0.88 (2)C21A—H211.22 (3)
O4—H4O0.91 (3)C22—C22A1.168 (11)
O5—H5O0.98 (2)C22—C231.484 (3)
O6—H6O0.96 (2)C22—H210.97 (2)
C28—N31.335 (2)C22A—C231.709 (11)
C28—C291.386 (2)C22A—H221.01 (2)
C28—H280.9500C23—C271.368 (3)
C29—C301.397 (2)C23—C241.404 (3)
C29—H290.9500C24—C251.409 (3)
C30—C311.383 (2)C24—H240.9500
C30—C331.470 (2)C25—N21.339 (2)
C31—C321.384 (2)C25—H250.9500
C31—H310.9500C26—N21.342 (2)
C32—N31.335 (2)C26—C271.377 (2)
C32—H320.9500C26—H260.9500
C33—C341.329 (2)C27—H270.9500
C33—H330.972 (19)
O4—C8—C9120.66 (13)C38—C40—C35119.12 (15)
O4—C8—C7118.99 (13)C38—C40—H40120.4
C9—C8—C7120.33 (13)C35—C40—H40120.4
O3—C7—C6122.36 (14)C32—N3—C28116.72 (13)
O3—C7—C8120.94 (14)C38—N4—C37116.87 (14)
C6—C7—C8116.65 (13)N1—C16—C17123.52 (15)
C1—C6—C5117.43 (13)N1—C16—H16118.2
C1—C6—C7119.99 (13)C17—C16—H16118.2
C5—C6—C7122.57 (13)C16—C17—C18119.60 (16)
O2—C5—C4120.24 (14)C16—C17—H17120.2
O2—C5—C6119.07 (13)C18—C17—H17120.2
C4—C5—C6120.69 (14)C19—C18—C17116.83 (15)
C5—C4—C3119.62 (14)C19—C18—C21117.20 (17)
C5—C4—H4120.2C17—C18—C21125.97 (18)
C3—C4—H4120.2C19—C18—C21A145.0 (6)
O1—C3—C2120.85 (14)C17—C18—C21A96.7 (7)
O1—C3—C4117.86 (14)C21—C18—C21A30.6 (6)
C2—C3—C4121.29 (14)C20—C19—C18119.90 (16)
C1—C2—C3117.96 (14)C20—C19—H19120.0
C1—C2—H2121.0C18—C19—H19120.0
C3—C2—H2121.0N1—C20—C19123.62 (16)
O7—C1—C2116.55 (13)N1—C20—H20118.2
O7—C1—C6120.45 (13)C19—C20—H20118.2
C2—C1—C6123.00 (13)C21A—C21—C22A98.7 (12)
C8—C9—O7120.70 (13)C21A—C21—C2242.2 (10)
C8—C9—C10129.02 (13)C22A—C21—C2258.2 (6)
O7—C9—C10110.27 (12)C21A—C21—C1881.2 (10)
C15—C10—C11118.71 (13)C22A—C21—C18169.8 (6)
C15—C10—C9118.79 (13)C22—C21—C18123.2 (2)
C11—C10—C9122.46 (13)C21A—C21—H22158.7 (15)
C12—C11—C10120.90 (14)C22A—C21—H2260.1 (12)
C12—C11—H11119.6C22—C21—H22117.5 (12)
C10—C11—H11119.6C18—C21—H22119.3 (12)
O5—C12—C11122.66 (13)C21—C21A—C22101.1 (18)
O5—C12—C13117.52 (13)C21—C21A—C22A46.0 (10)
C11—C12—C13119.82 (13)C22—C21A—C22A57.0 (11)
O6—C13—C14122.94 (13)C21—C21A—C1868.2 (10)
O6—C13—C12117.94 (13)C22—C21A—C18168.1 (18)
C14—C13—C12119.12 (13)C22A—C21A—C18113.5 (13)
C15—C14—C13121.19 (14)C21—C21A—H21152 (2)
C15—C14—H14119.4C22—C21A—H2151.6 (13)
C13—C14—H14119.4C22A—C21A—H21108.3 (15)
C14—C15—C10120.25 (13)C18—C21A—H21138.1 (17)
C14—C15—H15119.9C21A—C22—C22A82.2 (14)
C10—C15—H15119.9C21A—C22—C2136.7 (12)
C3—O1—H1O109.5 (14)C22A—C22—C2146.9 (6)
C5—O2—H2O106.6 (14)C21A—C22—C23161.0 (12)
C8—O4—H4O113.8 (16)C22A—C22—C2379.3 (6)
C12—O5—H5O108.6 (12)C21—C22—C23125.84 (19)
C13—O6—H6O108.6 (13)C21A—C22—H2180.9 (16)
C1—O7—C9121.64 (11)C22A—C22—H21161.7 (13)
N3—C28—C29123.44 (15)C21—C22—H21117.4 (12)
N3—C28—H28118.3C23—C22—H21116.7 (12)
C29—C28—H28118.3C21—C22A—C2275.0 (8)
C28—C29—C30119.63 (15)C21—C22A—C21A35.4 (7)
C28—C29—H29120.2C22—C22A—C21A40.8 (7)
C30—C29—H29120.2C21—C22A—C23133.1 (9)
C31—C30—C29116.63 (14)C22—C22A—C2358.5 (5)
C31—C30—C33119.19 (14)C21A—C22A—C2399.2 (9)
C29—C30—C33124.18 (14)C21—C22A—H2260.4 (14)
C30—C31—C32119.88 (15)C22—C22A—H22134.3 (17)
C30—C31—H31120.1C21A—C22A—H2295.8 (17)
C32—C31—H31120.1C23—C22A—H22160.3 (15)
N3—C32—C31123.68 (15)C27—C23—C24117.82 (17)
N3—C32—H32118.2C27—C23—C22118.21 (18)
C31—C32—H32118.2C24—C23—C22123.96 (18)
C34—C33—C30126.27 (15)C27—C23—C22A159.3 (4)
C34—C33—H33121.4 (11)C24—C23—C22A82.1 (4)
C30—C33—H33112.2 (11)C22—C23—C22A42.2 (4)
C33—C34—C35124.90 (15)C23—C24—C25119.36 (18)
C33—C34—H34120.5 (11)C23—C24—H24120.3
C35—C34—H34114.6 (11)C25—C24—H24120.3
C36—C35—C40116.98 (14)N2—C25—C24122.16 (19)
C36—C35—C34122.07 (14)N2—C25—H25118.9
C40—C35—C34120.95 (14)C24—C25—H25118.9
C37—C36—C35119.91 (15)N2—C26—C27124.96 (18)
C37—C36—H36120.0N2—C26—H26117.5
C35—C36—H36120.0C27—C26—H26117.5
N4—C37—C36123.16 (15)C23—C27—C26119.01 (19)
N4—C37—H37118.4C23—C27—H27120.5
C36—C37—H37118.4C26—C27—H27120.5
N4—C38—C40123.95 (15)C20—N1—C16116.51 (14)
N4—C38—H38118.0C25—N2—C26116.65 (15)
C40—C38—H38118.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O40.952.282.8884 (18)121
C28—H28···O5i0.952.523.339 (2)145
C37—H37···O3ii0.952.413.014 (2)121
C38—H38···O6iii0.952.613.364 (2)137
O6—H6O···N1iv0.96 (2)1.80 (2)2.7588 (17)173 (2)
O5—H5O···N3v0.98 (2)1.76 (2)2.7283 (17)172.4 (19)
O2—H2O···O30.88 (2)1.79 (2)2.6012 (16)152 (2)
O4—H4O···N4ii0.91 (3)1.81 (3)2.6920 (17)162 (2)
O1—H1O···N2vi0.95 (3)1.78 (3)2.7237 (18)172 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x+1, y3/2, z+1/2; (iv) x, y+3/2, z+1/2; (v) x, y+1, z; (vi) x, y+1, z+1.
(QDP_V) top
Crystal data top
C27H20N2O7Z = 8
Mr = 484.45F(000) = 2016
Monoclinic, C2/cDx = 1.471 Mg m3
a = 21.831 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.904 (3) ŵ = 0.11 mm1
c = 15.876 (4) ÅT = 150 K
β = 101.912 (7)°Plate, yellow-red
V = 4376.0 (17) Å30.30 × 0.20 × 0.12 mm
Data collection top
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
Rint = 0.071
Tmin = 0.777, Tmax = 1.000θmax = 27.5°, θmin = 3.0°
18633 measured reflectionsh = 2828
5006 independent reflectionsk = 1616
3202 reflections with I > 2σ(I)l = 2020
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.055 w = 1/[σ2(Fo2) + (0.0666P)2 + 1.7713P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.150(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.27 e Å3
5006 reflectionsΔρmin = 0.32 e Å3
354 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0006 (2)
Crystal data top
C27H20N2O7V = 4376.0 (17) Å3
Mr = 484.45Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.831 (5) ŵ = 0.11 mm1
b = 12.904 (3) ÅT = 150 K
c = 15.876 (4) Å0.30 × 0.20 × 0.12 mm
β = 101.912 (7)°
Data collection top
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
5006 independent reflections
Tmin = 0.777, Tmax = 1.0003202 reflections with I > 2σ(I)
18633 measured reflectionsRint = 0.071
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.27 e Å3
5006 reflectionsΔρmin = 0.32 e Å3
354 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H210.0379 (13)0.065 (2)0.0950 (17)0.048 (8)*
H220.0531 (13)0.152 (2)0.1304 (17)0.047 (8)*
H1O0.1654 (14)0.532 (2)0.3618 (18)0.049 (9)*
H4O0.0952 (14)0.736 (2)0.1476 (19)0.053 (9)*
H5O0.1940 (18)0.767 (3)0.292 (2)0.088 (12)*
H6O0.2719 (16)0.638 (3)0.180 (2)0.079 (11)*
H2O0.2257 (17)0.685 (3)0.063 (3)0.093 (13)*
O70.01694 (7)0.61846 (13)0.05473 (10)0.0271 (4)
O40.05930 (8)0.72676 (14)0.13554 (11)0.0347 (5)
O30.17244 (7)0.71207 (13)0.02782 (10)0.0311 (4)
O20.23936 (7)0.66665 (14)0.12425 (11)0.0308 (4)
O60.23927 (7)0.67339 (14)0.20629 (11)0.0333 (4)
O10.12848 (8)0.53177 (15)0.32979 (11)0.0355 (5)
O50.14912 (7)0.75920 (14)0.27412 (10)0.0320 (4)
C90.01134 (10)0.65708 (18)0.02736 (14)0.0242 (5)
C60.12798 (10)0.64523 (17)0.08488 (15)0.0228 (5)
C80.06357 (10)0.68792 (18)0.05524 (15)0.0252 (5)
C100.05391 (10)0.66014 (18)0.07338 (14)0.0232 (5)
C70.12527 (10)0.68296 (17)0.00028 (15)0.0235 (5)
C40.18637 (10)0.59873 (18)0.22772 (14)0.0266 (5)
H40.22490.59420.26840.032*
C110.07148 (10)0.70604 (18)0.15461 (14)0.0246 (5)
H110.04040.73490.18150.030*
C140.16330 (10)0.61962 (18)0.07870 (15)0.0259 (5)
H140.19450.58950.05270.031*
C20.07365 (10)0.57338 (19)0.19143 (15)0.0274 (5)
H20.03590.55120.20660.033*
C50.18477 (10)0.63611 (18)0.14628 (15)0.0239 (5)
C150.10103 (10)0.61731 (18)0.03565 (15)0.0259 (5)
H150.09020.58650.01980.031*
C120.13341 (10)0.70972 (18)0.19586 (14)0.0237 (5)
C30.13020 (11)0.56726 (18)0.24998 (15)0.0271 (5)
C130.18029 (10)0.66534 (18)0.15904 (15)0.0245 (5)
C10.07356 (10)0.61243 (18)0.11075 (14)0.0238 (5)
N10.25012 (9)0.02241 (16)0.07618 (12)0.0288 (5)
N20.15875 (9)0.10312 (17)0.15754 (13)0.0336 (5)
C180.12506 (10)0.00561 (19)0.09371 (15)0.0269 (5)
C200.22740 (11)0.0655 (2)0.10279 (16)0.0319 (6)
H200.25470.12330.11510.038*
C210.05978 (11)0.0015 (2)0.10428 (17)0.0326 (6)
C230.03430 (11)0.08597 (19)0.13739 (15)0.0295 (6)
C190.16669 (11)0.0767 (2)0.11331 (16)0.0333 (6)
H190.15330.14030.13380.040*
C160.20971 (11)0.10127 (19)0.05684 (15)0.0293 (6)
H160.22450.16410.03700.035*
C170.14814 (11)0.09635 (19)0.06413 (15)0.0289 (5)
H170.12140.15450.04910.035*
C220.03074 (11)0.0817 (2)0.12597 (17)0.0328 (6)
C270.06167 (11)0.1816 (2)0.14546 (17)0.0360 (6)
H270.03820.24340.14450.043*
C240.07145 (11)0.0013 (2)0.14033 (17)0.0355 (6)
H240.05500.06860.13530.043*
C260.12290 (11)0.1865 (2)0.15489 (18)0.0373 (6)
H260.14070.25290.15980.045*
C250.13250 (11)0.0109 (2)0.15062 (17)0.0365 (6)
H250.15700.04950.15290.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O70.0163 (8)0.0407 (10)0.0242 (9)0.0003 (7)0.0038 (6)0.0064 (8)
O40.0166 (9)0.0601 (12)0.0276 (9)0.0004 (8)0.0052 (7)0.0109 (9)
O30.0188 (8)0.0451 (11)0.0301 (9)0.0027 (7)0.0068 (7)0.0041 (8)
O20.0172 (8)0.0466 (11)0.0286 (10)0.0040 (7)0.0044 (7)0.0031 (8)
O60.0137 (8)0.0511 (12)0.0339 (10)0.0022 (7)0.0023 (7)0.0059 (9)
O10.0240 (9)0.0559 (13)0.0259 (10)0.0015 (8)0.0036 (7)0.0094 (9)
O50.0182 (9)0.0517 (11)0.0262 (9)0.0037 (7)0.0052 (7)0.0079 (8)
C90.0218 (11)0.0288 (13)0.0225 (12)0.0009 (9)0.0055 (9)0.0020 (10)
C60.0184 (11)0.0245 (13)0.0257 (12)0.0011 (9)0.0050 (9)0.0011 (10)
C80.0203 (11)0.0310 (13)0.0244 (12)0.0019 (9)0.0053 (9)0.0015 (10)
C100.0167 (11)0.0284 (13)0.0245 (12)0.0012 (9)0.0044 (9)0.0021 (10)
C70.0195 (11)0.0269 (13)0.0249 (12)0.0023 (9)0.0066 (9)0.0029 (10)
C40.0173 (11)0.0357 (14)0.0256 (12)0.0005 (9)0.0017 (9)0.0005 (11)
C110.0185 (11)0.0309 (13)0.0258 (12)0.0002 (9)0.0080 (9)0.0012 (10)
C140.0194 (11)0.0319 (13)0.0282 (13)0.0017 (9)0.0086 (9)0.0005 (11)
C20.0189 (11)0.0365 (14)0.0276 (13)0.0000 (10)0.0068 (9)0.0009 (11)
C50.0187 (11)0.0265 (13)0.0266 (13)0.0023 (9)0.0049 (9)0.0030 (10)
C150.0241 (12)0.0293 (13)0.0251 (12)0.0014 (10)0.0068 (9)0.0006 (11)
C120.0190 (11)0.0304 (13)0.0217 (12)0.0025 (9)0.0041 (9)0.0012 (10)
C30.0264 (12)0.0298 (13)0.0258 (13)0.0017 (10)0.0073 (9)0.0009 (11)
C130.0147 (10)0.0311 (13)0.0277 (13)0.0003 (9)0.0046 (9)0.0033 (10)
C10.0161 (11)0.0278 (13)0.0266 (12)0.0017 (9)0.0021 (9)0.0010 (10)
N10.0251 (10)0.0355 (12)0.0267 (11)0.0000 (9)0.0073 (8)0.0009 (9)
N20.0212 (11)0.0443 (14)0.0360 (12)0.0017 (9)0.0075 (9)0.0034 (10)
C180.0222 (12)0.0329 (14)0.0258 (12)0.0013 (10)0.0053 (9)0.0026 (11)
C200.0264 (13)0.0340 (14)0.0356 (14)0.0031 (10)0.0068 (10)0.0014 (12)
C210.0246 (13)0.0362 (15)0.0373 (15)0.0024 (11)0.0069 (11)0.0016 (12)
C230.0227 (12)0.0372 (15)0.0290 (13)0.0019 (10)0.0063 (10)0.0001 (11)
C190.0307 (13)0.0327 (14)0.0383 (15)0.0006 (11)0.0115 (11)0.0019 (12)
C160.0274 (13)0.0325 (14)0.0287 (13)0.0047 (10)0.0074 (10)0.0007 (11)
C170.0264 (12)0.0331 (14)0.0268 (13)0.0024 (10)0.0047 (10)0.0008 (11)
C220.0263 (13)0.0363 (15)0.0375 (15)0.0005 (11)0.0101 (11)0.0004 (12)
C270.0289 (13)0.0362 (15)0.0450 (16)0.0038 (11)0.0121 (11)0.0048 (13)
C240.0303 (14)0.0316 (14)0.0462 (16)0.0033 (11)0.0115 (11)0.0040 (12)
C260.0293 (14)0.0339 (15)0.0497 (17)0.0034 (11)0.0106 (12)0.0080 (13)
C250.0253 (13)0.0397 (16)0.0456 (16)0.0013 (11)0.0100 (11)0.0028 (13)
Geometric parameters (Å, º) top
O7—C11.368 (2)C2—C31.386 (3)
O7—C91.377 (3)C2—H20.9500
O4—C81.355 (3)C15—H150.9500
O4—H4O0.85 (3)C12—C131.401 (3)
O3—C71.256 (3)N1—C161.340 (3)
O2—C51.368 (3)N1—C201.340 (3)
O2—H2O0.98 (4)N2—C251.335 (3)
O6—C131.354 (3)N2—C261.336 (3)
O6—H6O1.01 (4)C18—C191.391 (3)
O1—C31.355 (3)C18—C171.394 (3)
O1—H1O0.86 (3)C18—C211.470 (3)
O5—C121.376 (3)C20—C191.378 (3)
O5—H5O0.97 (4)C20—H200.9500
C9—C81.365 (3)C21—C221.328 (4)
C9—C101.461 (3)C21—H210.94 (3)
C6—C11.400 (3)C23—C271.388 (3)
C6—C51.415 (3)C23—C241.394 (3)
C6—C71.427 (3)C23—C221.469 (3)
C8—C71.447 (3)C19—H190.9500
C10—C111.399 (3)C16—C171.374 (3)
C10—C151.406 (3)C16—H160.9500
C4—C51.374 (3)C17—H170.9500
C4—C31.404 (3)C22—H221.02 (3)
C4—H40.9500C27—C261.377 (3)
C11—C121.376 (3)C27—H270.9500
C11—H110.9500C24—C251.385 (3)
C14—C131.385 (3)C24—H240.9500
C14—C151.390 (3)C26—H260.9500
C14—H140.9500C25—H250.9500
C2—C11.376 (3)
C1—O7—C9121.85 (17)O6—C13—C14125.91 (19)
C8—O4—H4O112 (2)O6—C13—C12115.5 (2)
C5—O2—H2O103 (2)C14—C13—C12118.6 (2)
C13—O6—H6O114.1 (19)O7—C1—C2116.97 (19)
C3—O1—H1O110.3 (19)O7—C1—C6120.0 (2)
C12—O5—H5O111 (2)C2—C1—C6123.1 (2)
C8—C9—O7119.71 (19)C16—N1—C20116.5 (2)
C8—C9—C10128.6 (2)C25—N2—C26116.8 (2)
O7—C9—C10111.72 (18)C19—C18—C17116.9 (2)
C1—C6—C5116.7 (2)C19—C18—C21123.4 (2)
C1—C6—C7120.62 (19)C17—C18—C21119.7 (2)
C5—C6—C7122.70 (19)N1—C20—C19123.7 (2)
O4—C8—C9120.9 (2)N1—C20—H20118.1
O4—C8—C7117.28 (19)C19—C20—H20118.1
C9—C8—C7121.8 (2)C22—C21—C18125.8 (2)
C11—C10—C15118.3 (2)C22—C21—H21119.2 (17)
C11—C10—C9121.74 (19)C18—C21—H21115.0 (17)
C15—C10—C9120.0 (2)C27—C23—C24116.8 (2)
O3—C7—C6123.7 (2)C27—C23—C22119.3 (2)
O3—C7—C8120.3 (2)C24—C23—C22123.9 (2)
C6—C7—C8115.96 (19)C20—C19—C18119.5 (2)
C5—C4—C3119.0 (2)C20—C19—H19120.2
C5—C4—H4120.5C18—C19—H19120.2
C3—C4—H4120.5N1—C16—C17123.7 (2)
C12—C11—C10120.6 (2)N1—C16—H16118.2
C12—C11—H11119.7C17—C16—H16118.2
C10—C11—H11119.7C16—C17—C18119.7 (2)
C13—C14—C15120.7 (2)C16—C17—H17120.2
C13—C14—H14119.6C18—C17—H17120.2
C15—C14—H14119.6C21—C22—C23126.0 (2)
C1—C2—C3118.4 (2)C21—C22—H22119.0 (15)
C1—C2—H2120.8C23—C22—H22114.7 (15)
C3—C2—H2120.8C26—C27—C23119.8 (2)
O2—C5—C4119.2 (2)C26—C27—H27120.1
O2—C5—C6119.1 (2)C23—C27—H27120.1
C4—C5—C6121.7 (2)C25—C24—C23119.6 (2)
C14—C15—C10120.6 (2)C25—C24—H24120.2
C14—C15—H15119.7C23—C24—H24120.2
C10—C15—H15119.7N2—C26—C27123.7 (2)
O5—C12—C11118.89 (19)N2—C26—H26118.2
O5—C12—C13119.92 (19)C27—C26—H26118.2
C11—C12—C13121.2 (2)N2—C25—C24123.4 (2)
O1—C3—C2117.0 (2)N2—C25—H25118.3
O1—C3—C4121.8 (2)C24—C25—H25118.3
C2—C3—C4121.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N1i0.86 (3)1.91 (3)2.763 (3)174 (3)
O4—H4O···O30.85 (3)2.29 (3)2.705 (2)110 (2)
O4—H4O···O5ii0.85 (3)1.90 (3)2.690 (2)153 (3)
O5—H5O···O2iii0.97 (4)1.95 (4)2.797 (2)144 (3)
O6—H6O···N2iv1.01 (4)1.69 (4)2.663 (2)162 (3)
O2—H2O···O30.98 (4)1.70 (4)2.617 (2)155 (3)
C4—H4···N1i0.952.593.287 (3)131
C11—H11···O40.952.152.821 (3)127
C20—H20···O3v0.952.583.294 (3)132
C24—H24···O4vi0.952.643.521 (3)154
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y, z1/2; (iii) x1/2, y+3/2, z1/2; (iv) x1/2, y+1/2, z; (v) x+1/2, y+1/2, z; (vi) x, y+1, z.
(QDPE_I) top
Crystal data top
C31H30N2O8V = 1336.8 (2) Å3
Mr = 558.57Z = 2
Triclinic, P1F(000) = 588
a = 9.8782 (8) ÅDx = 1.388 Mg m3
b = 11.5881 (10) ÅMo Kα radiation, λ = 0.71073 Å
c = 13.041 (1) ŵ = 0.10 mm1
α = 76.595 (5)°T = 150 K
β = 85.792 (6)°Plate, yellow
γ = 67.035 (5)°0.40 × 0.20 × 0.20 mm
Data collection top
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
Rint = 0.036
Tmin = 0.777, Tmax = 1.000θmax = 27.5°, θmin = 3.1°
14292 measured reflectionsh = 1212
6112 independent reflectionsk = 1515
4658 reflections with I > 2σ(I)l = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.0694P)2 + 0.7053P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
6112 reflectionsΔρmax = 0.44 e Å3
390 parametersΔρmin = 0.41 e Å3
Crystal data top
C31H30N2O8γ = 67.035 (5)°
Mr = 558.57V = 1336.8 (2) Å3
Triclinic, P1Z = 2
a = 9.8782 (8) ÅMo Kα radiation
b = 11.5881 (10) ŵ = 0.10 mm1
c = 13.041 (1) ÅT = 150 K
α = 76.595 (5)°0.40 × 0.20 × 0.20 mm
β = 85.792 (6)°
Data collection top
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
6112 independent reflections
Tmin = 0.777, Tmax = 1.0004658 reflections with I > 2σ(I)
14292 measured reflectionsRint = 0.036
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.44 e Å3
6112 reflectionsΔρmin = 0.41 e Å3
390 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O60.51143 (14)0.16326 (14)0.60018 (10)0.0217 (3)
O20.86791 (14)0.01705 (14)1.30501 (10)0.0228 (3)
O40.79544 (14)0.05778 (13)0.90931 (10)0.0201 (3)
O50.46529 (12)0.15248 (12)1.06272 (9)0.0155 (3)
O30.90792 (13)0.01255 (13)1.10428 (10)0.0202 (3)
O10.38235 (14)0.14333 (13)1.42537 (9)0.0203 (3)
O70.21239 (14)0.26385 (13)0.60970 (10)0.0208 (3)
N20.09696 (17)0.77468 (17)0.61763 (13)0.0256 (4)
N10.92144 (17)0.36095 (16)0.64784 (13)0.0232 (4)
C100.46706 (18)0.16466 (16)0.88119 (13)0.0139 (3)
C60.67201 (18)0.08304 (17)1.17916 (13)0.0149 (3)
C70.76941 (18)0.05632 (17)1.09337 (13)0.0155 (3)
C140.22701 (19)0.25178 (17)0.79688 (14)0.0171 (4)
H140.12300.28780.80180.021*
C110.53097 (18)0.14629 (17)0.78317 (13)0.0151 (3)
H110.63500.10960.77820.018*
C80.70398 (18)0.08199 (16)0.99152 (13)0.0146 (3)
C90.55445 (18)0.13029 (16)0.97741 (13)0.0138 (3)
C280.2422 (4)0.6370 (3)0.9623 (3)0.0722 (11)
H28A0.30620.66201.00000.087*
H28B0.24650.67040.88560.087*
C30.47243 (19)0.12662 (17)1.34262 (13)0.0164 (4)
C150.31341 (18)0.21784 (17)0.88569 (13)0.0159 (4)
H150.26800.23070.95110.019*
C50.72220 (18)0.06103 (17)1.28397 (13)0.0165 (4)
C20.41893 (18)0.15203 (17)1.24064 (13)0.0168 (4)
H20.31640.18401.22600.020*
C130.29072 (19)0.23372 (17)0.69990 (13)0.0158 (4)
C240.1355 (2)0.7643 (2)0.54549 (16)0.0276 (4)
H240.18900.80390.49650.033*
C190.7036 (2)0.36195 (19)0.74194 (17)0.0255 (4)
H190.65840.31730.79410.031*
C180.6222 (2)0.48502 (19)0.68668 (15)0.0210 (4)
C160.8424 (2)0.4795 (2)0.59447 (15)0.0258 (4)
H160.89000.52170.54230.031*
O80.0714 (2)0.5806 (2)1.07599 (16)0.0619 (6)
C250.0156 (2)0.8235 (2)0.54958 (15)0.0264 (4)
H250.06380.90300.50150.032*
C120.44436 (19)0.18089 (17)0.69429 (13)0.0156 (4)
C210.4599 (2)0.5530 (2)0.70361 (16)0.0255 (4)
H21A0.44160.63670.72050.031*
H21B0.42790.50060.76400.031*
C40.62345 (19)0.08341 (18)1.36419 (14)0.0183 (4)
H40.65740.06961.43400.022*
C10.52050 (18)0.12908 (16)1.16121 (13)0.0145 (3)
C200.8513 (2)0.3042 (2)0.72098 (17)0.0274 (4)
H200.90550.22000.76040.033*
C230.2086 (2)0.6472 (2)0.61279 (16)0.0249 (4)
C170.6946 (2)0.5442 (2)0.61109 (15)0.0252 (4)
H170.64310.62850.57090.030*
C310.1918 (3)0.4644 (3)1.0637 (3)0.0607 (9)
H31A0.24570.41961.13170.073*
H31B0.15350.40621.04200.073*
C290.0880 (4)0.6850 (3)0.9999 (2)0.0539 (7)
H29A0.06930.75891.03240.065*
H29B0.01760.71310.94020.065*
C270.1242 (2)0.5970 (2)0.68416 (19)0.0364 (5)
H270.16940.51760.73310.044*
C260.0260 (2)0.6629 (2)0.68382 (18)0.0361 (5)
H260.08190.62680.73350.043*
C220.3713 (2)0.5746 (2)0.60497 (18)0.0354 (5)
H22A0.40860.62240.54440.043*
H22B0.38790.49000.59040.043*
C320.2865 (5)0.4942 (3)0.9878 (4)0.112 (2)
H32A0.27990.46460.92370.134*
H32B0.38920.45111.01500.134*
H1O0.287 (3)0.170 (3)1.405 (2)0.055 (8)*
H5O0.447 (3)0.165 (2)0.559 (2)0.041 (7)*
H4O0.881 (3)0.032 (3)0.934 (2)0.050 (8)*
H6O0.117 (3)0.294 (3)0.623 (2)0.046 (8)*
H2O0.910 (3)0.015 (3)1.244 (3)0.063 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O60.0158 (6)0.0376 (8)0.0106 (6)0.0082 (6)0.0020 (5)0.0076 (5)
O20.0103 (6)0.0401 (8)0.0128 (6)0.0040 (6)0.0008 (5)0.0057 (6)
O40.0101 (6)0.0356 (8)0.0110 (6)0.0046 (6)0.0015 (5)0.0063 (5)
O50.0109 (6)0.0241 (7)0.0091 (6)0.0038 (5)0.0008 (4)0.0047 (5)
O30.0103 (6)0.0320 (7)0.0141 (6)0.0042 (5)0.0012 (5)0.0048 (5)
O10.0113 (6)0.0344 (8)0.0108 (6)0.0037 (6)0.0022 (5)0.0063 (5)
O70.0119 (6)0.0338 (8)0.0120 (6)0.0036 (6)0.0022 (5)0.0048 (5)
N20.0149 (7)0.0376 (10)0.0206 (8)0.0053 (7)0.0007 (6)0.0082 (7)
N10.0155 (7)0.0315 (9)0.0215 (8)0.0055 (7)0.0003 (6)0.0097 (7)
C100.0145 (8)0.0142 (8)0.0122 (8)0.0050 (7)0.0010 (6)0.0029 (6)
C60.0129 (8)0.0175 (9)0.0120 (8)0.0039 (7)0.0010 (6)0.0026 (6)
C70.0121 (8)0.0167 (8)0.0155 (8)0.0041 (7)0.0011 (6)0.0024 (7)
C140.0106 (8)0.0220 (9)0.0158 (8)0.0028 (7)0.0016 (6)0.0052 (7)
C110.0124 (8)0.0195 (9)0.0127 (8)0.0057 (7)0.0019 (6)0.0038 (7)
C80.0132 (8)0.0173 (9)0.0114 (8)0.0047 (7)0.0028 (6)0.0028 (6)
C90.0137 (8)0.0168 (8)0.0107 (8)0.0058 (7)0.0032 (6)0.0037 (6)
C280.101 (3)0.0576 (19)0.086 (2)0.056 (2)0.064 (2)0.0430 (17)
C30.0144 (8)0.0214 (9)0.0119 (8)0.0050 (7)0.0035 (6)0.0054 (7)
C150.0148 (8)0.0195 (9)0.0126 (8)0.0052 (7)0.0037 (6)0.0053 (7)
C50.0114 (8)0.0207 (9)0.0145 (8)0.0035 (7)0.0001 (6)0.0033 (7)
C20.0100 (8)0.0225 (9)0.0148 (8)0.0027 (7)0.0009 (6)0.0049 (7)
C130.0141 (8)0.0182 (9)0.0125 (8)0.0036 (7)0.0018 (6)0.0027 (7)
C240.0218 (10)0.0421 (13)0.0203 (10)0.0137 (9)0.0028 (8)0.0074 (9)
C190.0197 (9)0.0253 (10)0.0318 (11)0.0106 (8)0.0031 (8)0.0040 (8)
C180.0148 (8)0.0267 (10)0.0218 (9)0.00