research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

IUCrJ
Volume 3| Part 2| March 2016| Pages 102-107
ISSN: 2052-2525

Quaternary cocrystals: combinatorial synthetic strategies based on long-range synthon Aufbau modules (LSAM)

aSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
*Correspondence e-mail: desiraju@sscu.iisc.ernet.in

(Received 22 November 2015; accepted 12 December 2015; online 5 January 2016)

A synthetic strategy is outlined whereby a binary cocrystal may be developed in turn into a ternary and finally into a quaternary cocrystal. The strategy hinges on the concept of the long-range synthon Aufbau module (LSAM) which is a large supramolecular synthon containing more than one type of intermolecular interaction. Modulation of these interactions may be possible with the use of additional molecular components so that higher level cocrystals are produced. We report six quaternary cocrystals here. All are obtained as nearly exclusive crystallization products when four appropriate solid compounds are taken together in solution for crystallization.

1. Introduction

The design of multicomponent molecular crystals is recognized as one of the challenging areas in modern crystal engineering (Aakeröy et al., 2005[Aakeröy, C. B., Desper, J. & Urbina, J. (2005). Chem. Commun. pp. 2820-2822.]; Tothadi & Desiraju, 2013[Tothadi, S. & Desiraju, G. R. (2013). Chem. Commun. 49, 7791-7793.]; Tothadi et al., 2011[Tothadi, S., Mukherjee, A. & Desiraju, G. R. (2011). Chem. Commun. 47, 12080-12082.]; Bolla & Nangia, 2015[Bolla, G. & Nangia, A. (2015). Chem. Commun. 51, 15578-15581.]; Tothadi et al., 2014[Tothadi, S., Sanphui, P. & Desiraju, G. R. (2014). Cryst. Growth Des. 14, 5293-5302.]). Any good synthetic scheme directed towards a higher cocrystal (ternary, quaternary) should ensure its appearance from a solution containing the various solid constituents in high yield, in other words, without two- or single-component byproducts (Dubey & Desiraju, 2014[Dubey, R. & Desiraju, G. R. (2014). Angew. Chem. Int. Ed. 53, 13178-13182.], 2015[Dubey, R. & Desiraju, G. R. (2015). IUCrJ, 2, 402-408.]). The product should also be obtained in high supramolecular yield (Aakeröy et al., 2001[Aakeröy, C. B., Beatty, A. M. & Helfrich, B. A. (2001). Angew. Chem. Int. Ed. 40, 3240-3242.]), in other words, it should be obtained without various polymorphs or compounds containing different synthons. In all cocrystals, there are favorable hetero-molecular interactions (Almarsson et al., 2004[Almarsson, O. & Zaworotko, M. J. (2004). Chem. Commun. pp. 1889-1896.]; Desiraju et al., 2011[Desiraju, G. R., Vittal, & J. J., Ramanan, A. (2011). Crystal Engineering: A Text Book. Singapore: World Scientific.]; Resnati et al., 2015[Resnati, G., Boldyreva, E., Bombicz, P. & Kawano, M. (2015). IUCrJ, 2, 675-690.]). The main difficulty in the design of higher component cocrystals is that it is very difficult to establish synthon hierarchies in systems where there are a large number of functionalities that can form numerous and diverse intermolecular interactions (Aakeröy et al., 2005[Aakeröy, C. B., Desper, J. & Urbina, J. (2005). Chem. Commun. pp. 2820-2822.]; Tothadi & Desiraju, 2013[Tothadi, S. & Desiraju, G. R. (2013). Chem. Commun. 49, 7791-7793.]; Tothadi et al., 2011[Tothadi, S., Mukherjee, A. & Desiraju, G. R. (2011). Chem. Commun. 47, 12080-12082.], 2014[Tothadi, S., Sanphui, P. & Desiraju, G. R. (2014). Cryst. Growth Des. 14, 5293-5302.]; Bolla & Nangia, 2015[Bolla, G. & Nangia, A. (2015). Chem. Commun. 51, 15578-15581.]). Out of this pool of competing interactions, it is necessary to avoid interaction crossover, or in other words certain supramolecular features need to be amplified at the expense of others (Aakeröy et al., 2011[Aakeröy, C. B., Chopade, P. D. & Desper, J. (2011). Cryst. Growth Des. 11, 5333-5336.]; Saha et al., 2005[Saha, B. K., Nangia, A. & Jaskólski, M. (2005). CrystEngComm, 7, 355-358.]). Although supramolecular synthons have been invoked as retrosynthetic constructs to analyze and fashion crystal structures (Desiraju, 1995[Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.]), simple synthon information is often insufficient to design real solids with tangible properties. As one moves to more complex and larger hydrogen-bonded architectures, the concept of the long range synthon Aufbau module (LSAM) may be more fruitful as these larger synthons contain more representative and characteristic information about symmetry, long range order and topology in the crystal structure (Ganguly & Desiraju, 2008[Ganguly, P. & Desiraju, G. R. (2008). Chem. Asian J. 3, 868-880.], 2010[Ganguly, P. & Desiraju, G. R. (2010). CrystEngComm, 12, 817-833.]). The concepts of the supramolecular synthon and the LSAM are not merely restricted to the understanding of crystal structures. Recent studies show that some of these smaller and larger synthons exist in solution prior to crystallization (Mukherjee et al., 2014[Mukherjee, A., Dixit, K., Sarma, S. P. & Desiraju, G. R. (2014). IUCrJ, 1, 228-239.]). The build-up of a crystal from individual molecules may well be considered as occurring through a smooth and systematic build-up in structural complexity. It is in this context that the extended synthon or LSAM becomes useful in crystal structure design.

Recently some of us (Dubey & Desiraju, 2014[Dubey, R. & Desiraju, G. R. (2014). Angew. Chem. Int. Ed. 53, 13178-13182.], 2015[Dubey, R. & Desiraju, G. R. (2015). IUCrJ, 2, 402-408.]) have shown that the principles of constitutional dynamic chemistry (Lehn, 2013[Lehn, J.-M. (2013). Angew. Chem. Int. Ed. 52, 2836-2850.], 2015[Lehn, J.-M. (2015). Angew. Chem. Int. Ed. 54, 3276-3289.]) may be applied to combinatorial crystal synthesis and that the process of building up of LSAMs in solution involves a selection of certain preferred molecular conformations and small synthons. In this view, there are libraries (Lehn, 1999[Lehn, J.-M. (1999). Chem. Eur. J. 5, 2455-2463.]) of real and virtual synthons in solution and an associated library of crystal structures which in themselves constitute a landscape (Thakur et al., 2015a[Thakur, T. S., Dubey, R. & Desiraju, G. R. (2015a). Annu. Rev. Phys. Chem. 66, 21-42.]). These ideas were demonstrated by us in the synthesis of ternary cocrystals of phloroglucinol (PGL) (Dubey & Desiraju, 2014[Dubey, R. & Desiraju, G. R. (2014). Angew. Chem. Int. Ed. 53, 13178-13182.]) and the related polyhydroxy natural product, quercetin (Dubey & Desiraju, 2015[Dubey, R. & Desiraju, G. R. (2015). IUCrJ, 2, 402-408.]). We showed that these polyhydric phenols form a large number of polymorphic and pseudopolymorphic binary cocrystals with ditopic bases like 1,2-bis(4-pyridyl)ethane (DPE), phenazine (PHE) and so on. These binaries lead to a much smaller number of ternaries when a selected third component was taken for co-crystallization. A small number of ternary cocrystals in a system where there are many binary possibilities showed that the binary to ternary progression is convergent; our results hinted that such convergence may be further exploited for the design of quaternary cocrystals. These ideas are illustrated in the present article. Implicit in this analysis is that stable large synthons persist in solution and that suitably selected compounds may be further attached to these LSAMs leading to higher component crystals. It is unnecessary and impractical to consider the design of every new crystal as an ab initio exercise (Dunitz, 2015[Dunitz, J. D. (2015). IUCrJ, 2, 157-158.]; Thakur et al., 2015b[Thakur, T. S., Dubey, R. & Desiraju, G. R. (2015b). IUCrJ, 2, 159-160.]; Lecomte et al., 2015[Lecomte, C., Espinosa, E. & Matta, C. F. (2015). IUCrJ, 2, 161-163.]). Supramolecular synthons are kinetically favored crystallization intermediates and may be homologated to more elaborate structures, in solution, provided that the additional components are properly modulated in terms of intermolecular interactions (Desiraju, 2007[Desiraju, G. R. (2007). Angew. Chem. Int. Ed. 46, 8342-8356.]).

2. Results and discussion

This article argues for the synthetic design of complex quaternary solids by systematic selection and fabrication from LSAMs in binary and ternary cocrystals. Fig. 1[link](a) shows a list of the compounds in this study with their acronyms, whilst Fig. 1[link](b) shows the relevant synthons (MacGillivray et al., 2008[MacGillivray, L. R., Papaefstathiou, G. S., Friščić, T., Hamilton, T. D., Bučar, D.-K., Chu, Q., Varshney, D. B. & Georgiev, I. G. (2008). Acc. Chem. Res. 41, 280-291.]). The starting points in this crystal engineering exercise are the binary O—H⋯N based cocrystals formed by the polyhydric phenols, orcinol (ORC) and phloroglucinol (PGL) with tetramethylpyrazine (TMP). Fig. 2[link] shows two crystal forms of ORC·TMP, and also the single form of 2:3 PGL·TMP. It is noted that each of the ORC·TMP forms (actually pseudopolymorphs) has a different LSAM. In one of them (2:3 Form I obtained from MeNO2), the TMP molecules form a more or less continuous one-dimensional array. This array is made up of closed TMP·ORC tetramers (synthon B, Fig. 2[link]) and `free' TMP molecules that are intercalated via C—H⋯π interactions. The second (1:1 Form II obtained from MeOH in an attempted ternary crystallization) consists of discrete synthon B modules that are laterally offset with respect to one another so that there are no C—H⋯π interactions. Fig. 2[link] also shows the structure of the 2:3 PGL·TMP binary and it may be seen that it takes a packing similar to Form I of ORC·TMP. We also note that the intercalated LSAM is capable of further structural modification: the `free' TMP molecule could in principle be substituted with another flat aromatic molecule to yield a ternary (Tothadi et al., 2011[Tothadi, S., Mukherjee, A. & Desiraju, G. R. (2011). Chem. Commun. 47, 12080-12082.]). However, the laterally offset LSAM is not capable of such extension. It has been suggested that LSAMs are generally one-dimensional in nature (Ganguly & Desiraju, 2010[Ganguly, P. & Desiraju, G. R. (2010). CrystEngComm, 12, 817-833.]). In these prototype binary systems, the O—H⋯N and C—H⋯π interactions facilitate collinear molecular arrangements. Once this critical LSAM is identified, the next step is to fabricate it with optimized synthon hierarchies established during the landscape exploration to realise higher multi-component systems. Effectively, the one-dimensional LSAM is modular with respect to the three-dimensional structure, unlike the smaller synthons.

[Figure 1]
Figure 1
(a) Compounds in this study; (b) operating supramolecular synthons (A and B) in the crystal synthesis of multi-component systems. Polyhydric phenols ORC, PGL are shown in green. Blue, red are connector bases. Synthon B with different connector bases is not observed.
[Figure 2]
Figure 2
Binary cocrystals. (a) 2:3 ORC·TMP Form I; (b) 1:1 ORC·TMP Form II (hydrated); (c) 2:3 PGL·TMP. Distinct chemical species are color coded. Note the continuous one-dimensional LSAMs in ORC·TMP Form I and PGL·TMP and the different orientations of the pink-shaded TMP molecules in the two cases.

Cocrystallization of a mixture of ORC and TMP with each of PHE, acridine (ACR), 1,10-phenanthroline (PHEN), 2,2-bisthiophene (22TP), hexamethylbenzene (HMB) and pyrene (PYR) results in stoichiometric ternary cocrystals. The structures of three of them (2:2:1 ORC·TMP·22TP, 2:2:1 ORC·TMP·HMB and 2:2:1 ORC·TMP·PYR) are along predicted lines and they may be considered as being obtained by substitution of the `free' TMP molecule in Form I of the ORC·TMP binary with the new aromatic compound (Fig. 3[link]). The other three structures (2:1:2 ORC·TMP·PHE, 2:1:2 ORC·TMP·ACR, 2:1:2 ORC·TMP·PHEN), however, are based on the open synthon A (Fig. 4[link]) and the third compound is actually a part of this synthon. This third component is an electron-deficient species and stacks with itself leading to a one-dimensional array. The TMP molecule forms C—H⋯π interactions with the third component within synthon A. The fact that an ORC·TMP binary with open synthon A is not isolated indicates that this synthon is virtual (Dubey & Desiraju, 2014[Dubey, R. & Desiraju, G. R. (2014). Angew. Chem. Int. Ed. 53, 13178-13182.]) with respect to the binary system but becomes accessible in the ternary system. A virtual synthon is defined as one which is the product of a potential molecular recognition event that does not take place in a certain system. In summary, the ORC·TMP system is quite adaptive: it can sustain continuous and discrete one-dimensional LSAMs; it can sustain open and closed O—H⋯N based synthons.

[Figure 3]
Figure 3
2:2:1 stoichiometric ternary cocrystals with supramolecular synthon B. (a) Orcinol-tetramethylpyrazine-pyrene; (b) orcinol-tetramethylpyrazine-hexamethylbenzene.
[Figure 4]
Figure 4
2:1:2 stoichiometricternary cocrystals with supramolecular synthon A. (a) Orcinol-tetramethylpyrazine-phenazine; (b) orcinol-tetramethylpyrazine-acridine.

Let us consider next the ternary cocrystals formed by PGL. Co-crystallization of equimolar amounts of PGL and TMP with each of PHE, PYR and DPE resulted in four structurally distinct ternaries. When PGL, TMP and PHE were cocrystallized, two forms were obtained depending on the solvent used. From MeCN we obtained the 2:1:3 Form I (Fig. 5[link]) in which closed synthon B is constructed exclusively with PHE and the TMP molecules provide cross links via the third `hook' hydroxy group of the PGL molecule. From MeCN also but under different conditions, we obtained the 2:1:2 Form II which is reminiscent of the ORC·TMP·PHE ternary except that PHE is in the `inner' part of synthon A rather than in the `outer' part. There was no contamination of either of these ternaries by the `other' ternary in the crystallization experiments. A priori, it would not be possible to predict which structure one would obtain from MeCN under what conditions. What is important, however, is that there are a number of topologically similar crystal structures available to the system. Which one is actually obtained would seem to depend on the exact experimental conditions used. The system lends itself to high throughput methods. We maintain that we carried out a very large number of crystallization experiments on an entire array of compounds and solvent systems in a combinatorial manner. It is of interest to note that such examples of (pseudo)polymorphism are very rare in three component systems (Tothadi et al., 2011[Tothadi, S., Mukherjee, A. & Desiraju, G. R. (2011). Chem. Commun. 47, 12080-12082.]).

[Figure 5]
Figure 5
Pseudopolymorphs of the stoichiometric ternary cocrystal phloroglucinol-tetramethylpyrazine-phenazine. (a) 2:1:3 solid from MeCN; (b) 2:1:2 solid also obtained from MeCN.

We now discuss the 2:2:1 PGL·TMP·PYR and 2:2:1 PGL·TMP·DPE ternary cocrystals (Fig. 6[link]). The former is exactly like the synthon B based ternaries formed by ORC and TMP (with PYR, HMB and 22TP, Fig. 3[link]). There is a clean replacement of the `free' TMP in the ORC·TMP binary by the third compound. We note that the PGL·TMP binary does not contain any `free' TMP once again showing synthon virtuality. The 2:2:1 PGL·TMP·DPE ternary cocrystal is similar to the 2:2:1 PGL·PHE·DPE ternary which we have already reported. Closed synthon B modules are cross linked with DPE through the third `hook' hydroxy group of the PGL molecule. A study of the 10 ternary structures in this work shows that there are three regions which are capable of higher elaboration into quaternaries: open synthons of the type A can contain more than one heterocyclic base; open and closed synthons, A and B, can be intercalated/stacked with appropriate new planar molecules; the third `hook' hydroxy group in PGL can be cross linked with a new component. We never observed a closed synthon B with two different heterocyclic bases and feel this to be an unlikely outcome (Fig. 1[link]). These results open the way for isolation of quaternaries based on ORC and PGL. Fig. 7[link] is a flow chart of possible events. Because of synthon virtuality, it is not required that quaternaries in either of systems (ORC or PGL) must necessarily follow from ternaries in the same system. In the same way, a ternary may be based on a binary of the other phenol. All these structure types would appear to be isolable and which particular crystal form is isolated would seem to depend on experimental conditions of crystallization.

[Figure 6]
Figure 6
2:2:1 stoichiometric ternary cocrystals with supramolecular synthon B. (a) Phloroglucinol-tetramethylpyrazine-pyrene; (b) phloroglucinol-tetramethylpyrazine-1,2-bis(4-pyridyl)ethane.
[Figure 7]
Figure 7
Schematic representation of the long range synthon Aufbau modules (LSAMs) in the crystal synthesis of multi-component crystals. Color coding signifies distinct chemical species in the LSAMs.

In practice, a total of six quaternaries were obtained, three each from ORC and PGL (Fig. 8[link] and section S3 of the supporting information). Let us consider these structures in turn. The 2:1:2:1 ORC·TMP·PHE·HMB structure follows smoothly from the ternary 2:1:2 ORC·TMP·PHE in a chemically reasonable manner. In the ternary, one observes ππ stacking between electron-deficient PHE molecules (3.29 Å, 3.54 Å). In the quaternary, HMB inserts in a classical donor–acceptor fashion (∼ 3.56 Å). Replacement of the electron-rich HMB by PYR and the ditopic PHE by ACR achieves the same result and one obtains the stoichiometric quaternaries 2:1:2:1 ORC·TMP·PHE·PYR and 2:1:2:1 ORC·TMP·ACR·PYR (see section S3 ). Coming next to PGL, it is not difficult to understand the crystal structure of the quaternary 2:1:1:1 PGL·TMP.PHE.DPE wherein an infinite synthon A based structure with two ditopic heterocycles is cross linked with DPE. The quaternaries 2:2:1:1 PGL.TMP.PHE.ANT and 2:2:1:1 PGL.TMP.PHE.PYR have very similar structures. Synthon A is constructed with TMP in the `outer' locations and PHE in the `inner' location. ANT and PYR intercalate with C—H⋯π interactions to give a columnar LSAM.

[Figure 8]
Figure 8
Stoichiometric quaternary cocrystals. (a) Orcinol-tetramethylpyrazine-phenazine-pyrene; (b) phloroglucinol-tetramethylpyrazine-phenazine-pyrene (obtained as a hydrate).

3. Conclusions

The results obtained in this work validate the idea of using a supramolecular combinatorial library in the isolation of stoichiometric three- and four-component molecular crystals. We have earlier used this concept to make a single ternary cocrystal (Dubey & Desiraju, 2014[Dubey, R. & Desiraju, G. R. (2014). Angew. Chem. Int. Ed. 53, 13178-13182.]). In the present study, 10 new ternaries have been reported. The crystal structures of these compounds contain extended synthon assemblies which are referred to as long-range synthon Aufbau modules or LSAMs. These LSAMs are modular units and new molecules can be appended or exchanged with molecules in the LSAM to obtain larger synthons that contain four distinct chemical entities, each of which forms a solid under ambient conditions in its native crystal structure. These larger units are the precursors to stoichiometric quaternary cocrystals, of which six are reported in this paper. While there is no spectroscopic evidence as yet for the existence of these LSAMs in solution (unlike in other cases already reported; Mukherjee et al., 2014[Mukherjee, A., Dixit, K., Sarma, S. P. & Desiraju, G. R. (2014). IUCrJ, 1, 228-239.]), the fact that there is so much fidelity between the ternary and quaternary crystal structures suggests the stability of the LSAMs in solution. We also note the degree of reversibility among synthons in solution. This leads to the concept of a virtual synthon, a supramolecular unit that may not lead to an isolable solid but manifests itself in a crystal structure of a higher-component solid. In other words, two compounds A and B may result in two putative synthons S1 and S2. While S1 may be found in a binary cocrystal, S2 may not be similarly found. However S2 (or a close equivalent) may be found in a ternary cocrystal between say, A, B and C. Similarly, a synthon that is virtual in a three-component system may be seen in a four-component cocrystal. This also implies that proof correction mechanisms exist in the crystallizations, perhaps leading to the specificity of outcome.1 It is impressive to note the specificity of these crystallizations in systems containing a large number of energetically similar intermolecular interactions. We found very little contamination of the crystalline products by other solids, whether they are of the same complexity level or whether they are simpler in nature. None of the quaternaries we isolated, save one, were contaminated for instance by polymorphic or pseudopolymorphic quaternaries or by ternaries and binaries. The key to using the LSAM concept in designing higher-component cocrystals seems to be a judicious choice of starting compounds, well balanced intermolecular interactions and high throughput methodologies of crystallization and crystallography, in other words a combinatorial approach.

Supporting information


Computing details top

For all compounds, program(s) used to refine structure: SHELXL2013 (Sheldrick, 2013).

(BS_ORC_TMP) top
Crystal data top
C38H52N6O4V = 897.56 (15) Å3
Mr = 656.85Z = 1
Triclinic, P1F(000) = 354
a = 8.8712 (8) ÅDx = 1.215 Mg m3
b = 10.1819 (9) ÅMo Kα radiation, λ = 0.71073 Å
c = 11.2862 (10) ŵ = 0.08 mm1
α = 114.633 (8)°T = 150 K
β = 93.749 (7)°Plate, colorless
γ = 101.000 (7)°0.48 × 0.25 × 0.15 mm
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
3555 reflections with I > 2σ(I)
Radiation source: Sealed TubeRint = 0.020
profile data from ω–scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
h = 1111
Tmin = 0.850, Tmax = 1.000k = 1313
9617 measured reflectionsl = 1414
4113 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.058P)2 + 0.3975P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
4113 reflectionsΔρmax = 0.31 e Å3
226 parametersΔρmin = 0.27 e Å3
Crystal data top
C38H52N6O4γ = 101.000 (7)°
Mr = 656.85V = 897.56 (15) Å3
Triclinic, P1Z = 1
a = 8.8712 (8) ÅMo Kα radiation
b = 10.1819 (9) ŵ = 0.08 mm1
c = 11.2862 (10) ÅT = 150 K
α = 114.633 (8)°0.48 × 0.25 × 0.15 mm
β = 93.749 (7)°
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
4113 independent reflections
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
3555 reflections with I > 2σ(I)
Tmin = 0.850, Tmax = 1.000Rint = 0.020
9617 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.07Δρmax = 0.31 e Å3
4113 reflectionsΔρmin = 0.27 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.44502 (14)0.50013 (14)0.23039 (13)0.0176 (3)
C20.41232 (15)0.54440 (14)0.35846 (13)0.0189 (3)
H20.45000.50270.41220.023*
C30.32454 (15)0.64961 (14)0.40809 (13)0.0178 (3)
C40.27023 (14)0.71307 (14)0.33137 (13)0.0176 (3)
H40.21120.78540.36570.021*
C50.30368 (15)0.66908 (14)0.20318 (13)0.0176 (3)
C60.39006 (15)0.56246 (14)0.15261 (13)0.0182 (3)
H60.41140.53240.06490.022*
C70.53436 (17)0.38112 (15)0.17558 (15)0.0235 (3)
H7A0.58980.37170.24850.035*
H7B0.60950.40860.12500.035*
H7C0.46170.28590.11770.035*
C80.28890 (16)0.06667 (16)0.06807 (15)0.0252 (3)
H8A0.36860.02630.03970.038*
H8B0.27810.12490.16390.038*
H8C0.31970.12420.02340.038*
C90.13595 (15)0.03159 (14)0.03299 (13)0.0185 (3)
C100.00062 (15)0.14434 (14)0.07142 (13)0.0183 (3)
C110.00087 (17)0.30556 (15)0.14974 (15)0.0245 (3)
H11A0.10800.36630.17410.037*
H11B0.04370.31830.22990.037*
H11C0.06150.33710.09620.037*
C120.05460 (15)0.83295 (14)0.59691 (13)0.0189 (3)
C130.14339 (15)0.92883 (15)0.67063 (13)0.0181 (3)
C140.07366 (15)1.12628 (14)0.74744 (13)0.0186 (3)
C150.16284 (15)1.03029 (15)0.67567 (13)0.0197 (3)
C160.12390 (17)0.67050 (16)0.51069 (16)0.0282 (3)
H16A0.04480.62490.46330.042*
H16B0.21170.65910.44690.042*
H16C0.16040.62150.56560.042*
C170.31221 (16)0.87402 (17)0.67158 (16)0.0266 (3)
H17A0.35540.95870.72220.040*
H17B0.32340.80540.71250.040*
H17C0.36830.82210.58070.040*
C180.14247 (18)1.28915 (16)0.83228 (16)0.0282 (3)
H18A0.05871.34140.85340.042*
H18B0.21101.32970.78460.042*
H18C0.20261.30270.91420.042*
C190.33355 (17)1.08352 (17)0.67812 (17)0.0300 (3)
H19A0.37370.99990.62030.045*
H19B0.38911.12430.76860.045*
H19C0.34921.16100.64710.045*
N10.09765 (13)0.88507 (12)0.60240 (11)0.0198 (2)
N20.07764 (13)1.07368 (12)0.74435 (11)0.0187 (2)
N30.13574 (13)0.11187 (12)0.03815 (11)0.0198 (2)
O10.29392 (12)0.68723 (11)0.53369 (9)0.0238 (2)
H10.23480.74580.55080.036*
O20.25516 (12)0.72802 (12)0.12338 (10)0.0254 (2)
H2A0.20190.78820.16250.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0133 (6)0.0131 (6)0.0231 (6)0.0022 (4)0.0025 (5)0.0054 (5)
C20.0177 (6)0.0183 (6)0.0219 (6)0.0055 (5)0.0012 (5)0.0096 (5)
C30.0175 (6)0.0164 (6)0.0169 (6)0.0029 (5)0.0021 (5)0.0056 (5)
C40.0165 (6)0.0164 (6)0.0197 (6)0.0057 (5)0.0041 (5)0.0067 (5)
C50.0165 (6)0.0181 (6)0.0191 (6)0.0044 (5)0.0029 (5)0.0089 (5)
C60.0179 (6)0.0178 (6)0.0181 (6)0.0050 (5)0.0063 (5)0.0063 (5)
C70.0240 (7)0.0198 (6)0.0290 (7)0.0109 (5)0.0085 (6)0.0097 (6)
C80.0175 (6)0.0252 (7)0.0346 (8)0.0071 (5)0.0051 (6)0.0138 (6)
C90.0171 (6)0.0200 (6)0.0201 (6)0.0060 (5)0.0012 (5)0.0101 (5)
C100.0190 (6)0.0185 (6)0.0188 (6)0.0054 (5)0.0011 (5)0.0093 (5)
C110.0239 (7)0.0180 (6)0.0275 (7)0.0053 (5)0.0021 (6)0.0063 (6)
C120.0189 (6)0.0183 (6)0.0188 (6)0.0037 (5)0.0026 (5)0.0079 (5)
C130.0168 (6)0.0202 (6)0.0186 (6)0.0046 (5)0.0018 (5)0.0098 (5)
C140.0211 (6)0.0174 (6)0.0181 (6)0.0047 (5)0.0030 (5)0.0085 (5)
C150.0185 (6)0.0199 (6)0.0208 (6)0.0044 (5)0.0035 (5)0.0090 (5)
C160.0248 (7)0.0196 (7)0.0319 (8)0.0025 (5)0.0037 (6)0.0045 (6)
C170.0164 (6)0.0285 (7)0.0322 (8)0.0038 (5)0.0036 (6)0.0116 (6)
C180.0294 (7)0.0175 (7)0.0313 (8)0.0023 (6)0.0065 (6)0.0057 (6)
C190.0200 (7)0.0250 (7)0.0412 (9)0.0031 (6)0.0092 (6)0.0114 (7)
N10.0201 (5)0.0194 (6)0.0196 (5)0.0053 (4)0.0053 (4)0.0079 (5)
N20.0201 (5)0.0189 (5)0.0201 (5)0.0077 (4)0.0036 (4)0.0099 (5)
N30.0177 (5)0.0194 (5)0.0224 (6)0.0043 (4)0.0007 (4)0.0098 (5)
O10.0302 (5)0.0274 (5)0.0183 (5)0.0147 (4)0.0078 (4)0.0105 (4)
O20.0335 (6)0.0313 (6)0.0230 (5)0.0206 (4)0.0123 (4)0.0165 (4)
Geometric parameters (Å, º) top
C1—C61.3920 (19)C11—H11C0.9800
C1—C21.3922 (19)C12—N11.3408 (17)
C1—C71.5116 (17)C12—C131.4028 (18)
C2—C31.3939 (18)C12—C161.5009 (19)
C2—H20.9500C13—N21.3391 (17)
C3—O11.3665 (16)C13—C171.4975 (18)
C3—C41.3893 (18)C14—N21.3393 (17)
C4—C51.3959 (18)C14—C151.3986 (18)
C4—H40.9500C14—C181.5010 (19)
C5—O21.3620 (16)C15—N11.3403 (17)
C5—C61.3963 (17)C15—C191.5022 (19)
C6—H60.9500C16—H16A0.9800
C7—H7A0.9800C16—H16B0.9800
C7—H7B0.9800C16—H16C0.9800
C7—H7C0.9800C17—H17A0.9800
C8—C91.5042 (18)C17—H17B0.9800
C8—H8A0.9800C17—H17C0.9800
C8—H8B0.9800C18—H18A0.9800
C8—H8C0.9800C18—H18B0.9800
C9—N31.3423 (17)C18—H18C0.9800
C9—C10i1.3997 (18)C19—H19A0.9800
C10—N31.3393 (17)C19—H19B0.9800
C10—C9i1.3997 (18)C19—H19C0.9800
C10—C111.5049 (18)O1—H10.8400
C11—H11A0.9800O2—H2A0.8400
C11—H11B0.9800
C6—C1—C2119.43 (11)N1—C12—C13120.18 (12)
C6—C1—C7120.73 (12)N1—C12—C16117.64 (12)
C2—C1—C7119.80 (12)C13—C12—C16122.18 (12)
C1—C2—C3120.27 (12)N2—C13—C12120.27 (12)
C1—C2—H2119.9N2—C13—C17117.83 (12)
C3—C2—H2119.9C12—C13—C17121.90 (12)
O1—C3—C4121.59 (11)N2—C14—C15120.26 (12)
O1—C3—C2117.79 (12)N2—C14—C18117.57 (12)
C4—C3—C2120.61 (12)C15—C14—C18122.15 (12)
C3—C4—C5119.06 (12)N1—C15—C14120.40 (12)
C3—C4—H4120.5N1—C15—C19117.39 (12)
C5—C4—H4120.5C14—C15—C19122.20 (12)
O2—C5—C4121.96 (11)C12—C16—H16A109.5
O2—C5—C6117.56 (11)C12—C16—H16B109.5
C4—C5—C6120.48 (12)H16A—C16—H16B109.5
C1—C6—C5120.13 (12)C12—C16—H16C109.5
C1—C6—H6119.9H16A—C16—H16C109.5
C5—C6—H6119.9H16B—C16—H16C109.5
C1—C7—H7A109.5C13—C17—H17A109.5
C1—C7—H7B109.5C13—C17—H17B109.5
H7A—C7—H7B109.5H17A—C17—H17B109.5
C1—C7—H7C109.5C13—C17—H17C109.5
H7A—C7—H7C109.5H17A—C17—H17C109.5
H7B—C7—H7C109.5H17B—C17—H17C109.5
C9—C8—H8A109.5C14—C18—H18A109.5
C9—C8—H8B109.5C14—C18—H18B109.5
H8A—C8—H8B109.5H18A—C18—H18B109.5
C9—C8—H8C109.5C14—C18—H18C109.5
H8A—C8—H8C109.5H18A—C18—H18C109.5
H8B—C8—H8C109.5H18B—C18—H18C109.5
N3—C9—C10i121.22 (12)C15—C19—H19A109.5
N3—C9—C8117.46 (12)C15—C19—H19B109.5
C10i—C9—C8121.32 (12)H19A—C19—H19B109.5
N3—C10—C9i120.76 (12)C15—C19—H19C109.5
N3—C10—C11117.73 (12)H19A—C19—H19C109.5
C9i—C10—C11121.51 (12)H19B—C19—H19C109.5
C10—C11—H11A109.5C15—N1—C12119.36 (11)
C10—C11—H11B109.5C13—N2—C14119.49 (11)
H11A—C11—H11B109.5C10—N3—C9118.02 (11)
C10—C11—H11C109.5C3—O1—H1109.5
H11A—C11—H11C109.5C5—O2—H2A109.5
H11B—C11—H11C109.5
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N2ii0.952.643.3369 (17)131
O1—H1···N10.841.972.8114 (15)176
O2—H2A···N2ii0.841.952.7917 (15)179
Symmetry code: (ii) x, y+2, z+1.
(BS_ORC_TMP_Hydrate) top
Crystal data top
C120H160N16O17Z = 1
Mr = 2098.63F(000) = 1128
Monoclinic, C2/cDx = 1.204 Mg m3
a = 15.533 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.564 (4) ŵ = 0.08 mm1
c = 21.80 (1) ÅT = 150 K
β = 93.873 (7)°Plate, light brown
V = 2893 (2) Å30.50 × 0.35 × 0.25 mm
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
2733 reflections with I > 2σ(I)
Radiation source: Sealed TubeRint = 0.035
profile data from ω–scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
h = 2020
Tmin = 0.797, Tmax = 1.000k = 1111
14570 measured reflectionsl = 2828
3316 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0739P)2 + 1.925P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3316 reflectionsΔρmax = 0.24 e Å3
184 parametersΔρmin = 0.23 e Å3
Crystal data top
C120H160N16O17V = 2893 (2) Å3
Mr = 2098.63Z = 1
Monoclinic, C2/cMo Kα radiation
a = 15.533 (7) ŵ = 0.08 mm1
b = 8.564 (4) ÅT = 150 K
c = 21.80 (1) Å0.50 × 0.35 × 0.25 mm
β = 93.873 (7)°
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
3316 independent reflections
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
2733 reflections with I > 2σ(I)
Tmin = 0.797, Tmax = 1.000Rint = 0.035
14570 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.05Δρmax = 0.24 e Å3
3316 reflectionsΔρmin = 0.23 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O60.00000.0054 (18)0.75000.144 (6)0.25
C10.20192 (10)0.2097 (2)0.70590 (6)0.0357 (4)
C20.18902 (10)0.08328 (19)0.66720 (7)0.0335 (4)
H20.13800.02250.66820.040*
C30.25132 (9)0.04525 (18)0.62671 (6)0.0303 (3)
C40.32485 (9)0.13499 (18)0.62405 (7)0.0300 (3)
H40.36700.10880.59610.036*
C50.33682 (10)0.26305 (18)0.66219 (7)0.0326 (3)
C60.27568 (11)0.3004 (2)0.70343 (7)0.0364 (4)
H60.28430.38790.72990.044*
C70.13602 (14)0.2473 (3)0.75162 (8)0.0527 (5)
H7A0.13330.16140.78110.079*
H7B0.15270.34370.77360.079*
H7C0.07930.26140.72980.079*
C80.08807 (9)0.33628 (17)0.58985 (7)0.0286 (3)
C90.14432 (9)0.38774 (18)0.54694 (7)0.0305 (3)
C100.05315 (9)0.28951 (17)0.46845 (7)0.0289 (3)
C110.00261 (9)0.23759 (17)0.51126 (7)0.0289 (3)
C120.10687 (12)0.3602 (2)0.65741 (7)0.0434 (4)
H12A0.05710.32670.67940.065*
H12B0.11830.47100.66560.065*
H12C0.15750.29840.67150.065*
C130.22686 (12)0.4697 (3)0.56597 (9)0.0498 (5)
H13A0.25820.49280.52950.075*
H13B0.26240.40270.59400.075*
H13C0.21410.56740.58690.075*
C140.03565 (12)0.2639 (2)0.40092 (8)0.0426 (4)
H14A0.07470.32900.37840.064*
H14B0.02430.29210.38890.064*
H14C0.04510.15370.39120.064*
C150.08499 (11)0.1534 (2)0.49286 (8)0.0439 (4)
H15A0.10790.10600.52930.066*
H15B0.07370.07170.46300.066*
H15C0.12720.22760.47430.066*
N10.01605 (8)0.26083 (14)0.57142 (6)0.0296 (3)
N20.12649 (8)0.36261 (15)0.48714 (6)0.0307 (3)
O10.23737 (7)0.08193 (14)0.59026 (6)0.0424 (3)
H10.28000.09580.56920.064*
O20.40716 (8)0.35715 (15)0.65971 (6)0.0473 (3)
H2A0.44060.31980.63480.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O60.158 (14)0.089 (10)0.184 (17)0.0000.002 (12)0.000
C10.0413 (8)0.0452 (9)0.0218 (7)0.0152 (7)0.0102 (6)0.0070 (6)
C20.0309 (8)0.0415 (9)0.0290 (7)0.0057 (6)0.0091 (6)0.0061 (6)
C30.0299 (7)0.0335 (8)0.0279 (7)0.0049 (6)0.0053 (5)0.0012 (6)
C40.0282 (7)0.0328 (8)0.0299 (7)0.0069 (6)0.0091 (5)0.0003 (6)
C50.0329 (8)0.0348 (8)0.0300 (7)0.0060 (6)0.0014 (6)0.0002 (6)
C60.0460 (9)0.0389 (9)0.0243 (7)0.0103 (7)0.0021 (6)0.0037 (6)
C70.0630 (12)0.0623 (12)0.0363 (9)0.0172 (9)0.0287 (8)0.0023 (8)
C80.0274 (7)0.0278 (7)0.0306 (7)0.0015 (5)0.0017 (5)0.0018 (6)
C90.0289 (7)0.0293 (7)0.0332 (7)0.0038 (6)0.0015 (6)0.0031 (6)
C100.0293 (7)0.0271 (7)0.0306 (7)0.0001 (6)0.0040 (5)0.0013 (6)
C110.0248 (7)0.0292 (7)0.0328 (8)0.0008 (5)0.0033 (5)0.0014 (6)
C120.0483 (10)0.0511 (10)0.0305 (8)0.0057 (8)0.0000 (7)0.0009 (7)
C130.0418 (10)0.0603 (12)0.0469 (10)0.0242 (9)0.0003 (7)0.0005 (9)
C140.0482 (10)0.0494 (10)0.0303 (8)0.0081 (8)0.0034 (7)0.0014 (7)
C150.0314 (8)0.0542 (11)0.0461 (9)0.0128 (7)0.0029 (7)0.0044 (8)
N10.0255 (6)0.0323 (7)0.0315 (6)0.0005 (5)0.0063 (5)0.0009 (5)
N20.0304 (6)0.0306 (6)0.0315 (6)0.0048 (5)0.0057 (5)0.0040 (5)
O10.0376 (6)0.0438 (7)0.0479 (7)0.0063 (5)0.0174 (5)0.0145 (5)
O20.0421 (7)0.0462 (7)0.0550 (8)0.0049 (5)0.0127 (5)0.0170 (6)
Geometric parameters (Å, º) top
C1—C21.379 (2)C10—N21.3390 (19)
C1—C61.388 (2)C10—C111.389 (2)
C1—C71.511 (2)C10—C141.495 (2)
C2—C31.392 (2)C11—N11.339 (2)
C2—H20.9500C11—C151.499 (2)
C3—O11.357 (2)C12—H12A0.9800
C3—C41.381 (2)C12—H12B0.9800
C4—C51.381 (2)C12—H12C0.9800
C4—H40.9500C13—H13A0.9800
C5—O21.362 (2)C13—H13B0.9800
C5—C61.388 (2)C13—H13C0.9800
C6—H60.9500C14—H14A0.9800
C7—H7A0.9800C14—H14B0.9800
C7—H7B0.9800C14—H14C0.9800
C7—H7C0.9800C15—H15A0.9800
C8—N11.3303 (19)C15—H15B0.9800
C8—C91.394 (2)C15—H15C0.9800
C8—C121.496 (2)O1—H10.8400
C9—N21.332 (2)O2—H2A0.8400
C9—C131.496 (2)
C2—C1—C6120.11 (14)C11—C10—C14122.32 (14)
C2—C1—C7119.62 (16)N1—C11—C10120.48 (13)
C6—C1—C7120.27 (16)N1—C11—C15117.25 (13)
C1—C2—C3119.56 (15)C10—C11—C15122.27 (14)
C1—C2—H2120.2C8—C12—H12A109.5
C3—C2—H2120.2C8—C12—H12B109.5
O1—C3—C4121.46 (13)H12A—C12—H12B109.5
O1—C3—C2117.96 (14)C8—C12—H12C109.5
C4—C3—C2120.59 (14)H12A—C12—H12C109.5
C3—C4—C5119.64 (13)H12B—C12—H12C109.5
C3—C4—H4120.2C9—C13—H13A109.5
C5—C4—H4120.2C9—C13—H13B109.5
O2—C5—C4121.46 (14)H13A—C13—H13B109.5
O2—C5—C6118.37 (14)C9—C13—H13C109.5
C4—C5—C6120.16 (15)H13A—C13—H13C109.5
C1—C6—C5119.92 (15)H13B—C13—H13C109.5
C1—C6—H6120.0C10—C14—H14A109.5
C5—C6—H6120.0C10—C14—H14B109.5
C1—C7—H7A109.5H14A—C14—H14B109.5
C1—C7—H7B109.5C10—C14—H14C109.5
H7A—C7—H7B109.5H14A—C14—H14C109.5
C1—C7—H7C109.5H14B—C14—H14C109.5
H7A—C7—H7C109.5C11—C15—H15A109.5
H7B—C7—H7C109.5C11—C15—H15B109.5
N1—C8—C9120.22 (13)H15A—C15—H15B109.5
N1—C8—C12117.90 (13)C11—C15—H15C109.5
C9—C8—C12121.86 (14)H15A—C15—H15C109.5
N2—C9—C8120.49 (13)H15B—C15—H15C109.5
N2—C9—C13117.71 (13)C8—N1—C11119.34 (12)
C8—C9—C13121.78 (14)C9—N2—C10119.33 (12)
N2—C10—C11120.10 (14)C3—O1—H1109.5
N2—C10—C14117.56 (13)C5—O2—H2A109.5
(BS_PGL_TMP.cif) top
Crystal data top
C36H48N6O6Z = 4
Mr = 660.82F(000) = 1416
Monoclinic, P21/cDx = 1.212 Mg m3
a = 15.6084 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.4786 (7) ŵ = 0.08 mm1
c = 17.2209 (9) ÅT = 150 K
β = 90.200 (2)°Block, colorless
V = 3622.9 (3) Å30.42 × 0.27 × 0.18 mm
Data collection top
CCD area detector
diffractometer
5040 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.042
phi and ω scansθmax = 26.0°, θmin = 3.0°
Absorption correction: analytical
Bruker, AXS, 2008
h = 1919
Tmin = 0.973, Tmax = 0.985k = 1616
109213 measured reflectionsl = 2121
7113 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.211 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.85(Δ/σ)max = 0.020
7113 reflectionsΔρmax = 0.24 e Å3
451 parametersΔρmin = 0.26 e Å3
Crystal data top
C36H48N6O6V = 3622.9 (3) Å3
Mr = 660.82Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.6084 (8) ŵ = 0.08 mm1
b = 13.4786 (7) ÅT = 150 K
c = 17.2209 (9) Å0.42 × 0.27 × 0.18 mm
β = 90.200 (2)°
Data collection top
CCD area detector
diffractometer
7113 independent reflections
Absorption correction: analytical
Bruker, AXS, 2008
5040 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.985Rint = 0.042
109213 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.211H-atom parameters constrained
S = 0.85Δρmax = 0.24 e Å3
7113 reflectionsΔρmin = 0.26 e Å3
451 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O60.90188 (7)0.89146 (8)0.15658 (6)0.0535 (3)
H60.86700.91030.12240.080*
O30.40053 (8)1.30840 (9)0.33977 (7)0.0637 (4)
H30.38131.25560.35900.096*
N40.18146 (7)1.13651 (9)0.55086 (7)0.0434 (3)
N10.72228 (8)1.37025 (10)0.04770 (7)0.0476 (3)
C91.04170 (9)1.03465 (11)0.28154 (8)0.0401 (3)
O20.59700 (8)1.43145 (8)0.15866 (7)0.0628 (4)
H20.63421.41330.12630.094*
O40.95897 (9)1.24052 (8)0.16985 (8)0.0710 (4)
H40.91651.24280.13980.107*
C20.57685 (8)1.25477 (10)0.16537 (8)0.0414 (3)
H2A0.61801.24360.12550.050*
C60.47577 (9)1.18990 (11)0.25925 (8)0.0435 (4)
H6A0.44831.13500.28340.052*
C110.94268 (8)0.97191 (10)0.18742 (7)0.0383 (3)
O10.54723 (8)1.08114 (8)0.17511 (8)0.0743 (4)
H10.58881.07980.14400.111*
O51.09631 (7)1.01215 (8)0.34095 (6)0.0590 (3)
H51.11141.06460.36350.088*
C50.45832 (9)1.28641 (11)0.28288 (8)0.0427 (4)
N30.30153 (8)1.18600 (9)0.44037 (7)0.0484 (3)
C101.00066 (9)0.95481 (11)0.24707 (8)0.0433 (4)
H101.01210.88910.26410.052*
C120.92707 (8)1.06717 (10)0.16089 (8)0.0400 (3)
H120.88731.07860.11990.048*
C30.55839 (8)1.34996 (11)0.19020 (8)0.0423 (4)
C300.25540 (9)1.17867 (11)0.57146 (8)0.0446 (4)
C40.49851 (10)1.36649 (11)0.24831 (8)0.0473 (4)
H4A0.48521.43220.26420.057*
C10.53415 (9)1.17586 (11)0.19973 (8)0.0439 (4)
C130.70482 (10)1.37164 (11)0.02791 (9)0.0484 (4)
N20.82840 (9)1.27715 (10)0.05611 (8)0.0576 (4)
C81.02740 (8)1.13089 (10)0.25612 (8)0.0416 (3)
H81.05591.18540.27990.050*
C160.79230 (10)1.32258 (12)0.07266 (8)0.0499 (4)
C70.97043 (9)1.14567 (10)0.19511 (8)0.0428 (3)
C310.16618 (9)1.11939 (11)0.47571 (8)0.0443 (4)
C290.31616 (9)1.20267 (12)0.51544 (8)0.0471 (4)
C140.75864 (11)1.32517 (12)0.08065 (8)0.0523 (4)
C150.84597 (10)1.27449 (13)0.01942 (9)0.0534 (4)
C320.22691 (9)1.14513 (11)0.41935 (8)0.0464 (4)
C340.26833 (13)1.19826 (17)0.65628 (9)0.0732 (6)
H34A0.31301.15400.67630.110*
H34B0.28591.26740.66370.110*
H34C0.21461.18620.68430.110*
C180.74221 (16)1.3259 (2)0.16638 (10)0.0965 (8)
H18A0.79361.30330.19400.145*
H18B0.69431.28150.17820.145*
H18C0.72801.39340.18300.145*
C350.08248 (11)1.07301 (17)0.45536 (11)0.0752 (6)
H35A0.04931.06110.50290.113*
H35B0.05051.11760.42110.113*
H35C0.09271.00980.42870.113*
C360.21262 (14)1.12957 (19)0.33477 (10)0.0862 (7)
H36A0.26461.14770.30600.129*
H36B0.19911.05960.32520.129*
H36C0.16481.17110.31750.129*
C200.80882 (13)1.32221 (19)0.15797 (10)0.0827 (6)
H20A0.75921.35010.18530.124*
H20B0.81841.25390.17550.124*
H20C0.85971.36230.16910.124*
C170.62476 (13)1.42612 (16)0.05263 (12)0.0772 (6)
H17A0.59521.45210.00660.116*
H17B0.64041.48120.08700.116*
H17C0.58681.38040.08030.116*
C190.92416 (14)1.21952 (18)0.04480 (13)0.0904 (7)
H19A0.95701.19850.00090.136*
H19B0.95971.26300.07700.136*
H19C0.90711.16110.07500.136*
C330.40061 (12)1.2483 (2)0.53587 (12)0.0867 (7)
H33A0.43301.26200.48820.130*
H33B0.39091.31040.56410.130*
H33C0.43311.20240.56860.130*
N60.32962 (8)0.95515 (10)0.05765 (7)0.0484 (3)
N50.22419 (7)1.04417 (9)0.04902 (7)0.0422 (3)
C210.20634 (9)1.04912 (11)0.02631 (8)0.0422 (3)
C230.34730 (9)0.94920 (11)0.01828 (8)0.0440 (4)
C220.26022 (9)1.00502 (11)0.08082 (8)0.0457 (4)
C240.29428 (9)0.99501 (11)0.07244 (8)0.0427 (4)
C260.24364 (14)1.01047 (19)0.16632 (10)0.0815 (6)
H26A0.29470.98850.19480.122*
H26B0.19520.96740.17940.122*
H26C0.23021.07900.18070.122*
C270.42540 (12)0.89281 (16)0.04136 (12)0.0751 (6)
H27A0.45680.87220.00530.113*
H27B0.46210.93520.07330.113*
H27C0.40850.83400.07120.113*
C280.31195 (12)0.99093 (15)0.15779 (10)0.0699 (5)
H28A0.26291.01810.18640.105*
H28B0.32130.92190.17350.105*
H28C0.36321.03020.16940.105*
C250.12686 (11)1.10466 (15)0.04913 (11)0.0681 (5)
H25A0.09961.13250.00260.102*
H25B0.14221.15850.08480.102*
H25C0.08701.05920.07480.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O60.0597 (7)0.0465 (6)0.0541 (7)0.0061 (5)0.0276 (5)0.0001 (5)
O30.0710 (8)0.0619 (7)0.0580 (7)0.0110 (6)0.0383 (6)0.0115 (6)
N40.0394 (6)0.0561 (7)0.0347 (7)0.0087 (5)0.0078 (5)0.0002 (5)
N10.0477 (7)0.0575 (8)0.0376 (7)0.0040 (6)0.0120 (5)0.0010 (5)
C90.0346 (7)0.0545 (8)0.0312 (7)0.0011 (6)0.0063 (5)0.0009 (6)
O20.0766 (8)0.0484 (6)0.0633 (8)0.0141 (5)0.0360 (6)0.0053 (5)
O40.0882 (10)0.0425 (6)0.0821 (9)0.0010 (6)0.0465 (7)0.0030 (6)
C20.0381 (7)0.0495 (8)0.0365 (7)0.0001 (6)0.0096 (6)0.0015 (6)
C60.0413 (8)0.0484 (8)0.0408 (8)0.0038 (6)0.0073 (6)0.0036 (6)
C110.0362 (7)0.0446 (8)0.0342 (7)0.0025 (6)0.0036 (6)0.0016 (6)
O10.0882 (10)0.0429 (7)0.0914 (10)0.0027 (6)0.0520 (7)0.0002 (6)
O50.0639 (7)0.0602 (7)0.0525 (7)0.0050 (5)0.0320 (6)0.0046 (5)
C50.0389 (7)0.0548 (9)0.0344 (7)0.0051 (6)0.0084 (6)0.0066 (6)
N30.0419 (7)0.0625 (8)0.0408 (7)0.0135 (6)0.0111 (5)0.0009 (6)
C100.0429 (8)0.0470 (8)0.0400 (8)0.0010 (6)0.0081 (6)0.0052 (6)
C120.0372 (7)0.0473 (8)0.0353 (7)0.0015 (6)0.0097 (5)0.0007 (6)
C30.0417 (8)0.0478 (8)0.0372 (7)0.0088 (6)0.0065 (6)0.0022 (6)
C300.0403 (8)0.0575 (9)0.0359 (8)0.0086 (7)0.0027 (6)0.0015 (6)
C40.0509 (8)0.0476 (8)0.0433 (8)0.0061 (7)0.0115 (6)0.0110 (6)
C10.0426 (8)0.0444 (8)0.0447 (8)0.0015 (6)0.0084 (6)0.0017 (6)
C130.0488 (9)0.0547 (9)0.0418 (8)0.0024 (7)0.0038 (7)0.0039 (7)
N20.0628 (9)0.0652 (9)0.0448 (8)0.0051 (7)0.0129 (6)0.0041 (6)
C80.0379 (7)0.0477 (8)0.0392 (7)0.0042 (6)0.0038 (6)0.0067 (6)
C160.0434 (8)0.0678 (10)0.0386 (8)0.0059 (7)0.0060 (6)0.0043 (7)
C70.0426 (8)0.0431 (8)0.0426 (8)0.0013 (6)0.0046 (6)0.0016 (6)
C310.0415 (8)0.0535 (8)0.0378 (8)0.0115 (6)0.0061 (6)0.0005 (6)
C290.0389 (8)0.0632 (9)0.0391 (8)0.0102 (7)0.0026 (6)0.0001 (6)
C140.0610 (10)0.0600 (9)0.0357 (8)0.0027 (8)0.0080 (7)0.0002 (7)
C150.0480 (9)0.0649 (10)0.0473 (9)0.0010 (7)0.0094 (7)0.0073 (7)
C320.0466 (8)0.0592 (9)0.0335 (7)0.0151 (7)0.0059 (6)0.0036 (6)
C340.0732 (12)0.1120 (16)0.0344 (9)0.0224 (11)0.0000 (8)0.0034 (9)
C180.1089 (18)0.145 (2)0.0361 (10)0.0077 (15)0.0000 (10)0.0037 (11)
C350.0533 (10)0.1138 (16)0.0585 (11)0.0385 (10)0.0047 (8)0.0105 (10)
C360.0940 (15)0.1274 (18)0.0371 (9)0.0519 (13)0.0109 (9)0.0130 (10)
C200.0703 (12)0.1387 (19)0.0392 (9)0.0028 (12)0.0008 (9)0.0062 (11)
C170.0695 (12)0.0900 (14)0.0722 (13)0.0211 (11)0.0034 (10)0.0112 (10)
C190.0699 (13)0.1172 (18)0.0841 (15)0.0310 (12)0.0072 (11)0.0193 (13)
C330.0487 (10)0.145 (2)0.0663 (12)0.0426 (12)0.0008 (9)0.0054 (12)
N60.0463 (7)0.0582 (8)0.0407 (7)0.0089 (6)0.0073 (6)0.0066 (6)
N50.0367 (6)0.0524 (7)0.0375 (7)0.0060 (5)0.0065 (5)0.0017 (5)
C210.0349 (7)0.0521 (8)0.0396 (8)0.0016 (6)0.0020 (6)0.0030 (6)
C230.0378 (8)0.0510 (8)0.0431 (8)0.0081 (6)0.0045 (6)0.0013 (6)
C220.0415 (8)0.0582 (9)0.0376 (8)0.0004 (7)0.0018 (6)0.0021 (6)
C240.0379 (7)0.0533 (8)0.0369 (8)0.0051 (6)0.0021 (6)0.0013 (6)
C260.0754 (13)0.1314 (19)0.0378 (9)0.0116 (12)0.0031 (9)0.0054 (10)
C270.0588 (11)0.0948 (15)0.0716 (13)0.0359 (10)0.0046 (9)0.0060 (10)
C280.0650 (11)0.1057 (15)0.0389 (9)0.0197 (10)0.0005 (8)0.0033 (9)
C250.0520 (10)0.0915 (13)0.0609 (11)0.0257 (9)0.0046 (8)0.0073 (9)
Geometric parameters (Å, º) top
O6—C111.3642 (16)C15—C191.494 (3)
O6—H60.8400C32—C361.489 (2)
O3—C51.3620 (17)C34—H34A0.9800
O3—H30.8400C34—H34B0.9800
N4—C301.3355 (18)C34—H34C0.9800
N4—C311.3368 (18)C18—H18A0.9800
N1—C131.3313 (19)C18—H18B0.9800
N1—C161.340 (2)C18—H18C0.9800
C9—O51.3636 (16)C35—H35A0.9800
C9—C101.385 (2)C35—H35B0.9800
C9—C81.387 (2)C35—H35C0.9800
O2—C31.3646 (17)C36—H36A0.9800
O2—H20.8400C36—H36B0.9800
O4—C71.3620 (17)C36—H36C0.9800
O4—H40.8400C20—H20A0.9800
C2—C31.382 (2)C20—H20B0.9800
C2—C11.387 (2)C20—H20C0.9800
C2—H2A0.9500C17—H17A0.9800
C6—C11.382 (2)C17—H17B0.9800
C6—C51.390 (2)C17—H17C0.9800
C6—H6A0.9500C19—H19A0.9800
C11—C121.3841 (19)C19—H19B0.9800
C11—C101.3859 (19)C19—H19C0.9800
O1—C11.3605 (17)C33—H33A0.9800
O1—H10.8400C33—H33B0.9800
O5—H50.8400C33—H33C0.9800
C5—C41.382 (2)N6—C221.3371 (19)
N3—C291.3327 (18)N6—C231.3397 (19)
N3—C321.3394 (18)N5—C211.3295 (18)
C10—H100.9500N5—C241.3423 (18)
C12—C71.3863 (19)C21—C221.392 (2)
C12—H120.9500C21—C251.502 (2)
C3—C41.3850 (19)C23—C241.390 (2)
C30—C291.389 (2)C23—C271.492 (2)
C30—C341.499 (2)C22—C261.498 (2)
C4—H4A0.9500C24—C281.497 (2)
C13—C141.385 (2)C26—H26A0.9800
C13—C171.512 (2)C26—H26B0.9800
N2—C151.331 (2)C26—H26C0.9800
N2—C141.336 (2)C27—H27A0.9800
C8—C71.3885 (19)C27—H27B0.9800
C8—H80.9500C27—H27C0.9800
C16—C151.399 (2)C28—H28A0.9800
C16—C201.493 (2)C28—H28B0.9800
C31—C321.3981 (19)C28—H28C0.9800
C31—C351.491 (2)C25—H25A0.9800
C29—C331.498 (2)C25—H25B0.9800
C14—C181.499 (2)C25—H25C0.9800
C11—O6—H6109.5H18A—C18—H18B109.5
C5—O3—H3109.5C14—C18—H18C109.5
C30—N4—C31119.20 (12)H18A—C18—H18C109.5
C13—N1—C16119.36 (13)H18B—C18—H18C109.5
O5—C9—C10115.84 (13)C31—C35—H35A109.5
O5—C9—C8122.98 (13)C31—C35—H35B109.5
C10—C9—C8121.19 (13)H35A—C35—H35B109.5
C3—O2—H2109.5C31—C35—H35C109.5
C7—O4—H4109.5H35A—C35—H35C109.5
C3—C2—C1118.71 (13)H35B—C35—H35C109.5
C3—C2—H2A120.6C32—C36—H36A109.5
C1—C2—H2A120.6C32—C36—H36B109.5
C1—C6—C5118.25 (13)H36A—C36—H36B109.5
C1—C6—H6A120.9C32—C36—H36C109.5
C5—C6—H6A120.9H36A—C36—H36C109.5
O6—C11—C12121.83 (12)H36B—C36—H36C109.5
O6—C11—C10117.32 (12)C16—C20—H20A109.5
C12—C11—C10120.84 (13)C16—C20—H20B109.5
C1—O1—H1109.5H20A—C20—H20B109.5
C9—O5—H5109.5C16—C20—H20C109.5
O3—C5—C4116.00 (13)H20A—C20—H20C109.5
O3—C5—C6122.88 (13)H20B—C20—H20C109.5
C4—C5—C6121.11 (13)C13—C17—H17A109.5
C29—N3—C32118.92 (12)C13—C17—H17B109.5
C11—C10—C9119.23 (13)H17A—C17—H17B109.5
C11—C10—H10120.4C13—C17—H17C109.5
C9—C10—H10120.4H17A—C17—H17C109.5
C11—C12—C7118.85 (13)H17B—C17—H17C109.5
C11—C12—H12120.6C15—C19—H19A109.5
C7—C12—H12120.6C15—C19—H19B109.5
O2—C3—C2122.19 (12)H19A—C19—H19B109.5
O2—C3—C4117.00 (13)C15—C19—H19C109.5
C2—C3—C4120.81 (13)H19A—C19—H19C109.5
N4—C30—C29120.21 (13)H19B—C19—H19C109.5
N4—C30—C34116.96 (13)C29—C33—H33A109.5
C29—C30—C34122.82 (13)C29—C33—H33B109.5
C5—C4—C3119.32 (13)H33A—C33—H33B109.5
C5—C4—H4A120.3C29—C33—H33C109.5
C3—C4—H4A120.3H33A—C33—H33C109.5
O1—C1—C6117.22 (13)H33B—C33—H33C109.5
O1—C1—C2121.02 (13)C22—N6—C23119.42 (12)
C6—C1—C2121.75 (13)C21—N5—C24119.46 (12)
N1—C13—C14120.62 (14)N5—C21—C22120.57 (13)
N1—C13—C17117.02 (14)N5—C21—C25117.15 (13)
C14—C13—C17122.35 (15)C22—C21—C25122.28 (14)
C15—N2—C14119.54 (13)N6—C23—C24120.29 (13)
C9—C8—C7118.36 (12)N6—C23—C27117.50 (14)
C9—C8—H8120.8C24—C23—C27122.21 (14)
C7—C8—H8120.8N6—C22—C21120.12 (13)
N1—C16—C15119.95 (13)N6—C22—C26117.45 (14)
N1—C16—C20117.46 (15)C21—C22—C26122.43 (14)
C15—C16—C20122.58 (15)N5—C24—C23120.12 (12)
O4—C7—C12121.15 (13)N5—C24—C28117.79 (13)
O4—C7—C8117.35 (12)C23—C24—C28122.09 (13)
C12—C7—C8121.50 (13)C22—C26—H26A109.5
N4—C31—C32120.43 (13)C22—C26—H26B109.5
N4—C31—C35117.34 (13)H26A—C26—H26B109.5
C32—C31—C35122.23 (13)C22—C26—H26C109.5
N3—C29—C30121.05 (13)H26A—C26—H26C109.5
N3—C29—C33116.80 (14)H26B—C26—H26C109.5
C30—C29—C33122.14 (14)C23—C27—H27A109.5
N2—C14—C13120.31 (14)C23—C27—H27B109.5
N2—C14—C18117.19 (15)H27A—C27—H27B109.5
C13—C14—C18122.50 (16)C23—C27—H27C109.5
N2—C15—C16120.21 (14)H27A—C27—H27C109.5
N2—C15—C19118.07 (15)H27B—C27—H27C109.5
C16—C15—C19121.72 (15)C24—C28—H28A109.5
N3—C32—C31120.16 (13)C24—C28—H28B109.5
N3—C32—C36117.11 (13)H28A—C28—H28B109.5
C31—C32—C36122.72 (14)C24—C28—H28C109.5
C30—C34—H34A109.5H28A—C28—H28C109.5
C30—C34—H34B109.5H28B—C28—H28C109.5
H34A—C34—H34B109.5C21—C25—H25A109.5
C30—C34—H34C109.5C21—C25—H25B109.5
H34A—C34—H34C109.5H25A—C25—H25B109.5
H34B—C34—H34C109.5C21—C25—H25C109.5
C14—C18—H18A109.5H25A—C25—H25C109.5
C14—C18—H18B109.5H25B—C25—H25C109.5
(QS_ORC_TMP_ACR_PYR) top
Crystal data top
C64H56N4O4V = 1212.0 (2) Å3
Mr = 945.12Z = 1
Triclinic, P1F(000) = 500
a = 9.0005 (8) ÅDx = 1.295 Mg m3
b = 10.0381 (9) ÅMo Kα radiation, λ = 0.71073 Å
c = 14.4894 (13) ŵ = 0.08 mm1
α = 108.432 (8)°T = 150 K
β = 101.780 (7)°Plate, light yellow
γ = 90.484 (6)°0.30 × 0.20 × 0.12 mm
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
4285 reflections with I > 2σ(I)
Radiation source: Sealed TubeRint = 0.028
profile data from ω–scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
h = 1111
Tmin = 0.838, Tmax = 1.000k = 1313
12950 measured reflectionsl = 1818
5546 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.0679P)2 + 0.3403P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5546 reflectionsΔρmax = 0.23 e Å3
336 parametersΔρmin = 0.31 e Å3
Crystal data top
C64H56N4O4γ = 90.484 (6)°
Mr = 945.12V = 1212.0 (2) Å3
Triclinic, P1Z = 1
a = 9.0005 (8) ÅMo Kα radiation
b = 10.0381 (9) ŵ = 0.08 mm1
c = 14.4894 (13) ÅT = 150 K
α = 108.432 (8)°0.30 × 0.20 × 0.12 mm
β = 101.780 (7)°
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
5546 independent reflections
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
4285 reflections with I > 2σ(I)
Tmin = 0.838, Tmax = 1.000Rint = 0.028
12950 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.23 e Å3
5546 reflectionsΔρmin = 0.31 e Å3
336 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H2O0.765 (2)0.721 (2)0.4708 (15)0.051 (6)*
H1O0.745 (3)0.405 (2)0.1710 (16)0.056 (6)*
N20.10086 (13)0.32086 (12)0.20218 (9)0.0222 (3)
O10.66608 (12)0.45109 (11)0.15674 (8)0.0284 (3)
O20.69317 (13)0.79014 (12)0.47213 (8)0.0302 (3)
C40.68342 (16)0.61594 (15)0.31507 (11)0.0219 (3)
H40.75660.55420.32320.026*
N10.89705 (14)0.58432 (13)0.48083 (9)0.0236 (3)
C120.01187 (17)0.18555 (15)0.29637 (11)0.0246 (3)
C190.07653 (18)0.40789 (16)0.09209 (11)0.0264 (3)
H190.00540.44960.07580.032*
C160.28436 (18)0.24150 (16)0.31283 (12)0.0292 (3)
H160.36410.28490.29570.035*
C230.17101 (17)0.27083 (15)0.18486 (11)0.0244 (3)
C60.52894 (16)0.83626 (15)0.37590 (11)0.0237 (3)
H60.49690.92480.42600.028*
C320.13798 (17)0.19780 (16)0.25314 (12)0.0275 (3)
H320.21880.15590.27030.033*
C170.12989 (16)0.25064 (14)0.26835 (11)0.0230 (3)
C20.51442 (16)0.66705 (15)0.21861 (11)0.0237 (3)
H20.47230.63950.16100.028*
C180.04555 (16)0.33202 (14)0.16110 (10)0.0216 (3)
C50.63632 (16)0.74628 (15)0.38777 (10)0.0217 (3)
C30.62232 (15)0.57693 (14)0.23039 (11)0.0215 (3)
C10.46837 (16)0.79757 (15)0.29147 (11)0.0232 (3)
C101.04555 (17)0.57701 (15)0.43924 (11)0.0235 (3)
C210.34644 (18)0.36157 (17)0.07334 (12)0.0315 (4)
H210.44770.37250.04320.038*
C140.2016 (2)0.10454 (18)0.40599 (12)0.0351 (4)
H140.22780.05420.45180.042*
C220.32201 (17)0.28871 (17)0.13926 (12)0.0294 (3)
H220.40620.24960.15490.035*
C90.84975 (16)0.50816 (16)0.54084 (11)0.0238 (3)
C130.05299 (19)0.11208 (17)0.36640 (12)0.0311 (4)
H130.02420.06820.38540.037*
C200.22269 (19)0.42107 (17)0.04921 (12)0.0307 (3)
H200.24170.47080.00260.037*
C111.09354 (19)0.66147 (18)0.37098 (12)0.0332 (4)
H11A1.00700.72400.37430.050*
H11B1.17660.71790.39150.050*
H11C1.12840.59770.30250.050*
C80.68199 (17)0.51731 (19)0.58438 (13)0.0337 (4)
H8A0.62890.58520.56400.050*
H8B0.64330.42450.56030.050*
H8C0.66440.54810.65730.050*
C70.35687 (19)0.89960 (17)0.27861 (13)0.0330 (4)
H7A0.34260.98720.33510.049*
H7B0.39640.91980.21660.049*
H7C0.25900.85820.27570.049*
C150.31818 (19)0.17116 (17)0.37945 (12)0.0338 (4)
H150.42160.16640.40880.041*
C310.00735 (17)0.95801 (15)0.03187 (11)0.0246 (3)
C290.15275 (19)0.94492 (16)0.08704 (12)0.0321 (4)
C250.1234 (2)0.88654 (16)0.03960 (12)0.0324 (4)
C240.2687 (2)0.90310 (19)0.01594 (14)0.0421 (5)
H240.35730.85620.01080.051*
C300.28245 (19)1.0170 (2)0.07483 (14)0.0419 (5)
H300.38101.00730.10980.050*
C260.1053 (3)0.80253 (19)0.10154 (14)0.0466 (5)
H260.19180.75190.10600.056*
C280.1635 (3)0.8626 (2)0.14947 (13)0.0470 (5)
H280.26000.85500.18800.056*
C270.0357 (3)0.7923 (2)0.15595 (14)0.0522 (6)
H270.04530.73610.19850.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0212 (6)0.0191 (6)0.0237 (6)0.0026 (5)0.0043 (5)0.0037 (5)
O10.0293 (6)0.0245 (5)0.0279 (6)0.0060 (4)0.0114 (5)0.0008 (4)
O20.0365 (6)0.0274 (6)0.0256 (6)0.0072 (5)0.0133 (5)0.0029 (5)
C40.0196 (7)0.0222 (7)0.0256 (7)0.0020 (5)0.0052 (6)0.0098 (6)
N10.0233 (6)0.0265 (6)0.0235 (6)0.0017 (5)0.0083 (5)0.0096 (5)
C120.0279 (7)0.0208 (7)0.0240 (7)0.0015 (6)0.0065 (6)0.0052 (6)
C190.0292 (8)0.0248 (7)0.0258 (8)0.0011 (6)0.0080 (6)0.0079 (6)
C160.0252 (8)0.0280 (8)0.0306 (8)0.0011 (6)0.0030 (6)0.0060 (7)
C230.0237 (7)0.0219 (7)0.0249 (7)0.0020 (6)0.0059 (6)0.0035 (6)
C60.0241 (7)0.0205 (7)0.0249 (7)0.0018 (6)0.0022 (6)0.0072 (6)
C320.0260 (8)0.0256 (7)0.0311 (8)0.0056 (6)0.0083 (6)0.0085 (6)
C170.0243 (7)0.0182 (7)0.0224 (7)0.0012 (5)0.0039 (6)0.0019 (6)
C20.0218 (7)0.0271 (7)0.0248 (7)0.0010 (6)0.0084 (6)0.0098 (6)
C180.0228 (7)0.0178 (7)0.0207 (7)0.0015 (5)0.0052 (5)0.0013 (5)
C50.0211 (7)0.0242 (7)0.0204 (7)0.0005 (5)0.0041 (5)0.0084 (6)
C30.0181 (6)0.0207 (7)0.0250 (7)0.0010 (5)0.0034 (5)0.0074 (6)
C10.0185 (7)0.0236 (7)0.0300 (8)0.0005 (5)0.0034 (6)0.0133 (6)
C100.0253 (7)0.0257 (7)0.0215 (7)0.0054 (6)0.0076 (6)0.0087 (6)
C210.0255 (8)0.0331 (8)0.0308 (8)0.0042 (6)0.0004 (6)0.0067 (7)
C140.0437 (10)0.0316 (9)0.0300 (9)0.0052 (7)0.0022 (7)0.0135 (7)
C220.0217 (7)0.0325 (8)0.0321 (8)0.0009 (6)0.0052 (6)0.0081 (7)
C90.0220 (7)0.0283 (7)0.0212 (7)0.0036 (6)0.0061 (6)0.0073 (6)
C130.0357 (9)0.0284 (8)0.0312 (8)0.0003 (7)0.0075 (7)0.0121 (7)
C200.0363 (9)0.0287 (8)0.0266 (8)0.0045 (7)0.0038 (7)0.0101 (6)
C110.0365 (9)0.0379 (9)0.0318 (9)0.0077 (7)0.0073 (7)0.0203 (7)
C80.0215 (7)0.0437 (9)0.0358 (9)0.0027 (7)0.0032 (6)0.0148 (8)
C70.0319 (8)0.0297 (8)0.0401 (9)0.0060 (7)0.0118 (7)0.0128 (7)
C150.0297 (8)0.0327 (9)0.0331 (9)0.0052 (7)0.0018 (7)0.0080 (7)
C310.0286 (8)0.0201 (7)0.0208 (7)0.0039 (6)0.0049 (6)0.0007 (6)
C290.0376 (9)0.0259 (8)0.0234 (8)0.0099 (7)0.0002 (7)0.0014 (6)
C250.0409 (9)0.0229 (7)0.0297 (8)0.0002 (7)0.0144 (7)0.0008 (6)
C240.0288 (9)0.0379 (10)0.0464 (11)0.0072 (7)0.0125 (8)0.0071 (8)
C300.0247 (8)0.0428 (10)0.0393 (10)0.0072 (7)0.0036 (7)0.0061 (8)
C260.0753 (14)0.0280 (9)0.0413 (10)0.0005 (9)0.0329 (10)0.0053 (8)
C280.0662 (13)0.0413 (10)0.0251 (9)0.0267 (10)0.0001 (8)0.0046 (8)
C270.0966 (18)0.0346 (10)0.0321 (10)0.0185 (11)0.0219 (11)0.0149 (8)
Geometric parameters (Å, º) top
N2—C171.3463 (19)C21—H210.9500
N2—C181.3519 (18)C14—C131.357 (2)
O1—C31.3628 (17)C14—C151.418 (2)
O1—H1O0.93 (2)C14—H140.9500
O2—C51.3669 (17)C22—H220.9500
O2—H2O0.93 (2)C9—C10i1.398 (2)
C4—C31.392 (2)C9—C81.503 (2)
C4—C51.3921 (19)C13—H130.9500
C4—H40.9500C20—H200.9500
N1—C91.3404 (19)C11—H11A0.9800
N1—C101.3404 (19)C11—H11B0.9800
C12—C321.390 (2)C11—H11C0.9800
C12—C131.427 (2)C8—H8A0.9800
C12—C171.433 (2)C8—H8B0.9800
C19—C201.362 (2)C8—H8C0.9800
C19—C181.424 (2)C7—H7A0.9800
C19—H190.9500C7—H7B0.9800
C16—C151.356 (2)C7—H7C0.9800
C16—C171.425 (2)C15—H150.9500
C16—H160.9500C31—C251.415 (2)
C23—C321.395 (2)C31—C291.418 (2)
C23—C221.424 (2)C31—C31ii1.423 (3)
C23—C181.432 (2)C29—C281.396 (3)
C6—C11.386 (2)C29—C301.438 (3)
C6—C51.3896 (19)C25—C261.402 (3)
C6—H60.9500C25—C241.430 (3)
C32—H320.9500C24—C30ii1.334 (3)
C2—C11.393 (2)C24—H240.9500
C2—C31.3932 (19)C30—C24ii1.334 (3)
C2—H20.9500C30—H300.9500
C1—C71.507 (2)C26—C271.374 (3)
C10—C9i1.399 (2)C26—H260.9500
C10—C111.499 (2)C28—C271.379 (3)
C21—C221.362 (2)C28—H280.9500
C21—C201.414 (2)C27—H270.9500
C17—N2—C18118.88 (12)N1—C9—C10i120.36 (13)
C3—O1—H1O109.4 (13)N1—C9—C8117.65 (13)
C5—O2—H2O109.7 (13)C10i—C9—C8121.98 (14)
C3—C4—C5119.38 (13)C14—C13—C12120.39 (15)
C3—C4—H4120.3C14—C13—H13119.8
C5—C4—H4120.3C12—C13—H13119.8
C9—N1—C10119.37 (13)C19—C20—C21120.74 (15)
C32—C12—C13123.44 (14)C19—C20—H20119.6
C32—C12—C17117.59 (13)C21—C20—H20119.6
C13—C12—C17118.97 (14)C10—C11—H11A109.5
C20—C19—C18120.51 (14)C10—C11—H11B109.5
C20—C19—H19119.7H11A—C11—H11B109.5
C18—C19—H19119.7C10—C11—H11C109.5
C15—C16—C17120.36 (15)H11A—C11—H11C109.5
C15—C16—H16119.8H11B—C11—H11C109.5
C17—C16—H16119.8C9—C8—H8A109.5
C32—C23—C22123.37 (14)C9—C8—H8B109.5
C32—C23—C18117.69 (13)H8A—C8—H8B109.5
C22—C23—C18118.93 (14)C9—C8—H8C109.5
C1—C6—C5120.39 (13)H8A—C8—H8C109.5
C1—C6—H6119.8H8B—C8—H8C109.5
C5—C6—H6119.8C1—C7—H7A109.5
C12—C32—C23120.78 (14)C1—C7—H7B109.5
C12—C32—H32119.6H7A—C7—H7B109.5
C23—C32—H32119.6C1—C7—H7C109.5
N2—C17—C16118.64 (13)H7A—C7—H7C109.5
N2—C17—C12122.71 (13)H7B—C7—H7C109.5
C16—C17—C12118.66 (14)C16—C15—C14121.08 (15)
C1—C2—C3119.90 (13)C16—C15—H15119.5
C1—C2—H2120.0C14—C15—H15119.5
C3—C2—H2120.0C25—C31—C29119.94 (15)
N2—C18—C19118.96 (13)C25—C31—C31ii119.87 (17)
N2—C18—C23122.35 (13)C29—C31—C31ii120.19 (18)
C19—C18—C23118.69 (13)C28—C29—C31118.88 (17)
O2—C5—C6117.98 (13)C28—C29—C30123.32 (17)
O2—C5—C4121.80 (12)C31—C29—C30117.80 (16)
C6—C5—C4120.23 (13)C26—C25—C31118.68 (17)
O1—C3—C4121.50 (12)C26—C25—C24122.62 (17)
O1—C3—C2118.12 (13)C31—C25—C24118.71 (16)
C4—C3—C2120.38 (13)C30ii—C24—C25121.32 (16)
C6—C1—C2119.71 (13)C30ii—C24—H24119.3
C6—C1—C7119.26 (13)C25—C24—H24119.3
C2—C1—C7121.01 (14)C24ii—C30—C29122.09 (16)
N1—C10—C9i120.27 (13)C24ii—C30—H30119.0
N1—C10—C11117.77 (13)C29—C30—H30119.0
C9i—C10—C11121.96 (14)C27—C26—C25120.98 (19)
C22—C21—C20120.69 (14)C27—C26—H26119.5
C22—C21—H21119.7C25—C26—H26119.5
C20—C21—H21119.7C27—C28—C29120.85 (18)
C13—C14—C15120.52 (15)C27—C28—H28119.6
C13—C14—H14119.7C29—C28—H28119.6
C15—C14—H14119.7C26—C27—C28120.64 (18)
C21—C22—C23120.43 (14)C26—C27—H27119.7
C21—C22—H22119.8C28—C27—H27119.7
C23—C22—H22119.8
Symmetry codes: (i) x2, y+1, z+1; (ii) x, y+2, z.
(QS_ORC_TMP_PHE_HMB) top
Crystal data top
C29H31N3O2V = 1199.2 (4) Å3
Mr = 453.57Z = 2
Triclinic, P1F(000) = 484
a = 8.9943 (15) ÅDx = 1.256 Mg m3
b = 9.5169 (16) ÅMo Kα radiation, λ = 0.71073 Å
c = 14.927 (3) ŵ = 0.08 mm1
α = 74.162 (5)°T = 150 K
β = 77.589 (5)°Plate, yellow
γ = 89.115 (6)°0.20 × 0.20 × 0.15 mm
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
3925 reflections with I > 2σ(I)
Radiation source: Sealed TubeRint = 0.037
profile data from ω–scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
h = 1111
Tmin = 0.796, Tmax = 1.000k = 1212
12751 measured reflectionsl = 1919
5486 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.0723P)2 + 0.2791P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.008
5486 reflectionsΔρmax = 0.26 e Å3
321 parametersΔρmin = 0.22 e Å3
Crystal data top
C29H31N3O2γ = 89.115 (6)°
Mr = 453.57V = 1199.2 (4) Å3
Triclinic, P1Z = 2
a = 8.9943 (15) ÅMo Kα radiation
b = 9.5169 (16) ŵ = 0.08 mm1
c = 14.927 (3) ÅT = 150 K
α = 74.162 (5)°0.20 × 0.20 × 0.15 mm
β = 77.589 (5)°
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
5486 independent reflections
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
3925 reflections with I > 2σ(I)
Tmin = 0.796, Tmax = 1.000Rint = 0.037
12751 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.26 e Å3
5486 reflectionsΔρmin = 0.22 e Å3
321 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C300.2473 (3)0.1475 (3)0.04114 (17)0.0523 (6)
H30A0.20580.21810.07590.078*
H30B0.31560.19900.01930.078*
H30C0.30420.07590.07980.078*
H2O0.751 (3)0.283 (3)0.4660 (16)0.051 (6)*
H1O0.749 (3)0.584 (3)0.1716 (16)0.054 (6)*
N20.89990 (15)0.67758 (15)0.20159 (10)0.0260 (3)
N31.13781 (16)0.79807 (16)0.25887 (11)0.0316 (3)
C130.87034 (19)0.74366 (17)0.27193 (12)0.0260 (4)
C50.68503 (17)0.37273 (17)0.31334 (11)0.0229 (3)
H50.75930.43690.31990.028*
O20.68945 (15)0.20761 (14)0.46667 (8)0.0320 (3)
O10.66969 (14)0.53096 (14)0.15973 (8)0.0316 (3)
C231.0838 (2)0.59719 (19)0.08716 (13)0.0311 (4)
H231.00470.55770.06690.037*
C241.04651 (18)0.66972 (17)0.15972 (12)0.0258 (4)
N10.89673 (15)0.41726 (15)0.47763 (10)0.0261 (3)
C180.99089 (19)0.80540 (18)0.30018 (12)0.0280 (4)
C140.7168 (2)0.74971 (19)0.32091 (13)0.0319 (4)
H140.63610.70660.30400.038*
C191.16663 (19)0.73017 (18)0.18940 (12)0.0280 (4)
C70.52713 (18)0.15131 (18)0.37499 (12)0.0253 (4)
H70.49300.06440.42460.030*
C201.3201 (2)0.7145 (2)0.14482 (14)0.0360 (4)
H201.40130.75440.16310.043*
C170.9525 (2)0.8764 (2)0.37444 (13)0.0355 (4)
H171.03070.91980.39330.043*
C60.63539 (18)0.24531 (18)0.38466 (11)0.0233 (3)
C20.51718 (18)0.31131 (18)0.22194 (11)0.0252 (4)
H20.47690.33440.16600.030*
C111.04460 (18)0.42497 (18)0.43466 (12)0.0254 (4)
C40.62503 (18)0.40597 (18)0.23193 (11)0.0240 (4)
C211.3511 (2)0.6424 (2)0.07591 (14)0.0387 (5)
H211.45420.63150.04740.046*
C150.6860 (2)0.8167 (2)0.39133 (14)0.0371 (4)
H150.58340.82050.42360.045*
C100.85016 (18)0.49176 (18)0.54252 (12)0.0258 (4)
C121.0912 (2)0.3401 (2)0.36269 (14)0.0365 (4)
H12A1.00230.28450.35980.055*
H12B1.16950.27250.38150.055*
H12C1.13220.40780.29980.055*
C90.68336 (19)0.4796 (2)0.58861 (14)0.0363 (4)
H9A0.62760.42980.55560.054*
H9B0.64520.57770.58450.054*
H9C0.66840.42350.65580.054*
C10.46840 (18)0.18330 (18)0.29350 (12)0.0250 (4)
C160.8054 (2)0.8817 (2)0.41776 (14)0.0394 (5)
H160.78100.92970.46680.047*
C221.2326 (2)0.5836 (2)0.04613 (13)0.0357 (4)
H221.25650.53460.00240.043*
C80.3555 (2)0.0767 (2)0.28332 (14)0.0339 (4)
H8A0.40590.02430.23780.051*
H8B0.27100.12980.26000.051*
H8C0.31620.00650.34550.051*
C270.1184 (2)0.06971 (19)0.02108 (13)0.0326 (4)
C260.0317 (2)0.07488 (19)0.07073 (12)0.0317 (4)
C280.1496 (2)0.0069 (2)0.04833 (12)0.0322 (4)
C290.3139 (2)0.0126 (3)0.10032 (16)0.0524 (6)
H29A0.32410.09800.12560.079*
H29B0.38130.02020.05580.079*
H29C0.34200.07650.15310.079*
C250.0669 (3)0.1548 (2)0.14746 (15)0.0519 (6)
H25A0.02010.15100.17770.078*
H25B0.15730.10810.19560.078*
H25C0.08630.25700.11860.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C300.0491 (13)0.0526 (14)0.0535 (14)0.0106 (11)0.0198 (11)0.0047 (11)
N20.0233 (7)0.0245 (7)0.0286 (8)0.0012 (6)0.0054 (6)0.0047 (6)
N30.0299 (8)0.0315 (8)0.0333 (8)0.0059 (6)0.0074 (6)0.0079 (7)
C130.0271 (8)0.0206 (8)0.0268 (9)0.0004 (6)0.0041 (7)0.0020 (7)
C50.0182 (8)0.0254 (8)0.0273 (9)0.0021 (6)0.0043 (6)0.0112 (7)
O20.0393 (7)0.0309 (7)0.0268 (7)0.0076 (6)0.0138 (5)0.0040 (5)
O10.0305 (7)0.0332 (7)0.0282 (7)0.0084 (5)0.0101 (5)0.0000 (5)
C230.0312 (9)0.0304 (9)0.0328 (10)0.0009 (7)0.0074 (7)0.0102 (8)
C240.0250 (8)0.0225 (8)0.0270 (9)0.0024 (6)0.0055 (7)0.0022 (7)
N10.0217 (7)0.0297 (8)0.0295 (8)0.0032 (6)0.0083 (6)0.0107 (6)
C180.0297 (9)0.0242 (8)0.0281 (9)0.0024 (7)0.0063 (7)0.0039 (7)
C140.0276 (9)0.0293 (9)0.0362 (10)0.0001 (7)0.0053 (7)0.0060 (8)
C190.0253 (8)0.0250 (8)0.0310 (9)0.0037 (7)0.0060 (7)0.0034 (7)
C70.0248 (8)0.0244 (8)0.0255 (8)0.0020 (7)0.0016 (7)0.0075 (7)
C200.0234 (9)0.0425 (11)0.0395 (11)0.0040 (8)0.0052 (8)0.0082 (9)
C170.0414 (11)0.0315 (10)0.0346 (10)0.0031 (8)0.0084 (8)0.0105 (8)
C60.0224 (8)0.0275 (9)0.0228 (8)0.0015 (6)0.0050 (6)0.0112 (7)
C20.0236 (8)0.0325 (9)0.0220 (8)0.0002 (7)0.0069 (6)0.0101 (7)
C110.0246 (8)0.0278 (9)0.0254 (9)0.0054 (7)0.0075 (7)0.0087 (7)
C40.0212 (8)0.0272 (9)0.0237 (8)0.0010 (6)0.0031 (6)0.0083 (7)
C210.0255 (9)0.0440 (11)0.0408 (11)0.0022 (8)0.0008 (8)0.0083 (9)
C150.0346 (10)0.0343 (10)0.0366 (10)0.0058 (8)0.0012 (8)0.0074 (8)
C100.0226 (8)0.0291 (9)0.0262 (9)0.0042 (7)0.0063 (7)0.0077 (7)
C120.0335 (10)0.0441 (11)0.0387 (11)0.0070 (8)0.0082 (8)0.0228 (9)
C90.0219 (9)0.0482 (12)0.0398 (11)0.0019 (8)0.0038 (8)0.0162 (9)
C10.0192 (8)0.0288 (9)0.0304 (9)0.0004 (6)0.0028 (7)0.0157 (7)
C160.0483 (12)0.0356 (11)0.0338 (10)0.0036 (9)0.0024 (9)0.0138 (8)
C220.0367 (10)0.0352 (10)0.0335 (10)0.0039 (8)0.0015 (8)0.0114 (8)
C80.0287 (9)0.0375 (10)0.0390 (10)0.0080 (8)0.0064 (8)0.0163 (8)
C270.0338 (10)0.0295 (9)0.0308 (10)0.0001 (8)0.0109 (8)0.0008 (7)
C260.0415 (10)0.0266 (9)0.0238 (9)0.0078 (8)0.0065 (8)0.0024 (7)
C280.0296 (9)0.0319 (10)0.0262 (9)0.0063 (7)0.0010 (7)0.0028 (7)
C290.0353 (11)0.0602 (15)0.0475 (13)0.0103 (10)0.0029 (9)0.0013 (11)
C250.0724 (16)0.0495 (13)0.0390 (12)0.0176 (11)0.0152 (11)0.0191 (10)
Geometric parameters (Å, º) top
C30—C271.509 (3)C2—C41.392 (2)
C30—H30A0.9800C2—H20.9500
C30—H30B0.9800C11—C10i1.396 (2)
C30—H30C0.9800C11—C121.501 (2)
N2—C241.343 (2)C21—C221.416 (3)
N2—C131.343 (2)C21—H210.9500
N3—C181.342 (2)C15—C161.424 (3)
N3—C191.343 (2)C15—H150.9500
C13—C141.425 (2)C10—C11i1.396 (2)
C13—C181.432 (2)C10—C91.502 (2)
C5—C61.382 (2)C12—H12A0.9800
C5—C41.391 (2)C12—H12B0.9800
C5—H50.9500C12—H12C0.9800
O2—C61.3690 (19)C9—H9A0.9800
O2—H2O0.91 (2)C9—H9B0.9800
O1—C41.366 (2)C9—H9C0.9800
O1—H1O0.95 (2)C1—C81.505 (2)
C23—C221.367 (3)C16—H160.9500
C23—C241.417 (2)C22—H220.9500
C23—H230.9500C8—H8A0.9800
C24—C191.435 (2)C8—H8B0.9800
N1—C111.340 (2)C8—H8C0.9800
N1—C101.344 (2)C27—C261.401 (3)
C18—C171.429 (2)C27—C281.401 (3)
C14—C151.350 (3)C26—C28ii1.395 (3)
C14—H140.9500C26—C251.518 (3)
C19—C201.422 (2)C28—C26ii1.395 (3)
C7—C11.386 (2)C28—C291.522 (3)
C7—C61.388 (2)C29—H29A0.9800
C7—H70.9500C29—H29B0.9800
C20—C211.365 (3)C29—H29C0.9800
C20—H200.9500C25—H25A0.9800
C17—C161.349 (3)C25—H25B0.9800
C17—H170.9500C25—H25C0.9800
C2—C11.386 (2)
C27—C30—H30A109.5C22—C21—H21119.4
C27—C30—H30B109.5C14—C15—C16120.81 (17)
H30A—C30—H30B109.5C14—C15—H15119.6
C27—C30—H30C109.5C16—C15—H15119.6
H30A—C30—H30C109.5N1—C10—C11i120.14 (15)
H30B—C30—H30C109.5N1—C10—C9117.28 (15)
C24—N2—C13117.62 (14)C11i—C10—C9122.57 (15)
C18—N3—C19116.80 (14)C11—C12—H12A109.5
N2—C13—C14119.61 (15)C11—C12—H12B109.5
N2—C13—C18121.10 (15)H12A—C12—H12B109.5
C14—C13—C18119.27 (16)C11—C12—H12C109.5
C6—C5—C4119.31 (14)H12A—C12—H12C109.5
C6—C5—H5120.3H12B—C12—H12C109.5
C4—C5—H5120.3C10—C9—H9A109.5
C6—O2—H2O108.2 (14)C10—C9—H9B109.5
C4—O1—H1O111.2 (14)H9A—C9—H9B109.5
C22—C23—C24120.58 (16)C10—C9—H9C109.5
C22—C23—H23119.7H9A—C9—H9C109.5
C24—C23—H23119.7H9B—C9—H9C109.5
N2—C24—C23119.76 (15)C7—C1—C2119.42 (15)
N2—C24—C19120.87 (15)C7—C1—C8119.35 (16)
C23—C24—C19119.34 (15)C2—C1—C8121.21 (15)
C11—N1—C10119.32 (14)C17—C16—C15121.19 (17)
N3—C18—C17119.57 (16)C17—C16—H16119.4
N3—C18—C13121.77 (15)C15—C16—H16119.4
C17—C18—C13118.66 (16)C23—C22—C21120.05 (17)
C15—C14—C13119.99 (17)C23—C22—H22120.0
C15—C14—H14120.0C21—C22—H22120.0
C13—C14—H14120.0C1—C8—H8A109.5
N3—C19—C20119.61 (16)C1—C8—H8B109.5
N3—C19—C24121.83 (15)H8A—C8—H8B109.5
C20—C19—C24118.54 (16)C1—C8—H8C109.5
C1—C7—C6120.50 (15)H8A—C8—H8C109.5
C1—C7—H7119.8H8B—C8—H8C109.5
C6—C7—H7119.8C26—C27—C28120.05 (17)
C21—C20—C19120.24 (17)C26—C27—C30120.40 (18)
C21—C20—H20119.9C28—C27—C30119.55 (18)
C19—C20—H20119.9C28ii—C26—C27119.32 (17)
C16—C17—C18120.03 (17)C28ii—C26—C25120.01 (18)
C16—C17—H17120.0C27—C26—C25120.66 (18)
C18—C17—H17120.0C26ii—C28—C27120.60 (16)
O2—C6—C5121.86 (14)C26ii—C28—C29120.35 (18)
O2—C6—C7117.80 (15)C27—C28—C29119.04 (18)
C5—C6—C7120.33 (15)C28—C29—H29A109.5
C1—C2—C4120.05 (15)C28—C29—H29B109.5
C1—C2—H2120.0H29A—C29—H29B109.5
C4—C2—H2120.0C28—C29—H29C109.5
N1—C11—C10i120.54 (15)H29A—C29—H29C109.5
N1—C11—C12117.41 (15)H29B—C29—H29C109.5
C10i—C11—C12122.04 (15)C26—C25—H25A109.5
O1—C4—C5121.53 (14)C26—C25—H25B109.5
O1—C4—C2118.10 (14)H25A—C25—H25B109.5
C5—C4—C2120.38 (15)C26—C25—H25C109.5
C20—C21—C22121.23 (17)H25A—C25—H25C109.5
C20—C21—H21119.4H25B—C25—H25C109.5
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y, z.
(QS_ORC_TMP_PHE_PYR) top
Crystal data top
C62H54N6O4V = 1206.5 (5) Å3
Mr = 947.11Z = 1
Triclinic, P1F(000) = 500
a = 9.034 (2) ÅDx = 1.304 Mg m3
b = 9.889 (2) ÅMo Kα radiation, λ = 0.71073 Å
c = 14.505 (4) ŵ = 0.08 mm1
α = 107.761 (8)°T = 150 K
β = 101.019 (7)°Plate, yellow-red
γ = 91.432 (6)°0.30 × 0.20 × 0.15 mm
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
3640 reflections with I > 2σ(I)
Radiation source: Sealed TubeRint = 0.041
profile data from ω–scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
h = 1111
Tmin = 0.793, Tmax = 1.000k = 1212
12197 measured reflectionsl = 1818
5504 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.059H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.163 w = 1/[σ2(Fo2) + (0.0731P)2 + 0.3701P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.003
5504 reflectionsΔρmax = 0.25 e Å3
336 parametersΔρmin = 0.23 e Å3
Crystal data top
C62H54N6O4γ = 91.432 (6)°
Mr = 947.11V = 1206.5 (5) Å3
Triclinic, P1Z = 1
a = 9.034 (2) ÅMo Kα radiation
b = 9.889 (2) ŵ = 0.08 mm1
c = 14.505 (4) ÅT = 150 K
α = 107.761 (8)°0.30 × 0.20 × 0.15 mm
β = 101.019 (7)°
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
5504 independent reflections
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
3640 reflections with I > 2σ(I)
Tmin = 0.793, Tmax = 1.000Rint = 0.041
12197 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.25 e Å3
5504 reflectionsΔρmin = 0.23 e Å3
336 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H2O0.250 (3)0.278 (3)0.0299 (19)0.053 (8)*
H1O0.238 (3)0.595 (3)0.330 (2)0.074 (9)*
N10.39533 (17)0.68009 (16)0.29807 (12)0.0267 (4)
O10.16264 (17)0.54186 (15)0.34748 (11)0.0350 (4)
O20.18504 (17)0.20716 (16)0.03057 (11)0.0352 (4)
N20.63383 (19)0.80472 (18)0.24066 (13)0.0318 (4)
C190.6616 (2)0.7355 (2)0.30794 (15)0.0281 (4)
C150.5776 (2)0.5977 (2)0.40755 (15)0.0308 (5)
H150.49870.55570.42750.037*
C50.1768 (2)0.3794 (2)0.18790 (14)0.0261 (4)
H50.24990.44320.17970.031*
C80.4881 (2)0.8135 (2)0.20280 (15)0.0296 (5)
C120.2144 (2)0.7584 (2)0.18599 (16)0.0346 (5)
H120.13320.71530.20330.041*
C140.5412 (2)0.67156 (19)0.33714 (14)0.0254 (4)
C70.0213 (2)0.1561 (2)0.12671 (15)0.0281 (4)
H70.01170.06750.07650.034*
C130.3668 (2)0.7492 (2)0.23130 (15)0.0276 (4)
C60.1290 (2)0.2492 (2)0.11506 (14)0.0259 (4)
C30.0092 (2)0.3228 (2)0.28473 (15)0.0299 (5)
H30.03190.34830.34270.036*
C20.0381 (2)0.1928 (2)0.21173 (15)0.0287 (4)
C180.8141 (2)0.7212 (2)0.35086 (16)0.0350 (5)
H180.89550.76290.33290.042*
C170.8433 (2)0.6487 (2)0.41695 (17)0.0370 (5)
H170.94540.63920.44410.044*
C40.1170 (2)0.4158 (2)0.27290 (15)0.0267 (4)
C100.3039 (3)0.8945 (2)0.09166 (17)0.0406 (5)
H100.28050.94530.04550.049*
C90.4502 (3)0.8859 (2)0.13104 (16)0.0370 (5)
H90.52850.92840.11090.044*
C160.7245 (2)0.5867 (2)0.44651 (16)0.0359 (5)
H160.74770.53740.49360.043*
C110.1847 (3)0.8284 (2)0.11836 (17)0.0393 (5)
H110.08270.83320.08840.047*
C10.1504 (3)0.0869 (2)0.22415 (18)0.0406 (6)
H1A0.11590.07080.28790.061*
H1B0.15820.00340.17050.061*
H1C0.24980.12480.22210.061*
N30.39626 (18)0.41555 (17)0.02092 (12)0.0281 (4)
C210.5441 (2)0.4237 (2)0.06185 (14)0.0269 (4)
C220.3504 (2)0.4907 (2)0.04037 (14)0.0268 (4)
C200.5902 (3)0.3391 (2)0.13139 (17)0.0386 (5)
H20A0.62160.40420.19920.058*
H20B0.67470.28430.11270.058*
H20C0.50430.27380.12760.058*
C230.1845 (2)0.4795 (3)0.08341 (17)0.0410 (5)
H23A0.13060.41400.05950.061*
H23B0.16750.44320.15580.061*
H23C0.14670.57380.06310.061*
C310.4916 (2)0.0421 (2)0.46769 (14)0.0283 (4)
C290.6215 (3)0.1176 (2)0.45866 (17)0.0387 (5)
C250.3479 (3)0.0530 (2)0.41313 (16)0.0390 (5)
C300.7659 (3)0.1020 (3)0.5139 (2)0.0505 (7)
H300.85390.15030.50780.061*
C240.2192 (3)0.0224 (3)0.42662 (19)0.0499 (7)
H240.12090.01480.39190.060*
C280.6018 (4)0.2028 (3)0.3966 (2)0.0554 (8)
H280.68700.25620.39150.066*
C260.3358 (4)0.1372 (3)0.35024 (18)0.0574 (8)
H260.23990.14380.31210.069*
C270.4638 (4)0.2104 (3)0.3438 (2)0.0629 (9)
H270.45440.26750.30120.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0259 (9)0.0209 (8)0.0309 (9)0.0024 (6)0.0073 (7)0.0039 (7)
O10.0371 (8)0.0283 (8)0.0365 (9)0.0070 (6)0.0173 (7)0.0007 (6)
O20.0447 (9)0.0289 (8)0.0317 (8)0.0077 (7)0.0172 (7)0.0046 (6)
N20.0305 (10)0.0292 (9)0.0356 (10)0.0040 (7)0.0089 (7)0.0095 (8)
C190.0280 (11)0.0234 (10)0.0300 (11)0.0028 (8)0.0089 (8)0.0030 (8)
C150.0357 (12)0.0240 (10)0.0338 (11)0.0007 (8)0.0119 (9)0.0083 (9)
C50.0232 (10)0.0251 (10)0.0323 (11)0.0022 (7)0.0084 (8)0.0113 (8)
C80.0333 (11)0.0231 (10)0.0315 (11)0.0015 (8)0.0085 (9)0.0063 (9)
C120.0308 (11)0.0291 (11)0.0405 (13)0.0008 (8)0.0063 (9)0.0071 (10)
C140.0269 (10)0.0185 (9)0.0279 (10)0.0008 (7)0.0081 (8)0.0018 (8)
C70.0276 (10)0.0237 (10)0.0313 (11)0.0026 (8)0.0054 (8)0.0067 (8)
C130.0290 (11)0.0214 (9)0.0295 (11)0.0013 (8)0.0062 (8)0.0041 (8)
C60.0269 (10)0.0263 (10)0.0258 (10)0.0014 (8)0.0073 (8)0.0089 (8)
C30.0280 (11)0.0303 (11)0.0340 (11)0.0010 (8)0.0130 (8)0.0099 (9)
C20.0237 (10)0.0275 (10)0.0385 (12)0.0008 (8)0.0083 (8)0.0145 (9)
C180.0256 (11)0.0366 (12)0.0406 (13)0.0025 (8)0.0085 (9)0.0086 (10)
C170.0295 (11)0.0352 (12)0.0409 (13)0.0040 (9)0.0023 (9)0.0070 (10)
C40.0248 (10)0.0242 (10)0.0308 (11)0.0002 (7)0.0076 (8)0.0073 (8)
C100.0505 (15)0.0339 (12)0.0363 (13)0.0027 (10)0.0024 (10)0.0134 (10)
C90.0439 (13)0.0321 (11)0.0363 (12)0.0018 (9)0.0100 (10)0.0119 (10)
C160.0407 (13)0.0303 (11)0.0355 (12)0.0046 (9)0.0057 (9)0.0100 (10)
C110.0364 (12)0.0343 (12)0.0407 (13)0.0044 (9)0.0003 (10)0.0073 (10)
C10.0392 (13)0.0336 (12)0.0519 (14)0.0063 (9)0.0175 (10)0.0137 (11)
N30.0281 (9)0.0292 (9)0.0305 (9)0.0014 (7)0.0107 (7)0.0119 (7)
C210.0303 (11)0.0287 (10)0.0252 (10)0.0061 (8)0.0099 (8)0.0107 (8)
C220.0265 (10)0.0281 (10)0.0266 (10)0.0036 (8)0.0089 (8)0.0077 (8)
C200.0456 (14)0.0411 (13)0.0358 (12)0.0078 (10)0.0112 (10)0.0198 (10)
C230.0291 (12)0.0514 (14)0.0423 (13)0.0029 (10)0.0061 (9)0.0153 (11)
C310.0363 (12)0.0202 (9)0.0263 (10)0.0037 (8)0.0100 (8)0.0022 (8)
C290.0527 (15)0.0231 (10)0.0386 (13)0.0003 (9)0.0214 (11)0.0003 (9)
C250.0474 (14)0.0301 (11)0.0297 (12)0.0106 (10)0.0016 (10)0.0014 (9)
C300.0383 (14)0.0397 (14)0.0612 (17)0.0094 (10)0.0222 (12)0.0081 (13)
C240.0318 (13)0.0472 (15)0.0511 (16)0.0075 (10)0.0020 (11)0.0068 (12)
C280.091 (2)0.0298 (13)0.0544 (17)0.0030 (13)0.0431 (16)0.0094 (12)
C260.083 (2)0.0474 (15)0.0312 (13)0.0327 (15)0.0008 (13)0.0027 (12)
C270.119 (3)0.0391 (15)0.0415 (16)0.0220 (16)0.0333 (17)0.0179 (13)
Geometric parameters (Å, º) top
N1—C131.337 (3)C9—H90.9500
N1—C141.347 (2)C16—H160.9500
O1—C41.369 (2)C11—H110.9500
O1—H1O0.97 (3)C1—H1A0.9800
O2—C61.367 (2)C1—H1B0.9800
O2—H2O0.91 (3)C1—H1C0.9800
N2—C81.342 (3)N3—C221.339 (3)
N2—C191.344 (3)N3—C211.343 (3)
C19—C181.428 (3)C21—C22i1.399 (3)
C19—C141.437 (3)C21—C201.504 (3)
C15—C161.360 (3)C22—C21i1.399 (3)
C15—C141.422 (3)C22—C231.497 (3)
C15—H150.9500C20—H20A0.9800
C5—C61.389 (3)C20—H20B0.9800
C5—C41.391 (3)C20—H20C0.9800
C5—H50.9500C23—H23A0.9800
C8—C91.430 (3)C23—H23B0.9800
C8—C131.440 (3)C23—H23C0.9800
C12—C111.355 (3)C31—C251.411 (3)
C12—C131.426 (3)C31—C31ii1.423 (4)
C12—H120.9500C31—C291.423 (3)
C7—C21.389 (3)C29—C281.401 (4)
C7—C61.391 (3)C29—C301.433 (4)
C7—H70.9500C25—C261.402 (4)
C3—C21.388 (3)C25—C241.442 (4)
C3—C41.393 (3)C30—C24ii1.325 (4)
C3—H30.9500C30—H300.9500
C2—C11.513 (3)C24—C30ii1.325 (4)
C18—C171.355 (3)C24—H240.9500
C18—H180.9500C28—C271.349 (4)
C17—C161.420 (3)C28—H280.9500
C17—H170.9500C26—C271.383 (4)
C10—C91.351 (3)C26—H260.9500
C10—C111.420 (3)C27—H270.9500
C10—H100.9500
C13—N1—C14117.81 (16)C17—C16—H16119.9
C4—O1—H1O109.6 (17)C12—C11—C10120.9 (2)
C6—O2—H2O109.6 (16)C12—C11—H11119.5
C8—N2—C19116.94 (16)C10—C11—H11119.5
N2—C19—C18119.96 (17)C2—C1—H1A109.5
N2—C19—C14121.80 (18)C2—C1—H1B109.5
C18—C19—C14118.22 (19)H1A—C1—H1B109.5
C16—C15—C14120.54 (19)C2—C1—H1C109.5
C16—C15—H15119.7H1A—C1—H1C109.5
C14—C15—H15119.7H1B—C1—H1C109.5
C6—C5—C4119.52 (17)C22—N3—C21119.46 (16)
C6—C5—H5120.2N3—C21—C22i120.43 (18)
C4—C5—H5120.2N3—C21—C20117.64 (17)
N2—C8—C9119.97 (18)C22i—C21—C20121.93 (19)
N2—C8—C13121.61 (18)N3—C22—C21i120.11 (18)
C9—C8—C13118.41 (19)N3—C22—C23117.58 (17)
C11—C12—C13120.32 (19)C21i—C22—C23122.32 (19)
C11—C12—H12119.8C21—C20—H20A109.5
C13—C12—H12119.8C21—C20—H20B109.5
N1—C14—C15120.01 (17)H20A—C20—H20B109.5
N1—C14—C19120.74 (18)C21—C20—H20C109.5
C15—C14—C19119.25 (18)H20A—C20—H20C109.5
C2—C7—C6120.04 (18)H20B—C20—H20C109.5
C2—C7—H7120.0C22—C23—H23A109.5
C6—C7—H7120.0C22—C23—H23B109.5
N1—C13—C12120.03 (17)H23A—C23—H23B109.5
N1—C13—C8121.09 (18)C22—C23—H23C109.5
C12—C13—C8118.88 (18)H23A—C23—H23C109.5
O2—C6—C5122.06 (16)H23B—C23—H23C109.5
O2—C6—C7117.68 (17)C25—C31—C31ii120.9 (2)
C5—C6—C7120.26 (17)C25—C31—C29119.5 (2)
C2—C3—C4119.88 (18)C31ii—C31—C29119.5 (2)
C2—C3—H3120.1C28—C29—C31118.5 (2)
C4—C3—H3120.1C28—C29—C30123.6 (2)
C3—C2—C7119.98 (17)C31—C29—C30117.9 (2)
C3—C2—C1121.16 (19)C26—C25—C31119.3 (2)
C7—C2—C1118.83 (18)C26—C25—C24123.2 (2)
C17—C18—C19120.46 (19)C31—C25—C24117.5 (2)
C17—C18—H18119.8C24ii—C30—C29122.2 (2)
C19—C18—H18119.8C24ii—C30—H30118.9
C18—C17—C16121.3 (2)C29—C30—H30118.9
C18—C17—H17119.3C30ii—C24—C25121.9 (2)
C16—C17—H17119.3C30ii—C24—H24119.1
O1—C4—C5121.64 (16)C25—C24—H24119.1
O1—C4—C3118.05 (17)C27—C28—C29121.2 (3)
C5—C4—C3120.30 (18)C27—C28—H28119.4
C9—C10—C11120.9 (2)C29—C28—H28119.4
C9—C10—H10119.6C27—C26—C25119.9 (3)
C11—C10—H10119.6C27—C26—H26120.1
C10—C9—C8120.6 (2)C25—C26—H26120.1
C10—C9—H9119.7C28—C27—C26121.5 (3)
C8—C9—H9119.7C28—C27—H27119.2
C15—C16—C17120.2 (2)C26—C27—H27119.2
C15—C16—H16119.9
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z+1.
(QS_PGL_TMP_PHE_ANT) top
Crystal data top
C54H54N6O6V = 1116.4 (3) Å3
Mr = 883.03Z = 1
Triclinic, P1F(000) = 468
a = 8.6332 (13) ÅDx = 1.313 Mg m3
b = 9.0194 (14) ÅMo Kα radiation, λ = 0.71073 Å
c = 14.869 (2) ŵ = 0.09 mm1
α = 105.200 (4)°T = 150 K
β = 91.263 (4)°Block, red
γ = 91.519 (4)°0.62 × 0.38 × 0.20 mm
Data collection top
CCD area detector
diffractometer
2524 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.095
phi and ω scansθmax = 27.0°, θmin = 3.0°
Absorption correction: analytical
Bruker, AXS, 2008
h = 1111
Tmin = 0.961, Tmax = 0.983k = 1111
29237 measured reflectionsl = 1818
4848 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.088H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.275 w = 1/[σ2(Fo2) + (0.1412P)2 + 1.1598P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
4848 reflectionsΔρmax = 0.47 e Å3
314 parametersΔρmin = 0.39 e Å3
Crystal data top
C54H54N6O6γ = 91.519 (4)°
Mr = 883.03V = 1116.4 (3) Å3
Triclinic, P1Z = 1
a = 8.6332 (13) ÅMo Kα radiation
b = 9.0194 (14) ŵ = 0.09 mm1
c = 14.869 (2) ÅT = 150 K
α = 105.200 (4)°0.62 × 0.38 × 0.20 mm
β = 91.263 (4)°
Data collection top
CCD area detector
diffractometer
4848 independent reflections
Absorption correction: analytical
Bruker, AXS, 2008
2524 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.983Rint = 0.095
29237 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0880 restraints
wR(F2) = 0.275H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.47 e Å3
4848 reflectionsΔρmin = 0.39 e Å3
314 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.9164 (3)0.9289 (3)0.22405 (19)0.0264 (7)
H2O0.768 (5)0.773 (5)0.166 (3)0.039 (11)*
H1O0.304 (6)0.299 (6)0.242 (4)0.075 (18)*
H3O0.724 (6)0.727 (6)0.461 (4)0.080 (17)*
C130.8829 (4)1.0753 (4)0.2311 (2)0.0283 (9)
C140.9966 (5)1.1922 (4)0.2612 (2)0.0305 (9)
C151.1745 (4)1.0130 (5)0.2761 (2)0.0309 (9)
C161.0601 (4)0.8962 (4)0.2470 (2)0.0265 (8)
C170.7218 (5)1.1085 (5)0.2052 (3)0.0413 (10)
H17A0.66001.01220.18580.062*
H17B0.72481.15760.15380.062*
H17C0.67491.17750.25920.062*
C180.9636 (6)1.3561 (5)0.2675 (3)0.0498 (12)
H18A1.04731.42260.30350.075*
H18B0.86521.38210.29840.075*
H18C0.95671.37120.20460.075*
C191.3370 (5)0.9807 (6)0.3000 (3)0.0498 (12)
H19A1.39611.07790.32400.075*
H19B1.38560.91950.24410.075*
H19C1.33590.92340.34770.075*
C201.0931 (5)0.7320 (5)0.2404 (3)0.0402 (10)
H20A1.11170.71900.30310.060*
H20B1.18520.70280.20320.060*
H20C1.00420.66640.21050.060*
N31.1408 (4)1.1594 (4)0.2820 (2)0.0341 (8)
C70.6642 (6)1.2127 (6)0.4669 (3)0.0621 (14)
H70.56021.23780.45690.075*
C80.6973 (5)1.0684 (5)0.4624 (3)0.0374 (10)
H80.61820.99000.44590.045*
C90.8516 (4)1.0306 (4)0.4823 (2)0.0270 (8)
C101.0287 (4)0.8534 (4)0.4997 (2)0.0267 (8)
C111.0647 (5)0.6998 (5)0.4976 (3)0.0395 (10)
H110.98570.62110.48570.047*
C121.2152 (7)0.6675 (6)0.5130 (3)0.0638 (14)
H121.24110.56490.51050.077*
N10.8824 (4)0.8859 (3)0.4829 (2)0.0290 (7)
C10.4500 (4)0.4469 (4)0.2369 (2)0.0332 (9)
C20.5159 (4)0.5149 (4)0.1741 (3)0.0335 (9)
H20.48470.48260.11010.040*
C30.6276 (4)0.6303 (4)0.2043 (2)0.0287 (9)
C40.6741 (4)0.6784 (4)0.2974 (2)0.0272 (8)
H40.75140.75770.31820.033*
C50.6056 (4)0.6085 (4)0.3592 (2)0.0320 (9)
C60.4946 (4)0.4919 (4)0.3309 (3)0.0351 (10)
H60.44980.44370.37430.042*
O10.3435 (4)0.3314 (4)0.2013 (2)0.0548 (10)
O20.6928 (3)0.6951 (3)0.14014 (18)0.0376 (7)
O30.6498 (4)0.6511 (3)0.45275 (18)0.0468 (8)
C210.3457 (5)0.2131 (5)0.0382 (3)0.0413 (10)
H210.44890.23510.05270.050*
C220.3065 (5)0.0651 (5)0.0474 (3)0.0373 (10)
H220.38210.01560.06940.045*
C230.1529 (4)0.0296 (4)0.0246 (2)0.0305 (9)
C240.1096 (4)0.1199 (4)0.0309 (2)0.0316 (9)
H240.18420.20170.05210.038*
C250.0397 (4)0.1536 (4)0.0071 (2)0.0308 (9)
C260.0875 (5)0.3061 (5)0.0138 (3)0.0374 (10)
H260.01390.38920.03350.045*
C270.2336 (5)0.3357 (5)0.0070 (3)0.0406 (10)
H270.26230.43880.00090.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0300 (18)0.0284 (17)0.0221 (15)0.0064 (13)0.0057 (12)0.0093 (13)
C130.031 (2)0.033 (2)0.0223 (18)0.0010 (17)0.0079 (15)0.0101 (16)
C140.043 (2)0.029 (2)0.0213 (18)0.0063 (17)0.0057 (16)0.0107 (16)
C150.031 (2)0.042 (2)0.0200 (18)0.0056 (17)0.0004 (15)0.0103 (16)
C160.027 (2)0.033 (2)0.0225 (17)0.0031 (16)0.0058 (15)0.0136 (16)
C170.042 (2)0.049 (3)0.036 (2)0.003 (2)0.0041 (19)0.014 (2)
C180.077 (3)0.034 (2)0.041 (2)0.002 (2)0.009 (2)0.013 (2)
C190.034 (2)0.084 (4)0.032 (2)0.006 (2)0.0023 (18)0.018 (2)
C200.045 (3)0.036 (2)0.045 (2)0.0039 (19)0.0072 (19)0.0189 (19)
N30.039 (2)0.037 (2)0.0250 (16)0.0156 (15)0.0000 (14)0.0083 (14)
C70.057 (3)0.075 (4)0.058 (3)0.001 (3)0.001 (3)0.025 (3)
C80.034 (2)0.044 (3)0.036 (2)0.0052 (19)0.0039 (17)0.0155 (19)
C90.030 (2)0.033 (2)0.0176 (17)0.0050 (16)0.0007 (14)0.0060 (15)
C100.036 (2)0.027 (2)0.0160 (16)0.0067 (16)0.0023 (15)0.0056 (14)
C110.046 (3)0.036 (2)0.039 (2)0.004 (2)0.0052 (19)0.0140 (19)
C120.086 (4)0.051 (3)0.055 (3)0.005 (3)0.003 (3)0.015 (2)
N10.0362 (19)0.0291 (18)0.0210 (15)0.0081 (14)0.0009 (13)0.0061 (13)
C10.033 (2)0.034 (2)0.031 (2)0.0160 (17)0.0015 (16)0.0066 (17)
C20.035 (2)0.036 (2)0.0274 (19)0.0135 (17)0.0014 (16)0.0052 (16)
C30.030 (2)0.034 (2)0.0228 (18)0.0089 (16)0.0004 (15)0.0095 (16)
C40.0243 (19)0.0266 (19)0.0294 (19)0.0151 (15)0.0050 (15)0.0073 (15)
C50.034 (2)0.038 (2)0.0229 (18)0.0133 (18)0.0049 (16)0.0082 (16)
C60.038 (2)0.041 (2)0.028 (2)0.0141 (18)0.0007 (17)0.0133 (17)
O10.062 (2)0.064 (2)0.0354 (16)0.0464 (17)0.0054 (15)0.0124 (15)
O20.0425 (16)0.0395 (16)0.0306 (14)0.0235 (13)0.0012 (12)0.0112 (12)
O30.058 (2)0.0539 (19)0.0276 (14)0.0337 (16)0.0127 (13)0.0137 (13)
C210.035 (2)0.056 (3)0.034 (2)0.004 (2)0.0028 (18)0.015 (2)
C220.034 (2)0.051 (3)0.027 (2)0.0072 (19)0.0002 (17)0.0095 (18)
C230.033 (2)0.038 (2)0.0193 (17)0.0037 (17)0.0035 (15)0.0057 (16)
C240.032 (2)0.035 (2)0.0240 (19)0.0101 (17)0.0029 (16)0.0017 (16)
C250.036 (2)0.036 (2)0.0195 (17)0.0050 (17)0.0015 (16)0.0060 (16)
C260.051 (3)0.037 (2)0.0249 (19)0.006 (2)0.0017 (18)0.0102 (17)
C270.049 (3)0.040 (2)0.035 (2)0.007 (2)0.0051 (19)0.0129 (19)
Geometric parameters (Å, º) top
N2—C131.337 (5)C11—H110.9500
N2—C161.340 (5)C12—C7i1.449 (7)
C13—C141.397 (5)C12—H120.9500
C13—C171.493 (5)C1—O11.360 (4)
C14—N31.336 (5)C1—C21.370 (5)
C14—C181.492 (5)C1—C61.392 (5)
C15—N31.341 (5)C2—C31.377 (5)
C15—C161.400 (5)C2—H20.9500
C15—C191.495 (6)C3—O21.367 (4)
C16—C201.494 (5)C3—C41.385 (5)
C17—H17A0.9800C4—C51.377 (5)
C17—H17B0.9800C4—H40.9500
C17—H17C0.9800C5—C61.378 (5)
C18—H18A0.9800C5—O31.385 (4)
C18—H18B0.9800C6—H60.9500
C18—H18C0.9800O1—H1O0.82 (6)
C19—H19A0.9800O2—H2O0.94 (4)
C19—H19B0.9800O3—H3O0.91 (6)
C19—H19C0.9800C21—C221.359 (6)
C20—H20A0.9800C21—C27ii1.425 (6)
C20—H20B0.9800C21—H210.9500
C20—H20C0.9800C22—C231.427 (5)
C7—C81.324 (6)C22—H220.9500
C7—C12i1.449 (7)C23—C241.389 (5)
C7—H70.9500C23—C25ii1.441 (5)
C8—C91.427 (5)C24—C251.391 (5)
C8—H80.9500C24—H240.9500
C9—N11.341 (5)C25—C261.426 (6)
C9—C10i1.421 (5)C25—C23ii1.441 (5)
C10—N11.337 (5)C26—C271.341 (6)
C10—C111.420 (5)C26—H260.9500
C10—C9i1.421 (5)C27—C21ii1.425 (6)
C11—C121.366 (7)C27—H270.9500
C13—N2—C16119.0 (3)C12—C11—C10118.6 (4)
N2—C13—C14120.4 (3)C12—C11—H11120.7
N2—C13—C17117.9 (3)C10—C11—H11120.7
C14—C13—C17121.7 (4)C11—C12—C7i121.1 (5)
N3—C14—C13120.7 (3)C11—C12—H12119.5
N3—C14—C18117.7 (3)C7i—C12—H12119.5
C13—C14—C18121.6 (4)C10—N1—C9118.3 (3)
N3—C15—C16120.2 (3)O1—C1—C2116.1 (3)
N3—C15—C19117.6 (3)O1—C1—C6122.8 (3)
C16—C15—C19122.2 (4)C2—C1—C6121.1 (3)
N2—C16—C15120.6 (3)C1—C2—C3119.6 (3)
N2—C16—C20117.8 (3)C1—C2—H2120.2
C15—C16—C20121.6 (4)C3—C2—H2120.2
C13—C17—H17A109.5O2—C3—C2118.5 (3)
C13—C17—H17B109.5O2—C3—C4120.7 (3)
H17A—C17—H17B109.5C2—C3—C4120.8 (3)
C13—C17—H17C109.5C5—C4—C3118.4 (3)
H17A—C17—H17C109.5C5—C4—H4120.8
H17B—C17—H17C109.5C3—C4—H4120.8
C14—C18—H18A109.5C4—C5—C6122.1 (3)
C14—C18—H18B109.5C4—C5—O3120.6 (3)
H18A—C18—H18B109.5C6—C5—O3117.3 (3)
C14—C18—H18C109.5C5—C6—C1117.9 (3)
H18A—C18—H18C109.5C5—C6—H6121.0
H18B—C18—H18C109.5C1—C6—H6121.0
C15—C19—H19A109.5C1—O1—H1O112 (4)
C15—C19—H19B109.5C3—O2—H2O113 (2)
H19A—C19—H19B109.5C5—O3—H3O108 (3)
C15—C19—H19C109.5C22—C21—C27ii120.7 (4)
H19A—C19—H19C109.5C22—C21—H21119.7
H19B—C19—H19C109.5C27ii—C21—H21119.7
C16—C20—H20A109.5C21—C22—C23120.6 (4)
C16—C20—H20B109.5C21—C22—H22119.7
H20A—C20—H20B109.5C23—C22—H22119.7
C16—C20—H20C109.5C24—C23—C22122.3 (4)
H20A—C20—H20C109.5C24—C23—C25ii119.0 (3)
H20B—C20—H20C109.5C22—C23—C25ii118.7 (4)
C14—N3—C15119.1 (3)C23—C24—C25122.1 (3)
C8—C7—C12i120.7 (5)C23—C24—H24119.0
C8—C7—H7119.6C25—C24—H24119.0
C12i—C7—H7119.6C24—C25—C26123.2 (3)
C7—C8—C9120.1 (4)C24—C25—C23ii118.9 (4)
C7—C8—H8119.9C26—C25—C23ii117.9 (4)
C9—C8—H8119.9C27—C26—C25121.9 (4)
N1—C9—C10i120.7 (3)C27—C26—H26119.1
N1—C9—C8119.8 (3)C25—C26—H26119.1
C10i—C9—C8119.5 (4)C26—C27—C21ii120.2 (4)
N1—C10—C11119.2 (3)C26—C27—H27119.9
N1—C10—C9i121.0 (3)C21ii—C27—H27119.9
C11—C10—C9i119.8 (4)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···N20.94 (4)1.89 (4)2.833 (4)177 (4)
O1—H1O···N3iii0.82 (6)2.06 (6)2.798 (4)149 (5)
O3—H3O···N10.91 (6)1.91 (6)2.820 (4)178 (5)
C4—H4···N10.952.633.352 (4)133
Symmetry code: (iii) x1, y1, z.
(QS_PGL_TMP_PHE_DPE) top
Crystal data top
C44H44N6O6V = 950.9 (19) Å3
Mr = 752.85Z = 1
Triclinic, P1F(000) = 398
a = 7.812 (9) ÅDx = 1.315 Mg m3
b = 8.763 (10) ÅMo Kα radiation, λ = 0.71073 Å
c = 14.300 (16) ŵ = 0.09 mm1
α = 95.009 (14)°T = 150 K
β = 95.415 (11)°Block, orange
γ = 101.04 (2)°0.64 × 0.37 × 0.24 mm
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
3654 reflections with I > 2σ(I)
Radiation source: Sealed TubeRint = 0.066
profile data from ω–scansθmax = 27.6°, θmin = 1.4°
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
h = 1010
Tmin = 0.801, Tmax = 1.000k = 1111
10088 measured reflectionsl = 1818
4348 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.171 w = 1/[σ2(Fo2) + (0.0917P)2 + 0.1007P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
4348 reflectionsΔρmax = 0.34 e Å3
266 parametersΔρmin = 0.37 e Å3
Crystal data top
C44H44N6O6γ = 101.04 (2)°
Mr = 752.85V = 950.9 (19) Å3
Triclinic, P1Z = 1
a = 7.812 (9) ÅMo Kα radiation
b = 8.763 (10) ŵ = 0.09 mm1
c = 14.300 (16) ÅT = 150 K
α = 95.009 (14)°0.64 × 0.37 × 0.24 mm
β = 95.415 (11)°
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
4348 independent reflections
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
3654 reflections with I > 2σ(I)
Tmin = 0.801, Tmax = 1.000Rint = 0.066
10088 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.34 e Å3
4348 reflectionsΔρmin = 0.37 e Å3
266 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H22B0.576 (4)0.421 (4)1.077 (2)0.087 (9)*
H22A0.457 (3)0.603 (3)1.088 (2)0.072 (8)*
O10.06489 (15)0.14728 (14)0.67499 (9)0.0384 (3)
H1O0.05900.21870.64000.058*
O20.25825 (16)0.12950 (14)0.89622 (8)0.0369 (3)
H2O0.17310.17530.89730.055*
O30.50913 (15)0.23058 (15)0.73087 (9)0.0374 (3)
H3O0.49790.27850.68270.056*
C60.22141 (19)0.19463 (16)0.70024 (10)0.0265 (3)
H60.21520.26820.65500.032*
C20.0905 (2)0.01131 (17)0.78597 (11)0.0282 (3)
H20.00520.03890.79940.034*
C40.3798 (2)0.05217 (17)0.81357 (10)0.0286 (3)
H40.48150.02910.84550.034*
C10.08287 (19)0.11928 (16)0.71986 (11)0.0266 (3)
C50.36904 (19)0.16068 (17)0.74777 (11)0.0271 (3)
C30.2401 (2)0.02197 (17)0.83202 (10)0.0273 (3)
N30.0059 (2)0.29841 (17)1.09074 (10)0.0383 (4)
C180.1447 (2)0.5198 (2)1.10294 (12)0.0380 (4)
H180.13350.62871.12050.046*
C200.3129 (3)0.2705 (2)1.03948 (12)0.0403 (4)
H200.42010.20381.01280.048*
C190.3066 (2)0.4291 (2)1.06520 (11)0.0374 (4)
C170.0006 (2)0.4510 (2)1.11491 (12)0.0384 (4)
H170.10970.51481.14150.046*
C210.1626 (3)0.2121 (2)1.05310 (12)0.0405 (4)
H210.16960.10401.03480.049*
C220.4707 (3)0.4951 (3)1.05194 (13)0.0454 (5)
N10.47831 (16)0.59520 (14)0.42967 (9)0.0265 (3)
C70.3074 (2)0.3799 (2)0.32048 (12)0.0370 (4)
H7A0.32530.46120.27740.055*
H7B0.18220.35070.32760.055*
H7C0.34870.28800.29460.055*
C80.40889 (19)0.44127 (17)0.41530 (10)0.0256 (3)
C90.56859 (18)0.65521 (16)0.51370 (11)0.0251 (3)
C100.6414 (2)0.82867 (18)0.52753 (13)0.0371 (4)
H10A0.62010.87330.46800.056*
H10B0.76800.84770.54720.056*
H10C0.58350.87790.57640.056*
N20.03971 (17)0.37846 (14)0.55175 (9)0.0271 (3)
C130.10393 (19)0.53013 (16)0.58380 (10)0.0253 (3)
C120.2134 (2)0.56851 (18)0.67155 (11)0.0310 (3)
H120.24170.48810.70690.037*
C140.06428 (19)0.34700 (17)0.46911 (11)0.0265 (3)
C160.2371 (2)0.15554 (18)0.34724 (12)0.0334 (4)
H160.28260.04970.32270.040*
C150.1340 (2)0.18854 (17)0.43183 (12)0.0315 (4)
H150.10850.10580.46600.038*
C110.2771 (2)0.7220 (2)0.70436 (12)0.0340 (4)
H110.34970.74740.76290.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0361 (6)0.0355 (6)0.0523 (8)0.0154 (5)0.0146 (5)0.0249 (5)
O20.0469 (7)0.0343 (6)0.0350 (6)0.0134 (5)0.0091 (5)0.0183 (5)
O30.0338 (6)0.0451 (7)0.0401 (7)0.0184 (5)0.0061 (5)0.0173 (5)
C60.0325 (7)0.0209 (7)0.0270 (7)0.0067 (6)0.0008 (6)0.0068 (5)
C20.0318 (7)0.0239 (7)0.0300 (8)0.0085 (6)0.0008 (6)0.0069 (6)
C40.0305 (7)0.0283 (7)0.0262 (7)0.0036 (6)0.0031 (6)0.0044 (6)
C10.0291 (7)0.0207 (7)0.0295 (8)0.0039 (6)0.0012 (6)0.0044 (6)
C50.0288 (7)0.0258 (7)0.0261 (7)0.0078 (6)0.0027 (6)0.0014 (6)
C30.0367 (8)0.0214 (7)0.0233 (7)0.0048 (6)0.0000 (6)0.0058 (5)
N30.0498 (8)0.0396 (8)0.0306 (7)0.0184 (7)0.0032 (6)0.0136 (6)
C180.0579 (11)0.0319 (8)0.0267 (8)0.0148 (8)0.0015 (7)0.0077 (6)
C200.0498 (10)0.0385 (9)0.0321 (9)0.0118 (8)0.0028 (7)0.0033 (7)
C190.0529 (10)0.0393 (9)0.0243 (8)0.0201 (8)0.0005 (7)0.0069 (6)
C170.0487 (10)0.0376 (9)0.0304 (8)0.0100 (8)0.0004 (7)0.0125 (7)
C210.0587 (11)0.0342 (9)0.0318 (8)0.0184 (8)0.0010 (8)0.0055 (7)
C220.0554 (11)0.0550 (11)0.0311 (9)0.0263 (10)0.0005 (8)0.0064 (8)
N10.0309 (6)0.0230 (6)0.0267 (6)0.0089 (5)0.0007 (5)0.0045 (5)
C70.0425 (9)0.0355 (8)0.0300 (8)0.0071 (7)0.0062 (7)0.0000 (7)
C80.0277 (7)0.0236 (7)0.0257 (7)0.0081 (6)0.0002 (5)0.0012 (5)
C90.0256 (7)0.0203 (6)0.0297 (7)0.0069 (5)0.0011 (6)0.0010 (5)
C100.0413 (9)0.0206 (7)0.0471 (10)0.0035 (6)0.0004 (7)0.0023 (7)
N20.0324 (6)0.0210 (6)0.0302 (7)0.0064 (5)0.0081 (5)0.0088 (5)
C130.0304 (7)0.0216 (7)0.0269 (7)0.0076 (6)0.0094 (6)0.0069 (5)
C120.0384 (8)0.0304 (8)0.0269 (8)0.0103 (7)0.0071 (6)0.0078 (6)
C140.0299 (7)0.0212 (7)0.0310 (8)0.0063 (6)0.0095 (6)0.0078 (6)
C160.0365 (8)0.0236 (7)0.0394 (9)0.0047 (6)0.0060 (7)0.0002 (6)
C150.0362 (8)0.0196 (7)0.0401 (9)0.0062 (6)0.0055 (7)0.0075 (6)
C110.0381 (8)0.0339 (8)0.0300 (8)0.0080 (7)0.0040 (6)0.0011 (6)
Geometric parameters (Å, º) top
O1—C11.365 (2)C22—H22A1.02 (3)
O1—H1O0.8400N1—C91.344 (2)
O2—C31.369 (2)N1—C81.344 (2)
O2—H2O0.8400C7—C81.504 (2)
O3—C51.365 (2)C7—H7A0.9800
O3—H3O0.8400C7—H7B0.9800
C6—C51.390 (3)C7—H7C0.9800
C6—C11.391 (2)C8—C9ii1.396 (2)
C6—H60.9500C9—C8ii1.396 (2)
C2—C31.391 (3)C9—C101.506 (3)
C2—C11.392 (2)C10—H10A0.9800
C2—H20.9500C10—H10B0.9800
C4—C31.389 (2)C10—H10C0.9800
C4—C51.392 (2)N2—C141.345 (2)
C4—H40.9500N2—C131.350 (2)
N3—C171.341 (3)C13—C121.426 (2)
N3—C211.345 (3)C13—C14iii1.433 (2)
C18—C171.387 (3)C12—C111.366 (3)
C18—C191.391 (3)C12—H120.9500
C18—H180.9500C14—C151.426 (2)
C20—C211.373 (3)C14—C13iii1.433 (2)
C20—C191.397 (3)C16—C151.365 (3)
C20—H200.9500C16—C11iii1.420 (3)
C19—C221.507 (3)C16—H160.9500
C17—H170.9500C15—H150.9500
C21—H210.9500C11—C16iii1.420 (3)
C22—C22i1.527 (4)C11—H110.9500
C22—H22B1.06 (3)
C1—O1—H1O109.5C22i—C22—H22A108.5 (16)
C3—O2—H2O109.5H22B—C22—H22A107 (2)
C5—O3—H3O109.5C9—N1—C8119.01 (13)
C5—C6—C1119.01 (15)C8—C7—H7A109.5
C5—C6—H6120.5C8—C7—H7B109.5
C1—C6—H6120.5H7A—C7—H7B109.5
C3—C2—C1119.02 (14)C8—C7—H7C109.5
C3—C2—H2120.5H7A—C7—H7C109.5
C1—C2—H2120.5H7B—C7—H7C109.5
C3—C4—C5119.18 (15)N1—C8—C9ii120.54 (14)
C3—C4—H4120.4N1—C8—C7117.04 (13)
C5—C4—H4120.4C9ii—C8—C7122.42 (15)
O1—C1—C6121.58 (15)N1—C9—C8ii120.44 (15)
O1—C1—C2117.42 (14)N1—C9—C10117.33 (14)
C6—C1—C2121.00 (15)C8ii—C9—C10122.23 (15)
O3—C5—C6121.44 (15)C9—C10—H10A109.5
O3—C5—C4117.67 (14)C9—C10—H10B109.5
C6—C5—C4120.89 (14)H10A—C10—H10B109.5
O2—C3—C4116.93 (14)C9—C10—H10C109.5
O2—C3—C2122.17 (14)H10A—C10—H10C109.5
C4—C3—C2120.90 (15)H10B—C10—H10C109.5
C17—N3—C21116.70 (16)C14—N2—C13117.66 (13)
C17—C18—C19119.85 (18)N2—C13—C12119.42 (13)
C17—C18—H18120.1N2—C13—C14iii121.06 (15)
C19—C18—H18120.1C12—C13—C14iii119.52 (15)
C21—C20—C19119.34 (18)C11—C12—C13119.41 (14)
C21—C20—H20120.3C11—C12—H12120.3
C19—C20—H20120.3C13—C12—H12120.3
C18—C19—C20117.05 (17)N2—C14—C15119.77 (14)
C18—C19—C22122.81 (18)N2—C14—C13iii121.28 (14)
C20—C19—C22120.14 (18)C15—C14—C13iii118.94 (16)
N3—C17—C18123.03 (17)C15—C16—C11iii120.56 (15)
N3—C17—H17118.5C15—C16—H16119.7
C18—C17—H17118.5C11iii—C16—H16119.7
N3—C21—C20124.02 (18)C16—C15—C14120.16 (14)
N3—C21—H21118.0C16—C15—H15119.9
C20—C21—H21118.0C14—C15—H15119.9
C19—C22—C22i112.4 (2)C12—C11—C16iii121.40 (17)
C19—C22—H22B109.7 (16)C12—C11—H11119.3
C22i—C22—H22B106.1 (16)C16iii—C11—H11119.3
C19—C22—H22A112.4 (15)
C5—C6—C1—O1179.61 (14)C17—N3—C21—C200.7 (3)
C5—C6—C1—C20.0 (2)C19—C20—C21—N30.3 (3)
C3—C2—C1—O1179.02 (13)C18—C19—C22—C22i108.6 (3)
C3—C2—C1—C60.6 (2)C20—C19—C22—C22i71.6 (3)
C1—C6—C5—O3179.64 (13)C9—N1—C8—C9ii0.5 (2)
C1—C6—C5—C40.5 (2)C9—N1—C8—C7179.39 (13)
C3—C4—C5—O3179.56 (13)C8—N1—C9—C8ii0.5 (2)
C3—C4—C5—C60.4 (2)C8—N1—C9—C10178.91 (13)
C5—C4—C3—O2179.01 (13)C14—N2—C13—C12179.42 (13)
C5—C4—C3—C20.2 (2)C14—N2—C13—C14iii0.8 (2)
C1—C2—C3—O2178.47 (13)N2—C13—C12—C11179.45 (14)
C1—C2—C3—C40.7 (2)C14iii—C13—C12—C110.7 (2)
C17—C18—C19—C201.1 (2)C13—N2—C14—C15179.39 (13)
C17—C18—C19—C22178.76 (16)C13—N2—C14—C13iii0.8 (2)
C21—C20—C19—C180.6 (2)C11iii—C16—C15—C140.3 (2)
C21—C20—C19—C22179.23 (17)N2—C14—C15—C16178.89 (14)
C21—N3—C17—C180.2 (2)C13iii—C14—C15—C160.2 (2)
C19—C18—C17—N30.7 (3)C13—C12—C11—C16iii0.2 (2)
Symmetry codes: (i) x1, y+1, z+2; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N20.841.982.821 (3)177
O2—H2O···N3iv0.841.932.762 (3)173
O3—H3O···N1iii0.842.032.870 (3)176
C6—H6···N20.952.673.379 (3)132
O1—H1O···N20.841.982.821 (3)177
O2—H2O···N3iv0.841.932.762 (3)173
O3—H3O···N1iii0.842.032.870 (3)176
C6—H6···N20.952.673.379 (3)132
Symmetry codes: (iii) x, y+1, z+1; (iv) x, y, z+2.
(QS_PGL_TMP_PHE_PYR_hydrate) top
Crystal data top
C56H56N6O8V = 1176.1 (2) Å3
Mr = 941.06Z = 1
Triclinic, P1F(000) = 498
a = 10.1510 (11) ÅDx = 1.329 Mg m3
b = 11.2084 (12) ÅMo Kα radiation, λ = 0.71073 Å
c = 12.3363 (13) ŵ = 0.09 mm1
α = 102.012 (3)°T = 150 K
β = 105.153 (3)°Block, orange
γ = 112.368 (3)°0.75 × 0.43 × 0.22 mm
Data collection top
CCD area detector
diffractometer
3988 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.036
phi and ω scansθmax = 26.0°, θmin = 3.2°
Absorption correction: analytical
Bruker, AXS, 2008
h = 1212
Tmin = 0.955, Tmax = 0.980k = 1313
42928 measured reflectionsl = 1515
4600 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.105H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.412 w = 1/[σ2(Fo2) + (0.1504P)2 + 12.4077P]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max = 0.001
4600 reflectionsΔρmax = 1.12 e Å3
327 parametersΔρmin = 0.60 e Å3
Crystal data top
C56H56N6O8γ = 112.368 (3)°
Mr = 941.06V = 1176.1 (2) Å3
Triclinic, P1Z = 1
a = 10.1510 (11) ÅMo Kα radiation
b = 11.2084 (12) ŵ = 0.09 mm1
c = 12.3363 (13) ÅT = 150 K
α = 102.012 (3)°0.75 × 0.43 × 0.22 mm
β = 105.153 (3)°
Data collection top
CCD area detector
diffractometer
4600 independent reflections
Absorption correction: analytical
Bruker, AXS, 2008
3988 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.980Rint = 0.036
42928 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.1050 restraints
wR(F2) = 0.412H atoms treated by a mixture of independent and constrained refinement
S = 1.19 w = 1/[σ2(Fo2) + (0.1504P)2 + 12.4077P]
where P = (Fo2 + 2Fc2)/3
4600 reflectionsΔρmax = 1.12 e Å3
327 parametersΔρmin = 0.60 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O41.1503 (6)0.3103 (5)0.5643 (4)0.0288 (11)
H4A1.181 (9)0.413 (9)0.626 (7)0.03 (2)*
N20.3966 (6)0.8030 (5)0.1875 (4)0.0172 (10)
N10.6183 (6)0.7451 (5)0.3122 (4)0.0190 (11)
C70.4685 (7)0.6546 (6)0.2730 (5)0.0183 (12)
C100.6577 (7)0.8631 (6)0.2909 (5)0.0176 (12)
C140.8257 (7)0.9640 (6)0.3384 (6)0.0224 (13)
H14A0.88650.92700.38240.034*
H14B0.84351.05120.39210.034*
H14C0.85640.97940.27150.034*
C130.5858 (7)1.0212 (7)0.1969 (6)0.0239 (13)
H13A0.49151.02270.15220.036*
H13B0.64871.02490.14820.036*
H13C0.64391.10080.27120.036*
C90.5451 (7)0.8919 (6)0.2259 (5)0.0167 (12)
C80.3557 (7)0.6846 (6)0.2102 (5)0.0166 (12)
C120.1877 (7)0.5857 (7)0.1638 (6)0.0256 (14)
H12A0.12710.62770.12790.038*
H12B0.15990.56320.22990.038*
H12C0.16620.50150.10320.038*
C110.4284 (8)0.5230 (7)0.2988 (6)0.0270 (14)
H11A0.52300.51970.33980.041*
H11B0.36740.44490.22350.041*
H11C0.36860.51840.35000.041*
O10.8147 (5)0.4578 (5)0.2637 (4)0.0223 (10)
H10.75060.46010.20620.033*
O21.1337 (5)0.2404 (5)0.3394 (4)0.0233 (10)
H21.14450.27660.41010.035*
O30.8272 (5)0.1413 (5)0.0574 (4)0.0224 (10)
H30.75460.15200.09760.034*
C60.8161 (6)0.3005 (6)0.1005 (5)0.0156 (12)
H60.74330.31420.04500.019*
C40.9816 (7)0.1942 (6)0.1423 (5)0.0194 (12)
H41.02290.13610.11520.023*
C20.9723 (6)0.3501 (6)0.3065 (5)0.0153 (11)
H2A1.00470.39610.38970.018*
C31.0281 (6)0.2615 (6)0.2630 (5)0.0150 (11)
C211.5274 (7)0.0635 (6)0.4896 (5)0.0165 (12)
C50.8731 (6)0.2124 (6)0.0602 (5)0.0162 (12)
C201.6882 (7)0.1537 (6)0.5375 (5)0.0202 (13)
C161.4228 (7)0.0998 (6)0.4213 (5)0.0203 (13)
C10.8660 (6)0.3673 (6)0.2208 (5)0.0148 (11)
C191.7403 (8)0.2778 (6)0.5163 (6)0.0238 (13)
H191.84740.33860.54780.029*
C171.4814 (8)0.2267 (7)0.4035 (6)0.0252 (14)
H171.41260.25310.35890.030*
C151.2622 (7)0.0064 (7)0.3744 (6)0.0229 (13)
H151.19120.03010.32890.028*
C221.7909 (7)0.1138 (7)0.6070 (6)0.0235 (13)
H221.89830.17370.64030.028*
C181.6376 (8)0.3134 (7)0.4499 (6)0.0275 (15)
H181.67510.39820.43620.033*
N30.6120 (6)0.4810 (5)0.0789 (4)0.0189 (11)
C230.4639 (7)0.3857 (6)0.0304 (5)0.0181 (12)
C260.6497 (7)0.5937 (6)0.0486 (5)0.0171 (12)
C240.4195 (8)0.2629 (7)0.0597 (6)0.0230 (13)
H240.49500.24840.11130.028*
C270.8063 (7)0.6977 (7)0.0961 (6)0.0240 (13)
H270.88400.68720.14950.029*
C280.8431 (8)0.8120 (7)0.0644 (6)0.0269 (14)
H280.94750.88010.09530.032*
C250.2710 (8)0.1679 (7)0.0141 (6)0.0261 (14)
H250.24190.08700.03440.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.037 (3)0.032 (3)0.020 (2)0.024 (2)0.003 (2)0.006 (2)
N20.018 (2)0.020 (3)0.012 (2)0.010 (2)0.0032 (19)0.0047 (19)
N10.021 (3)0.025 (3)0.015 (2)0.015 (2)0.007 (2)0.007 (2)
C70.026 (3)0.018 (3)0.014 (3)0.012 (3)0.011 (2)0.006 (2)
C100.020 (3)0.022 (3)0.014 (3)0.012 (2)0.007 (2)0.006 (2)
C140.019 (3)0.024 (3)0.021 (3)0.010 (3)0.004 (2)0.006 (2)
C130.024 (3)0.023 (3)0.025 (3)0.012 (3)0.007 (3)0.011 (3)
C90.019 (3)0.018 (3)0.014 (3)0.010 (2)0.005 (2)0.005 (2)
C80.019 (3)0.018 (3)0.012 (3)0.008 (2)0.006 (2)0.005 (2)
C120.020 (3)0.026 (3)0.025 (3)0.005 (3)0.006 (3)0.010 (3)
C110.034 (4)0.024 (3)0.030 (3)0.015 (3)0.015 (3)0.014 (3)
O10.029 (2)0.026 (2)0.018 (2)0.022 (2)0.0042 (18)0.0070 (18)
O20.025 (2)0.031 (2)0.019 (2)0.021 (2)0.0041 (18)0.0102 (19)
O30.025 (2)0.030 (2)0.016 (2)0.020 (2)0.0029 (17)0.0061 (18)
C60.014 (3)0.020 (3)0.018 (3)0.012 (2)0.005 (2)0.010 (2)
C40.020 (3)0.025 (3)0.024 (3)0.018 (3)0.010 (2)0.012 (3)
C20.015 (3)0.015 (3)0.014 (3)0.007 (2)0.003 (2)0.005 (2)
C30.012 (3)0.016 (3)0.019 (3)0.008 (2)0.004 (2)0.010 (2)
C210.020 (3)0.018 (3)0.012 (3)0.010 (2)0.006 (2)0.003 (2)
C50.014 (3)0.021 (3)0.018 (3)0.011 (2)0.006 (2)0.009 (2)
C200.021 (3)0.023 (3)0.018 (3)0.011 (3)0.010 (2)0.005 (2)
C160.025 (3)0.023 (3)0.020 (3)0.016 (3)0.011 (3)0.008 (2)
C10.015 (3)0.014 (3)0.021 (3)0.010 (2)0.009 (2)0.010 (2)
C190.024 (3)0.019 (3)0.028 (3)0.008 (3)0.013 (3)0.006 (3)
C170.032 (4)0.028 (3)0.029 (3)0.021 (3)0.016 (3)0.017 (3)
C150.023 (3)0.026 (3)0.023 (3)0.017 (3)0.006 (3)0.007 (3)
C220.016 (3)0.027 (3)0.025 (3)0.010 (3)0.005 (2)0.006 (3)
C180.037 (4)0.020 (3)0.035 (4)0.014 (3)0.021 (3)0.015 (3)
N30.022 (3)0.023 (3)0.016 (2)0.016 (2)0.006 (2)0.006 (2)
C230.021 (3)0.023 (3)0.015 (3)0.014 (3)0.007 (2)0.006 (2)
C260.020 (3)0.021 (3)0.015 (3)0.013 (2)0.008 (2)0.007 (2)
C240.030 (3)0.024 (3)0.022 (3)0.017 (3)0.010 (3)0.011 (3)
C270.021 (3)0.027 (3)0.020 (3)0.010 (3)0.005 (2)0.004 (3)
C280.024 (3)0.023 (3)0.032 (4)0.010 (3)0.013 (3)0.007 (3)
C250.031 (3)0.023 (3)0.026 (3)0.014 (3)0.012 (3)0.009 (3)
Geometric parameters (Å, º) top
O4—H4A1.11 (8)C4—H40.9500
N2—C91.333 (8)C2—C31.400 (8)
N2—C81.344 (8)C2—C11.402 (8)
N1—C101.333 (8)C2—H2A0.9500
N1—C71.347 (8)C21—C161.416 (8)
C7—C81.401 (8)C21—C201.424 (9)
C7—C111.499 (8)C21—C21i1.422 (12)
C10—C91.401 (8)C20—C191.395 (9)
C10—C141.504 (8)C20—C221.438 (9)
C14—H14A0.9800C16—C171.407 (9)
C14—H14B0.9800C16—C151.429 (9)
C14—H14C0.9800C19—C181.387 (10)
C13—C91.496 (8)C19—H190.9500
C13—H13A0.9800C17—C181.381 (10)
C13—H13B0.9800C17—H170.9500
C13—H13C0.9800C15—C22i1.341 (9)
C8—C121.501 (8)C15—H150.9500
C12—H12A0.9800C22—C15i1.341 (9)
C12—H12B0.9800C22—H220.9500
C12—H12C0.9800C18—H180.9500
C11—H11A0.9800N3—C261.336 (8)
C11—H11B0.9800N3—C231.342 (8)
C11—H11C0.9800C23—C26ii1.429 (8)
O1—C11.379 (7)C23—C241.431 (9)
O1—H10.8400C26—C23ii1.429 (8)
O2—C31.361 (7)C26—C271.431 (9)
O2—H20.8400C24—C251.345 (10)
O3—C51.356 (7)C24—H240.9500
O3—H30.8400C27—C281.362 (9)
C6—C11.369 (8)C27—H270.9500
C6—C51.392 (8)C28—C25ii1.425 (10)
C6—H60.9500C28—H280.9500
C4—C31.380 (8)C25—C28ii1.425 (10)
C4—C51.398 (8)C25—H250.9500
C9—N2—C8119.6 (5)O2—C3—C2120.6 (5)
C10—N1—C7119.3 (5)C4—C3—C2122.1 (5)
N1—C7—C8120.1 (5)C16—C21—C20120.1 (6)
N1—C7—C11117.9 (5)C16—C21—C21i120.3 (7)
C8—C7—C11122.1 (6)C20—C21—C21i119.6 (7)
N1—C10—C9120.6 (5)O3—C5—C6122.6 (5)
N1—C10—C14118.3 (5)O3—C5—C4117.5 (5)
C9—C10—C14121.1 (5)C6—C5—C4119.9 (5)
C10—C14—H14A109.5C19—C20—C21119.0 (6)
C10—C14—H14B109.5C19—C20—C22122.4 (6)
H14A—C14—H14B109.5C21—C20—C22118.6 (6)
C10—C14—H14C109.5C17—C16—C21118.6 (6)
H14A—C14—H14C109.5C17—C16—C15122.9 (6)
H14B—C14—H14C109.5C21—C16—C15118.5 (6)
C9—C13—H13A109.5C6—C1—O1120.9 (5)
C9—C13—H13B109.5C6—C1—C2122.7 (5)
H13A—C13—H13B109.5O1—C1—C2116.4 (5)
C9—C13—H13C109.5C18—C19—C20120.8 (6)
H13A—C13—H13C109.5C18—C19—H19119.6
H13B—C13—H13C109.5C20—C19—H19119.6
N2—C9—C10120.2 (5)C18—C17—C16120.9 (6)
N2—C9—C13117.9 (5)C18—C17—H17119.5
C10—C9—C13121.9 (5)C16—C17—H17119.5
N2—C8—C7120.2 (5)C22i—C15—C16121.8 (6)
N2—C8—C12118.1 (5)C22i—C15—H15119.1
C7—C8—C12121.6 (5)C16—C15—H15119.1
C8—C12—H12A109.5C15i—C22—C20121.2 (6)
C8—C12—H12B109.5C15i—C22—H22119.4
H12A—C12—H12B109.5C20—C22—H22119.4
C8—C12—H12C109.5C17—C18—C19120.6 (6)
H12A—C12—H12C109.5C17—C18—H18119.7
H12B—C12—H12C109.5C19—C18—H18119.7
C7—C11—H11A109.5C26—N3—C23117.7 (5)
C7—C11—H11B109.5N3—C23—C26ii120.8 (6)
H11A—C11—H11B109.5N3—C23—C24119.3 (5)
C7—C11—H11C109.5C26ii—C23—C24119.8 (6)
H11A—C11—H11C109.5N3—C26—C23ii121.4 (6)
H11B—C11—H11C109.5N3—C26—C27120.2 (5)
C1—O1—H1109.5C23ii—C26—C27118.4 (6)
C3—O2—H2109.5C25—C24—C23120.1 (6)
C5—O3—H3109.5C25—C24—H24120.0
C1—C6—C5119.4 (5)C23—C24—H24120.0
C1—C6—H6120.3C28—C27—C26119.6 (6)
C5—C6—H6120.3C28—C27—H27120.2
C3—C4—C5119.3 (5)C26—C27—H27120.2
C3—C4—H4120.3C27—C28—C25ii121.6 (6)
C5—C4—H4120.3C27—C28—H28119.2
C3—C2—C1116.5 (5)C25ii—C28—H28119.2
C3—C2—H2A121.7C24—C25—C28ii120.4 (6)
C1—C2—H2A121.7C24—C25—H25119.8
O2—C3—C4117.2 (5)C28ii—C25—H25119.8
C10—N1—C7—C80.2 (8)C20—C21—C16—C170.7 (9)
C10—N1—C7—C11179.9 (5)C21i—C21—C16—C17179.6 (6)
C7—N1—C10—C91.6 (8)C20—C21—C16—C15179.8 (5)
C7—N1—C10—C14178.5 (5)C21i—C21—C16—C150.2 (10)
C8—N2—C9—C100.9 (8)C5—C6—C1—O1178.5 (5)
C8—N2—C9—C13178.9 (5)C5—C6—C1—C20.5 (9)
N1—C10—C9—N22.0 (9)C3—C2—C1—C60.9 (8)
C14—C10—C9—N2178.1 (5)C3—C2—C1—O1178.1 (5)
N1—C10—C9—C13177.8 (5)C21—C20—C19—C180.1 (9)
C14—C10—C9—C132.1 (9)C22—C20—C19—C18179.4 (6)
C9—N2—C8—C70.4 (8)C21—C16—C17—C181.0 (9)
C9—N2—C8—C12178.9 (5)C15—C16—C17—C18179.6 (6)
N1—C7—C8—N20.8 (8)C17—C16—C15—C22i179.7 (6)
C11—C7—C8—N2179.1 (5)C21—C16—C15—C22i0.4 (9)
N1—C7—C8—C12179.2 (5)C19—C20—C22—C15i179.7 (6)
C11—C7—C8—C120.7 (9)C21—C20—C22—C15i0.8 (9)
C5—C4—C3—O2179.9 (5)C16—C17—C18—C190.7 (10)
C5—C4—C3—C21.2 (9)C20—C19—C18—C170.1 (10)
C1—C2—C3—O2178.8 (5)C26—N3—C23—C26ii1.5 (9)
C1—C2—C3—C40.0 (8)C26—N3—C23—C24179.3 (5)
C1—C6—C5—O3179.0 (5)C23—N3—C26—C23ii1.5 (9)
C1—C6—C5—C40.8 (8)C23—N3—C26—C27179.1 (5)
C3—C4—C5—O3178.1 (5)N3—C23—C24—C25178.4 (6)
C3—C4—C5—C61.6 (9)C26ii—C23—C24—C250.8 (9)
C16—C21—C20—C190.2 (9)N3—C26—C27—C28179.9 (6)
C21i—C21—C20—C19179.9 (6)C23ii—C26—C27—C280.6 (9)
C16—C21—C20—C22179.7 (5)C26—C27—C28—C25ii0.9 (10)
C21i—C21—C20—C220.6 (10)C23—C24—C25—C28ii0.6 (10)
Symmetry codes: (i) x+3, y, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O1iii1.11 (8)1.75 (8)2.828 (6)162 (7)
O1—H1···N30.841.942.775 (6)176
O2—H2···O40.841.842.662 (6)165
O3—H3···N2ii0.841.942.779 (6)174
C6—H6···N2ii0.952.623.317 (7)131
Symmetry codes: (ii) x+1, y+1, z; (iii) x+2, y+1, z+1.
(TS_ORC_TMP_22TP) top
Crystal data top
C38H46N4O4S2V = 903.5 (4) Å3
Mr = 686.91Z = 1
Triclinic, P1F(000) = 366
a = 8.662 (2) ÅDx = 1.262 Mg m3
b = 10.289 (3) ÅMo Kα radiation, λ = 0.71073 Å
c = 11.523 (3) ŵ = 0.19 mm1
α = 65.003 (5)°T = 150 K
β = 76.930 (5)°Plate, colorless
γ = 80.277 (6)°0.30 × 0.20 × 0.12 mm
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
2854 reflections with I > 2σ(I)
Radiation source: Sealed TubeRint = 0.064
profile data from ω–scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
h = 1111
Tmin = 0.677, Tmax = 1.000k = 1313
9411 measured reflectionsl = 1414
4129 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.073H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.201 w = 1/[σ2(Fo2) + (0.0957P)2 + 0.3868P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.013
4129 reflectionsΔρmax = 0.53 e Å3
230 parametersΔρmin = 0.42 e Å3
Crystal data top
C38H46N4O4S2γ = 80.277 (6)°
Mr = 686.91V = 903.5 (4) Å3
Triclinic, P1Z = 1
a = 8.662 (2) ÅMo Kα radiation
b = 10.289 (3) ŵ = 0.19 mm1
c = 11.523 (3) ÅT = 150 K
α = 65.003 (5)°0.30 × 0.20 × 0.12 mm
β = 76.930 (5)°
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
4129 independent reflections
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
2854 reflections with I > 2σ(I)
Tmin = 0.677, Tmax = 1.000Rint = 0.064
9411 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.201H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.53 e Å3
4129 reflectionsΔρmin = 0.42 e Å3
230 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.26071 (10)0.10673 (10)0.51228 (9)0.0435 (3)
H2O0.288 (4)0.262 (4)1.036 (3)0.030 (9)*
H1O0.138 (5)0.206 (5)0.644 (4)0.069 (17)*
O10.0808 (3)0.2540 (2)0.6187 (2)0.0314 (5)
O20.2263 (3)0.3193 (2)1.0203 (2)0.0335 (5)
C40.1603 (3)0.2835 (3)0.8208 (3)0.0240 (6)
H40.24000.21820.84980.029*
C10.0716 (3)0.4767 (3)0.7333 (3)0.0240 (6)
C60.0223 (3)0.4444 (3)0.8561 (3)0.0267 (6)
H60.00720.48850.91000.032*
C50.1382 (3)0.3475 (3)0.8996 (3)0.0250 (6)
C20.0507 (3)0.4129 (3)0.6556 (3)0.0244 (6)
H20.11480.43500.57210.029*
C30.0653 (3)0.3152 (3)0.6994 (3)0.0228 (6)
C160.4594 (3)0.0699 (3)0.4663 (3)0.0270 (6)
C70.1925 (3)0.5862 (3)0.6861 (3)0.0329 (7)
H7A0.29110.55250.64190.049*
H7B0.21440.59860.76040.049*
H7C0.15040.67840.62530.049*
C170.5232 (3)0.1912 (3)0.3633 (3)0.0291 (6)
H170.63210.19460.32370.035*
C180.4089 (5)0.3062 (4)0.3256 (4)0.0478 (9)
H180.43150.39660.25650.057*
C190.2634 (5)0.2769 (4)0.3966 (4)0.0490 (10)
H190.17230.34390.38350.059*
N10.3186 (3)0.9417 (2)0.2528 (2)0.0261 (5)
N20.5486 (3)1.1208 (2)0.0878 (2)0.0260 (5)
C90.5892 (3)0.9827 (3)0.1575 (3)0.0246 (6)
C110.2784 (3)1.0795 (3)0.1822 (3)0.0256 (6)
C80.4729 (3)0.8915 (3)0.2413 (3)0.0244 (6)
C100.3957 (3)1.1710 (3)0.0980 (3)0.0256 (6)
C130.7630 (3)0.9331 (3)0.1404 (3)0.0333 (7)
H13A0.82071.00720.06490.050*
H13B0.77700.84370.12680.050*
H13C0.80460.91580.21850.050*
C120.5109 (4)0.7357 (3)0.3233 (3)0.0354 (7)
H12A0.41610.69630.38630.053*
H12B0.59660.72670.36970.053*
H12C0.54480.68230.26750.053*
C150.1059 (3)1.1317 (4)0.1972 (3)0.0377 (7)
H15A0.04481.05500.26680.057*
H15B0.06801.15870.11540.057*
H15C0.09201.21560.21920.057*
C140.3555 (4)1.3260 (3)0.0171 (3)0.0380 (7)
H14A0.45251.36990.03850.057*
H14B0.30811.37620.07410.057*
H14C0.27951.33340.03730.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0283 (4)0.0566 (6)0.0463 (5)0.0099 (4)0.0088 (3)0.0250 (4)
O10.0339 (12)0.0355 (12)0.0305 (12)0.0104 (10)0.0019 (9)0.0175 (10)
O20.0355 (12)0.0389 (12)0.0298 (12)0.0125 (10)0.0002 (9)0.0168 (10)
C40.0216 (13)0.0240 (13)0.0265 (14)0.0022 (11)0.0069 (10)0.0087 (12)
C10.0200 (13)0.0207 (13)0.0287 (15)0.0004 (10)0.0092 (10)0.0058 (11)
C60.0265 (14)0.0261 (14)0.0326 (16)0.0001 (11)0.0126 (11)0.0138 (12)
C50.0261 (14)0.0231 (13)0.0246 (14)0.0018 (11)0.0075 (11)0.0082 (12)
C20.0201 (13)0.0225 (13)0.0262 (14)0.0006 (10)0.0050 (10)0.0059 (11)
C30.0213 (13)0.0225 (13)0.0246 (14)0.0009 (10)0.0073 (10)0.0088 (11)
C160.0222 (13)0.0326 (15)0.0344 (16)0.0019 (11)0.0089 (11)0.0207 (14)
C70.0302 (15)0.0308 (15)0.0374 (17)0.0080 (12)0.0074 (12)0.0105 (14)
C170.0297 (15)0.0276 (14)0.0312 (16)0.0058 (12)0.0066 (12)0.0109 (13)
C180.069 (3)0.0332 (17)0.045 (2)0.0023 (17)0.0250 (18)0.0119 (16)
C190.055 (2)0.053 (2)0.053 (2)0.0283 (18)0.0334 (18)0.0361 (19)
N10.0255 (12)0.0269 (12)0.0308 (13)0.0030 (9)0.0065 (9)0.0152 (11)
N20.0238 (12)0.0283 (12)0.0264 (12)0.0003 (10)0.0049 (9)0.0119 (10)
C90.0251 (14)0.0268 (14)0.0223 (14)0.0014 (11)0.0060 (10)0.0106 (12)
C110.0231 (13)0.0277 (14)0.0301 (15)0.0018 (11)0.0087 (11)0.0149 (12)
C80.0236 (13)0.0261 (14)0.0279 (15)0.0042 (11)0.0099 (11)0.0146 (12)
C100.0241 (14)0.0267 (14)0.0254 (14)0.0007 (11)0.0063 (11)0.0094 (12)
C130.0226 (14)0.0357 (16)0.0363 (17)0.0021 (12)0.0043 (12)0.0113 (14)
C120.0319 (16)0.0272 (15)0.0423 (18)0.0010 (12)0.0090 (13)0.0094 (14)
C150.0214 (15)0.0406 (18)0.050 (2)0.0018 (13)0.0078 (13)0.0185 (16)
C140.0344 (16)0.0269 (15)0.0431 (19)0.0037 (13)0.0102 (14)0.0054 (14)
Geometric parameters (Å, º) top
S1—C191.694 (4)C18—H180.9500
S1—C161.710 (3)C19—H190.9500
O1—C31.363 (3)N1—C111.334 (4)
O1—H1O0.68 (4)N1—C81.348 (3)
O2—C51.362 (3)N2—C91.335 (3)
O2—H2O0.80 (3)N2—C101.336 (3)
C4—C51.386 (4)C9—C81.393 (4)
C4—C31.388 (4)C9—C131.503 (4)
C4—H40.9500C11—C101.402 (4)
C1—C21.369 (4)C11—C151.497 (4)
C1—C61.396 (4)C8—C121.501 (4)
C1—C71.511 (4)C10—C141.495 (4)
C6—C51.394 (4)C13—H13A0.9800
C6—H60.9500C13—H13B0.9800
C2—C31.399 (4)C13—H13C0.9800
C2—H20.9500C12—H12A0.9800
C16—C171.399 (4)C12—H12B0.9800
C16—C16i1.458 (6)C12—H12C0.9800
C7—H7A0.9800C15—H15A0.9800
C7—H7B0.9800C15—H15B0.9800
C7—H7C0.9800C15—H15C0.9800
C17—C181.391 (5)C14—H14A0.9800
C17—H170.9500C14—H14B0.9800
C18—C191.342 (5)C14—H14C0.9800
C19—S1—C1692.18 (17)C11—N1—C8119.2 (2)
C3—O1—H1O114 (4)C9—N2—C10119.7 (2)
C5—O2—H2O109 (2)N2—C9—C8120.3 (2)
C5—C4—C3119.6 (2)N2—C9—C13116.9 (2)
C5—C4—H4120.2C8—C9—C13122.8 (2)
C3—C4—H4120.2N1—C11—C10120.3 (2)
C2—C1—C6120.2 (2)N1—C11—C15117.8 (3)
C2—C1—C7120.8 (3)C10—C11—C15121.9 (3)
C6—C1—C7119.0 (3)N1—C8—C9120.4 (2)
C5—C6—C1119.9 (3)N1—C8—C12116.8 (2)
C5—C6—H6120.1C9—C8—C12122.8 (2)
C1—C6—H6120.1N2—C10—C11120.2 (2)
O2—C5—C4122.4 (2)N2—C10—C14117.9 (2)
O2—C5—C6117.6 (3)C11—C10—C14121.9 (3)
C4—C5—C6120.0 (3)C9—C13—H13A109.5
C1—C2—C3120.0 (3)C9—C13—H13B109.5
C1—C2—H2120.0H13A—C13—H13B109.5
C3—C2—H2120.0C9—C13—H13C109.5
O1—C3—C4122.0 (2)H13A—C13—H13C109.5
O1—C3—C2117.7 (2)H13B—C13—H13C109.5
C4—C3—C2120.3 (2)C8—C12—H12A109.5
C17—C16—C16i128.7 (3)C8—C12—H12B109.5
C17—C16—S1110.0 (2)H12A—C12—H12B109.5
C16i—C16—S1121.3 (3)C8—C12—H12C109.5
C1—C7—H7A109.5H12A—C12—H12C109.5
C1—C7—H7B109.5H12B—C12—H12C109.5
H7A—C7—H7B109.5C11—C15—H15A109.5
C1—C7—H7C109.5C11—C15—H15B109.5
H7A—C7—H7C109.5H15A—C15—H15B109.5
H7B—C7—H7C109.5C11—C15—H15C109.5
C18—C17—C16112.2 (3)H15A—C15—H15C109.5
C18—C17—H17123.9H15B—C15—H15C109.5
C16—C17—H17123.9C10—C14—H14A109.5
C19—C18—C17113.3 (3)C10—C14—H14B109.5
C19—C18—H18123.3H14A—C14—H14B109.5
C17—C18—H18123.3C10—C14—H14C109.5
C18—C19—S1112.3 (3)H14A—C14—H14C109.5
C18—C19—H19123.9H14B—C14—H14C109.5
S1—C19—H19123.9
Symmetry code: (i) x+1, y, z+1.
(TS_ORC_TMP_ACR) top
Crystal data top
C24H23N2O2V = 989.5 (7) Å3
Mr = 371.44Z = 2
Triclinic, P1F(000) = 394
a = 8.971 (4) ÅDx = 1.247 Mg m3
b = 10.078 (4) ÅMo Kα radiation, λ = 0.71073 Å
c = 11.666 (5) ŵ = 0.08 mm1
α = 109.665 (8)°T = 293 K
β = 94.353 (7)°Plate, colorless
γ = 90.742 (7)°0.25 × 0.25 × 0.10 mm
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
1683 reflections with I > 2σ(I)
Radiation source: Sealed TubeRint = 0.128
profile data from ω–scansθmax = 27.0°, θmin = 3.1°
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
h = 1111
Tmin = 0.591, Tmax = 1.000k = 1212
9373 measured reflectionsl = 1414
4291 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.095 w = 1/[σ2(Fo2) + (0.1142P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.276(Δ/σ)max = 0.001
S = 0.97Δρmax = 0.35 e Å3
4291 reflectionsΔρmin = 0.35 e Å3
259 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.029 (6)
Crystal data top
C24H23N2O2γ = 90.742 (7)°
Mr = 371.44V = 989.5 (7) Å3
Triclinic, P1Z = 2
a = 8.971 (4) ÅMo Kα radiation
b = 10.078 (4) ŵ = 0.08 mm1
c = 11.666 (5) ÅT = 293 K
α = 109.665 (8)°0.25 × 0.25 × 0.10 mm
β = 94.353 (7)°
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
4291 independent reflections
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
1683 reflections with I > 2σ(I)
Tmin = 0.591, Tmax = 1.000Rint = 0.128
9373 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0950 restraints
wR(F2) = 0.276H-atom parameters constrained
S = 0.97Δρmax = 0.35 e Å3
4291 reflectionsΔρmin = 0.35 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1924 (3)0.3176 (3)0.5288 (3)0.0427 (9)
H1O0.25240.25660.52790.064*
N20.6554 (4)0.1035 (4)0.8671 (3)0.0349 (9)
O20.0956 (3)0.2644 (3)0.9121 (3)0.0431 (9)
H2O0.16990.21690.89820.065*
C40.1493 (4)0.2869 (4)0.7207 (4)0.0307 (10)
H40.22330.22100.71060.037*
C230.5482 (5)0.1214 (4)0.7609 (4)0.0335 (10)
C180.6702 (4)0.0291 (5)0.7914 (4)0.0346 (11)
C120.3896 (4)0.0711 (5)0.8993 (4)0.0345 (11)
C240.4063 (5)0.0647 (5)0.8206 (4)0.0423 (12)
H240.32350.12070.80590.051*
C20.0083 (4)0.4502 (4)0.6483 (4)0.0346 (10)
H20.01210.49210.58920.041*
C10.0695 (4)0.4871 (4)0.7518 (4)0.0314 (10)
C30.1177 (4)0.3498 (4)0.6332 (4)0.0306 (10)
C160.5016 (5)0.2976 (5)1.0011 (4)0.0443 (12)
H160.58450.35361.01380.053*
C50.0688 (4)0.3232 (4)0.8248 (4)0.0310 (10)
C60.0402 (4)0.4236 (4)0.8391 (4)0.0351 (11)
H60.09380.44810.90800.042*
C170.5176 (4)0.1556 (5)0.9223 (4)0.0332 (10)
C190.8152 (5)0.0832 (5)0.7307 (4)0.0415 (12)
H190.89640.02530.74690.050*
C220.5738 (5)0.2610 (5)0.6781 (5)0.0481 (13)
H220.49470.32130.65950.058*
C200.8360 (5)0.2154 (5)0.6515 (4)0.0456 (12)
H200.93080.24710.61310.055*
C210.7154 (5)0.3071 (5)0.6257 (5)0.0517 (14)
H210.73230.39940.57270.062*
C130.2477 (5)0.1333 (6)0.9612 (5)0.0515 (14)
H130.16300.07980.94870.062*
C140.2360 (5)0.2701 (6)1.0380 (5)0.0544 (14)
H140.14350.30921.07700.065*
C70.1832 (5)0.6018 (5)0.7701 (4)0.0437 (12)
H7A0.19270.63040.69940.066*
H7B0.15010.68130.84080.066*
H7C0.27840.56580.78180.066*
C150.3648 (6)0.3532 (5)1.0585 (4)0.0520 (14)
H150.35590.44601.11150.062*
N10.3945 (3)0.1024 (4)0.5190 (3)0.0332 (9)
C90.3584 (4)0.0295 (5)0.4474 (4)0.0339 (11)
C100.5350 (4)0.1342 (4)0.5741 (4)0.0335 (11)
C80.2004 (4)0.0630 (5)0.3899 (5)0.0506 (14)
H8A0.14450.02120.41330.076*
H8B0.15460.13250.41700.076*
H8C0.20130.09890.30260.076*
C110.5713 (5)0.2820 (5)0.6543 (4)0.0471 (13)
H11A0.48630.33830.65250.071*
H11B0.65480.31880.62580.071*
H11C0.59650.28450.73650.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0400 (19)0.051 (2)0.0397 (19)0.0148 (15)0.0202 (15)0.0147 (17)
N20.0295 (19)0.036 (2)0.038 (2)0.0037 (17)0.0067 (16)0.0095 (19)
O20.0325 (17)0.058 (2)0.046 (2)0.0189 (15)0.0152 (14)0.0240 (18)
C40.022 (2)0.031 (2)0.036 (2)0.0043 (18)0.0065 (18)0.007 (2)
C230.032 (2)0.031 (3)0.037 (3)0.003 (2)0.006 (2)0.011 (2)
C180.027 (2)0.040 (3)0.037 (3)0.000 (2)0.0029 (19)0.013 (2)
C120.029 (2)0.037 (3)0.036 (3)0.001 (2)0.0034 (19)0.011 (2)
C240.027 (2)0.048 (3)0.055 (3)0.007 (2)0.009 (2)0.021 (3)
C20.030 (2)0.038 (3)0.034 (3)0.004 (2)0.0054 (19)0.010 (2)
C10.023 (2)0.032 (2)0.038 (3)0.0040 (18)0.0035 (18)0.011 (2)
C30.022 (2)0.036 (2)0.034 (3)0.0001 (19)0.0072 (18)0.011 (2)
C160.048 (3)0.043 (3)0.040 (3)0.000 (2)0.004 (2)0.012 (3)
C50.026 (2)0.035 (3)0.033 (2)0.0027 (19)0.0060 (18)0.011 (2)
C60.028 (2)0.039 (3)0.035 (3)0.001 (2)0.0078 (19)0.007 (2)
C170.029 (2)0.040 (3)0.034 (3)0.002 (2)0.0037 (19)0.016 (2)
C190.028 (2)0.045 (3)0.053 (3)0.004 (2)0.002 (2)0.020 (3)
C220.043 (3)0.046 (3)0.055 (3)0.007 (2)0.010 (2)0.015 (3)
C200.036 (3)0.046 (3)0.050 (3)0.002 (2)0.005 (2)0.012 (3)
C210.053 (3)0.047 (3)0.050 (3)0.010 (3)0.002 (3)0.011 (3)
C130.027 (2)0.069 (4)0.055 (3)0.014 (2)0.006 (2)0.020 (3)
C140.035 (3)0.066 (4)0.061 (4)0.017 (3)0.005 (2)0.023 (3)
C70.038 (3)0.042 (3)0.047 (3)0.014 (2)0.006 (2)0.008 (2)
C150.061 (3)0.043 (3)0.041 (3)0.018 (3)0.002 (3)0.004 (3)
N10.0250 (19)0.035 (2)0.036 (2)0.0012 (16)0.0098 (16)0.0047 (19)
C90.023 (2)0.044 (3)0.032 (3)0.001 (2)0.0086 (18)0.009 (2)
C100.029 (2)0.028 (2)0.042 (3)0.0019 (19)0.013 (2)0.008 (2)
C80.024 (2)0.055 (3)0.066 (4)0.003 (2)0.005 (2)0.011 (3)
C110.042 (3)0.046 (3)0.045 (3)0.001 (2)0.009 (2)0.003 (3)
Geometric parameters (Å, º) top
O1—C31.379 (5)C19—C201.343 (6)
O1—H1O0.8200C19—H190.9300
N2—C181.329 (5)C22—C211.371 (6)
N2—C171.362 (5)C22—H220.9300
O2—C51.349 (5)C20—C211.415 (6)
O2—H2O0.8200C20—H200.9300
C4—C31.386 (6)C21—H210.9300
C4—C51.404 (5)C13—C141.366 (7)
C4—H40.9300C13—H130.9300
C23—C241.418 (6)C14—C151.422 (7)
C23—C221.418 (6)C14—H140.9300
C23—C181.432 (6)C7—H7A0.9600
C18—C191.440 (6)C7—H7B0.9600
C12—C241.366 (6)C7—H7C0.9600
C12—C171.426 (6)C15—H150.9300
C12—C131.438 (6)N1—C91.331 (5)
C24—H240.9300N1—C101.353 (5)
C2—C11.384 (6)C9—C10i1.405 (6)
C2—C31.397 (6)C9—C81.505 (6)
C2—H20.9300C10—C9i1.405 (6)
C1—C61.386 (6)C10—C111.485 (6)
C1—C71.523 (5)C8—H8A0.9600
C16—C151.369 (6)C8—H8B0.9600
C16—C171.415 (6)C8—H8C0.9600
C16—H160.9300C11—H11A0.9600
C5—C61.394 (5)C11—H11B0.9600
C6—H60.9300C11—H11C0.9600
C3—O1—H1O109.5C21—C22—H22120.1
C18—N2—C17119.0 (4)C23—C22—H22120.1
C5—O2—H2O109.5C19—C20—C21120.8 (4)
C3—C4—C5119.5 (4)C19—C20—H20119.6
C3—C4—H4120.2C21—C20—H20119.6
C5—C4—H4120.2C22—C21—C20120.5 (5)
C24—C23—C22124.0 (4)C22—C21—H21119.7
C24—C23—C18115.8 (4)C20—C21—H21119.7
C22—C23—C18120.2 (4)C14—C13—C12120.8 (5)
N2—C18—C23123.9 (4)C14—C13—H13119.6
N2—C18—C19119.0 (4)C12—C13—H13119.6
C23—C18—C19117.0 (4)C13—C14—C15120.3 (5)
C24—C12—C17119.1 (4)C13—C14—H14119.9
C24—C12—C13122.8 (4)C15—C14—H14119.9
C17—C12—C13118.0 (4)C1—C7—H7A109.5
C12—C24—C23120.9 (4)C1—C7—H7B109.5
C12—C24—H24119.6H7A—C7—H7B109.5
C23—C24—H24119.6C1—C7—H7C109.5
C1—C2—C3119.5 (4)H7A—C7—H7C109.5
C1—C2—H2120.2H7B—C7—H7C109.5
C3—C2—H2120.2C16—C15—C14120.6 (5)
C2—C1—C6120.2 (4)C16—C15—H15119.7
C2—C1—C7119.0 (4)C14—C15—H15119.7
C6—C1—C7120.7 (4)C9—N1—C10119.1 (4)
O1—C3—C4122.1 (4)N1—C9—C10i120.9 (4)
O1—C3—C2117.2 (4)N1—C9—C8118.0 (4)
C4—C3—C2120.7 (4)C10i—C9—C8121.1 (4)
C15—C16—C17120.4 (5)N1—C10—C9i120.0 (4)
C15—C16—H16119.8N1—C10—C11117.7 (4)
C17—C16—H16119.8C9i—C10—C11122.2 (4)
O2—C5—C6119.1 (4)C9—C8—H8A109.5
O2—C5—C4121.5 (4)C9—C8—H8B109.5
C6—C5—C4119.4 (4)H8A—C8—H8B109.5
C1—C6—C5120.6 (4)C9—C8—H8C109.5
C1—C6—H6119.7H8A—C8—H8C109.5
C5—C6—H6119.7H8B—C8—H8C109.5
N2—C17—C16118.9 (4)C10—C11—H11A109.5
N2—C17—C12121.2 (4)C10—C11—H11B109.5
C16—C17—C12119.9 (4)H11A—C11—H11B109.5
C20—C19—C18121.5 (4)C10—C11—H11C109.5
C20—C19—H19119.2H11A—C11—H11C109.5
C18—C19—H19119.2H11B—C11—H11C109.5
C21—C22—C23119.9 (5)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N2ii0.932.673.340 (5)130
Symmetry code: (ii) x+1, y, z.
(TS_ORC_TMP_HMB) top
Crystal data top
C42H58N4O4Z = 2
Mr = 682.92F(000) = 740
Monoclinic, P21/cDx = 1.169 Mg m3
a = 11.4579 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.8325 (13) ŵ = 0.08 mm1
c = 14.9792 (16) ÅT = 150 K
β = 107.229 (7)°Plate, colorless
V = 1939.7 (4) Å30.50 × 0.25 × 0.12 mm
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
3282 reflections with I > 2σ(I)
Radiation source: Sealed TubeRint = 0.048
profile data from ω–scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
h = 1414
Tmin = 0.790, Tmax = 1.000k = 1515
19976 measured reflectionsl = 1919
4441 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.0733P)2 + 0.7126P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4441 reflectionsΔρmax = 0.23 e Å3
242 parametersΔρmin = 0.24 e Å3
Crystal data top
C42H58N4O4V = 1939.7 (4) Å3
Mr = 682.92Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.4579 (12) ŵ = 0.08 mm1
b = 11.8325 (13) ÅT = 150 K
c = 14.9792 (16) Å0.50 × 0.25 × 0.12 mm
β = 107.229 (7)°
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
4441 independent reflections
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
3282 reflections with I > 2σ(I)
Tmin = 0.790, Tmax = 1.000Rint = 0.048
19976 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.23 e Å3
4441 reflectionsΔρmin = 0.24 e Å3
242 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H2O0.582 (2)0.0494 (19)0.2458 (17)0.053 (7)*
H1O0.219 (3)0.016 (2)0.299 (2)0.074 (8)*
O20.55829 (12)0.05567 (12)0.18426 (9)0.0394 (3)
N20.36445 (13)0.04221 (12)0.61958 (10)0.0293 (3)
N10.30067 (13)0.02681 (12)0.42802 (10)0.0308 (3)
O10.17058 (13)0.01344 (14)0.23674 (10)0.0460 (4)
C20.37765 (16)0.04485 (14)0.05759 (11)0.0286 (4)
H20.42450.05820.01590.034*
C30.43485 (15)0.04135 (13)0.15356 (11)0.0271 (4)
C120.30003 (15)0.06531 (14)0.47994 (12)0.0283 (4)
C40.36692 (15)0.02270 (14)0.21501 (11)0.0270 (4)
H40.40590.02060.28050.032*
C110.33223 (15)0.05755 (14)0.57692 (12)0.0275 (4)
C10.25228 (16)0.02887 (13)0.02287 (11)0.0286 (4)
C60.18418 (16)0.01081 (14)0.08401 (12)0.0313 (4)
H60.09820.00090.06040.038*
C80.33433 (16)0.12638 (15)0.47093 (12)0.0322 (4)
C90.36627 (15)0.13415 (14)0.56784 (12)0.0303 (4)
C50.24127 (16)0.00711 (15)0.17991 (12)0.0294 (4)
C70.19019 (19)0.02890 (16)0.08159 (12)0.0381 (4)
H7A0.14330.04110.09940.057*
H7B0.25210.03390.11470.057*
H7C0.13500.09390.09820.057*
C150.3347 (2)0.15868 (17)0.63807 (14)0.0427 (5)
H15A0.34000.13350.70150.064*
H15B0.25990.20300.61270.064*
H15C0.40590.20550.63990.064*
C160.26336 (19)0.17490 (16)0.42908 (13)0.0414 (5)
H16A0.25110.16340.36210.062*
H16B0.32780.23110.45310.062*
H16C0.18710.20180.43880.062*
C140.4050 (2)0.24309 (17)0.61987 (15)0.0466 (5)
H14A0.41950.23030.68690.070*
H14B0.48020.27030.60880.070*
H14C0.34030.29970.59780.070*
C130.3364 (2)0.22638 (18)0.40983 (15)0.0526 (6)
H13A0.30780.20340.34410.079*
H13B0.28270.28560.42120.079*
H13C0.42000.25550.42430.079*
C190.03937 (16)0.55097 (16)0.08841 (12)0.0326 (4)
C200.02446 (16)0.61585 (15)0.00767 (13)0.0320 (4)
C180.01547 (16)0.43454 (15)0.08053 (12)0.0325 (4)
C220.0808 (2)0.6045 (2)0.18489 (14)0.0545 (6)
H22A0.16740.58760.21440.082*
H22B0.03240.57390.22340.082*
H22C0.06930.68650.17910.082*
C170.0324 (2)0.3633 (2)0.16773 (15)0.0572 (6)
H17A0.04330.36360.18550.086*
H17B0.09900.39470.21880.086*
H17C0.05250.28560.15520.086*
C210.0522 (2)0.74131 (18)0.01529 (17)0.0537 (6)
H21A0.02450.78400.00240.081*
H21B0.10050.76130.02660.081*
H21C0.09870.75980.07980.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0310 (7)0.0577 (9)0.0284 (7)0.0082 (6)0.0068 (6)0.0082 (6)
N20.0274 (7)0.0287 (8)0.0283 (7)0.0043 (6)0.0029 (6)0.0011 (6)
N10.0324 (8)0.0337 (8)0.0267 (7)0.0020 (6)0.0093 (6)0.0003 (6)
O10.0318 (7)0.0795 (11)0.0268 (7)0.0087 (7)0.0088 (6)0.0024 (7)
C20.0380 (10)0.0249 (8)0.0239 (8)0.0011 (7)0.0106 (7)0.0025 (6)
C30.0307 (9)0.0235 (8)0.0256 (8)0.0020 (6)0.0059 (7)0.0024 (6)
C120.0263 (8)0.0270 (9)0.0313 (9)0.0029 (6)0.0082 (7)0.0017 (7)
C40.0302 (9)0.0289 (9)0.0194 (7)0.0025 (7)0.0032 (7)0.0003 (6)
C110.0253 (8)0.0265 (9)0.0295 (9)0.0030 (6)0.0063 (7)0.0014 (7)
C10.0404 (10)0.0204 (8)0.0215 (8)0.0021 (7)0.0039 (7)0.0016 (6)
C60.0297 (9)0.0329 (9)0.0265 (9)0.0013 (7)0.0010 (7)0.0017 (7)
C80.0310 (9)0.0298 (9)0.0359 (10)0.0006 (7)0.0104 (8)0.0024 (7)
C90.0257 (8)0.0277 (9)0.0343 (9)0.0012 (7)0.0042 (7)0.0020 (7)
C50.0293 (9)0.0324 (9)0.0263 (8)0.0020 (7)0.0076 (7)0.0007 (7)
C70.0508 (12)0.0364 (10)0.0218 (8)0.0011 (8)0.0027 (8)0.0022 (7)
C150.0547 (12)0.0345 (10)0.0379 (10)0.0042 (9)0.0123 (9)0.0082 (8)
C160.0508 (12)0.0316 (10)0.0387 (10)0.0001 (8)0.0083 (9)0.0079 (8)
C140.0535 (13)0.0314 (10)0.0476 (12)0.0030 (9)0.0036 (10)0.0085 (9)
C130.0680 (15)0.0416 (12)0.0498 (12)0.0056 (10)0.0201 (11)0.0126 (10)
C190.0270 (9)0.0423 (10)0.0266 (9)0.0029 (7)0.0052 (7)0.0057 (7)
C200.0271 (9)0.0314 (9)0.0398 (10)0.0008 (7)0.0133 (8)0.0026 (8)
C180.0314 (9)0.0384 (10)0.0289 (9)0.0078 (7)0.0107 (7)0.0061 (7)
C220.0549 (14)0.0677 (15)0.0356 (11)0.0024 (11)0.0052 (10)0.0152 (10)
C170.0691 (16)0.0645 (15)0.0459 (12)0.0218 (12)0.0291 (12)0.0213 (11)
C210.0584 (14)0.0363 (11)0.0724 (15)0.0045 (10)0.0285 (12)0.0048 (11)
Geometric parameters (Å, º) top
O2—C31.362 (2)C15—H15B0.9800
O2—H2O0.88 (2)C15—H15C0.9800
N2—C91.340 (2)C16—H16A0.9800
N2—C111.341 (2)C16—H16B0.9800
N1—C121.340 (2)C16—H16C0.9800
N1—C81.343 (2)C14—H14A0.9800
O1—C51.359 (2)C14—H14B0.9800
O1—H1O0.93 (3)C14—H14C0.9800
C2—C11.388 (2)C13—H13A0.9800
C2—C31.393 (2)C13—H13B0.9800
C2—H20.9500C13—H13C0.9800
C3—C41.388 (2)C19—C201.400 (3)
C12—C111.392 (2)C19—C181.403 (3)
C12—C161.500 (2)C19—C221.519 (2)
C4—C51.391 (2)C20—C18i1.397 (2)
C4—H40.9500C20—C211.515 (3)
C11—C151.502 (2)C18—C20i1.397 (2)
C1—C61.384 (2)C18—C171.518 (3)
C1—C71.515 (2)C22—H22A0.9800
C6—C51.392 (2)C22—H22B0.9800
C6—H60.9500C22—H22C0.9800
C8—C91.391 (2)C17—H17A0.9800
C8—C131.500 (3)C17—H17B0.9800
C9—C141.504 (2)C17—H17C0.9800
C7—H7A0.9800C21—H21A0.9800
C7—H7B0.9800C21—H21B0.9800
C7—H7C0.9800C21—H21C0.9800
C15—H15A0.9800
C3—O2—H2O107.9 (15)C12—C16—H16A109.5
C9—N2—C11119.24 (14)C12—C16—H16B109.5
C12—N1—C8119.08 (15)H16A—C16—H16B109.5
C5—O1—H1O110.3 (17)C12—C16—H16C109.5
C1—C2—C3120.07 (15)H16A—C16—H16C109.5
C1—C2—H2120.0H16B—C16—H16C109.5
C3—C2—H2120.0C9—C14—H14A109.5
O2—C3—C4121.74 (15)C9—C14—H14B109.5
O2—C3—C2117.97 (15)H14A—C14—H14B109.5
C4—C3—C2120.29 (15)C9—C14—H14C109.5
N1—C12—C11120.44 (15)H14A—C14—H14C109.5
N1—C12—C16117.22 (15)H14B—C14—H14C109.5
C11—C12—C16122.34 (16)C8—C13—H13A109.5
C3—C4—C5119.43 (15)C8—C13—H13B109.5
C3—C4—H4120.3H13A—C13—H13B109.5
C5—C4—H4120.3C8—C13—H13C109.5
N2—C11—C12120.39 (15)H13A—C13—H13C109.5
N2—C11—C15117.24 (15)H13B—C13—H13C109.5
C12—C11—C15122.36 (16)C20—C19—C18119.68 (16)
C6—C1—C2119.78 (15)C20—C19—C22121.13 (18)
C6—C1—C7119.93 (16)C18—C19—C22119.19 (17)
C2—C1—C7120.28 (16)C18i—C20—C19120.33 (16)
C1—C6—C5120.19 (16)C18i—C20—C21119.46 (18)
C1—C6—H6119.9C19—C20—C21120.21 (17)
C5—C6—H6119.9C20i—C18—C19119.98 (16)
N1—C8—C9120.46 (16)C20i—C18—C17119.95 (18)
N1—C8—C13117.01 (16)C19—C18—C17120.07 (18)
C9—C8—C13122.52 (17)C19—C22—H22A109.5
N2—C9—C8120.38 (16)C19—C22—H22B109.5
N2—C9—C14116.69 (16)H22A—C22—H22B109.5
C8—C9—C14122.93 (17)C19—C22—H22C109.5
O1—C5—C4121.94 (15)H22A—C22—H22C109.5
O1—C5—C6117.83 (16)H22B—C22—H22C109.5
C4—C5—C6120.23 (16)C18—C17—H17A109.5
C1—C7—H7A109.5C18—C17—H17B109.5
C1—C7—H7B109.5H17A—C17—H17B109.5
H7A—C7—H7B109.5C18—C17—H17C109.5
C1—C7—H7C109.5H17A—C17—H17C109.5
H7A—C7—H7C109.5H17B—C17—H17C109.5
H7B—C7—H7C109.5C20—C21—H21A109.5
C11—C15—H15A109.5C20—C21—H21B109.5
C11—C15—H15B109.5H21A—C21—H21B109.5
H15A—C15—H15B109.5C20—C21—H21C109.5
C11—C15—H15C109.5H21A—C21—H21C109.5
H15A—C15—H15C109.5H21B—C21—H21C109.5
H15B—C15—H15C109.5
Symmetry code: (i) x, y+1, z.
(TS_ORC_TMP_PHE) top
Crystal data top
C46H44N6O4V = 1933 (2) Å3
Mr = 744.87Z = 2
Triclinic, P1F(000) = 788
a = 8.983 (6) ÅDx = 1.280 Mg m3
b = 12.712 (9) ÅMo Kα radiation, λ = 0.71073 Å
c = 17.561 (12) ŵ = 0.08 mm1
α = 89.485 (9)°T = 150 K
β = 76.291 (9)°Plate, yellow
γ = 82.933 (10)°0.45 × 0.30 × 0.15 mm
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
5292 reflections with I > 2σ(I)
Radiation source: Sealed TubeRint = 0.051
profile data from ω–scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
h = 1111
Tmin = 0.797, Tmax = 1.000k = 1616
19746 measured reflectionsl = 2222
8807 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.192 w = 1/[σ2(Fo2) + (0.0955P)2 + 0.1092P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.003
8807 reflectionsΔρmax = 0.28 e Å3
515 parametersΔρmin = 0.30 e Å3
Crystal data top
C46H44N6O4γ = 82.933 (10)°
Mr = 744.87V = 1933 (2) Å3
Triclinic, P1Z = 2
a = 8.983 (6) ÅMo Kα radiation
b = 12.712 (9) ŵ = 0.08 mm1
c = 17.561 (12) ÅT = 150 K
α = 89.485 (9)°0.45 × 0.30 × 0.15 mm
β = 76.291 (9)°
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
8807 independent reflections
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
5292 reflections with I > 2σ(I)
Tmin = 0.797, Tmax = 1.000Rint = 0.051
19746 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.192H-atom parameters constrained
S = 1.02Δρmax = 0.28 e Å3
8807 reflectionsΔρmin = 0.30 e Å3
515 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N30.0088 (2)0.57096 (13)0.38081 (10)0.0294 (4)
C380.1333 (2)0.62043 (16)0.38543 (12)0.0290 (5)
N40.2551 (2)0.46791 (14)0.43833 (11)0.0350 (4)
C320.1130 (2)0.41891 (17)0.43308 (12)0.0308 (5)
C270.0221 (2)0.47037 (17)0.40443 (12)0.0294 (5)
C370.1529 (3)0.72697 (17)0.36140 (14)0.0378 (5)
H370.06540.76240.34070.045*
C330.2667 (2)0.56838 (17)0.41507 (12)0.0307 (5)
C340.4151 (3)0.6254 (2)0.42175 (15)0.0421 (6)
H340.50490.59220.44240.051*
C280.1696 (3)0.41490 (19)0.40169 (13)0.0373 (5)
H280.25960.44850.38260.045*
C310.0932 (3)0.31297 (18)0.45823 (14)0.0405 (6)
H310.18070.27690.47740.049*
C360.2965 (3)0.77785 (19)0.36803 (15)0.0453 (6)
H360.30900.84920.35170.054*
C350.4287 (3)0.7270 (2)0.39879 (16)0.0476 (6)
H350.52850.76480.40340.057*
C300.0500 (3)0.26312 (18)0.45496 (14)0.0436 (6)
H300.06180.19230.47240.052*
C290.1825 (3)0.31422 (19)0.42622 (14)0.0432 (6)
H290.28190.27720.42410.052*
N20.8213 (2)0.04367 (14)0.11302 (10)0.0327 (4)
O11.29205 (18)0.54043 (11)0.10137 (9)0.0358 (4)
H11.21890.56470.13270.054*
N11.0851 (2)0.14784 (15)0.05633 (11)0.0372 (5)
N60.8226 (2)0.74151 (14)0.28274 (11)0.0310 (4)
C41.2769 (2)0.43394 (15)0.21564 (12)0.0259 (4)
H41.19050.46570.24380.031*
O21.26989 (18)0.32333 (13)0.32664 (9)0.0400 (4)
H21.19300.35520.34490.060*
N51.0517 (2)0.63175 (13)0.20117 (11)0.0311 (4)
C220.6602 (3)0.19708 (19)0.08868 (14)0.0382 (5)
H220.57080.16290.10790.046*
O41.54702 (19)0.03763 (13)0.18600 (10)0.0449 (4)
H4A1.63000.01460.16400.067*
C21.4701 (2)0.41723 (16)0.09806 (12)0.0292 (5)
H2A1.51700.43820.04520.035*
C111.5800 (2)0.06958 (16)0.29113 (13)0.0309 (5)
H111.66330.09870.25740.037*
C11.5274 (2)0.33943 (16)0.13330 (12)0.0281 (5)
C31.3457 (2)0.46476 (15)0.13891 (12)0.0267 (4)
C61.4603 (2)0.30966 (16)0.21057 (13)0.0312 (5)
H61.50020.25730.23560.037*
C260.9420 (2)0.19477 (17)0.05838 (12)0.0316 (5)
C250.9219 (3)0.29999 (19)0.03169 (14)0.0408 (6)
H251.00910.33650.01270.049*
C151.0974 (3)0.04887 (18)0.08229 (13)0.0348 (5)
C210.8090 (2)0.14278 (17)0.08686 (12)0.0298 (5)
C121.5044 (2)0.00433 (16)0.26214 (13)0.0318 (5)
C400.9710 (2)0.78383 (16)0.26903 (12)0.0287 (5)
C200.9641 (3)0.00365 (17)0.11111 (13)0.0339 (5)
C391.0879 (2)0.72775 (16)0.22817 (13)0.0294 (5)
C101.5333 (3)0.10045 (17)0.36927 (14)0.0356 (5)
C51.3343 (2)0.35664 (16)0.25134 (12)0.0279 (5)
C190.9839 (3)0.10765 (18)0.14007 (16)0.0468 (6)
H190.89670.14380.15990.056*
C410.7872 (2)0.64625 (17)0.25543 (13)0.0317 (5)
C420.9036 (2)0.59040 (16)0.21447 (13)0.0310 (5)
C91.4130 (3)0.05631 (18)0.41823 (15)0.0408 (6)
H91.38260.07610.47230.049*
C81.3369 (2)0.01632 (17)0.38892 (15)0.0390 (6)
O31.6025 (2)0.17335 (14)0.40019 (10)0.0517 (5)
H31.67400.19330.36510.077*
C161.2451 (3)0.0043 (2)0.08277 (16)0.0475 (6)
H161.33460.02970.06330.057*
C131.3825 (2)0.04651 (17)0.31052 (15)0.0393 (6)
H131.33010.09600.29010.047*
C230.6463 (3)0.2969 (2)0.06314 (14)0.0439 (6)
H230.54660.33350.06520.053*
C450.6197 (3)0.6035 (2)0.27128 (16)0.0470 (6)
H45A0.58980.59100.22150.071*
H45B0.60170.53660.30130.071*
H45C0.55770.65480.30150.071*
C441.0042 (3)0.89188 (17)0.29943 (15)0.0403 (6)
H44A0.90870.91380.33170.060*
H44B1.08000.89080.33130.060*
H44C1.04580.94210.25530.060*
C460.8699 (3)0.48197 (18)0.18361 (16)0.0458 (6)
H46A0.96620.45840.15370.069*
H46B0.82290.43230.22750.069*
H46C0.79850.48430.14940.069*
C240.7786 (3)0.34825 (19)0.03323 (14)0.0435 (6)
H240.76640.41800.01390.052*
C181.1273 (4)0.1551 (2)0.13938 (17)0.0564 (8)
H181.13990.22500.15850.068*
C71.6601 (2)0.28554 (18)0.08761 (14)0.0392 (6)
H7A1.74420.29330.11490.059*
H7B1.62540.21010.08320.059*
H7C1.69720.31820.03510.059*
C171.2587 (3)0.1029 (2)0.11083 (17)0.0548 (8)
H171.35820.13790.11140.066*
C431.2543 (2)0.77012 (19)0.21286 (16)0.0443 (6)
H43A1.31680.71660.18630.066*
H43B1.27410.83410.17950.066*
H43C1.28170.78760.26270.066*
C141.2047 (3)0.0636 (2)0.44161 (18)0.0584 (8)
H14A1.11030.01340.44880.088*
H14B1.22820.07860.49260.088*
H14C1.18970.12960.41760.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N30.0278 (9)0.0321 (9)0.0250 (10)0.0040 (8)0.0000 (7)0.0026 (7)
C380.0306 (11)0.0325 (11)0.0223 (11)0.0047 (9)0.0024 (8)0.0009 (9)
N40.0333 (10)0.0372 (10)0.0352 (11)0.0108 (8)0.0065 (8)0.0025 (8)
C320.0349 (12)0.0332 (11)0.0245 (11)0.0060 (9)0.0065 (9)0.0000 (9)
C270.0315 (11)0.0345 (11)0.0207 (11)0.0032 (9)0.0034 (8)0.0016 (9)
C370.0407 (13)0.0347 (12)0.0380 (14)0.0084 (10)0.0074 (10)0.0066 (10)
C330.0297 (11)0.0328 (11)0.0290 (12)0.0037 (9)0.0056 (9)0.0004 (9)
C340.0264 (12)0.0501 (14)0.0487 (15)0.0052 (11)0.0066 (10)0.0020 (12)
C280.0314 (12)0.0465 (13)0.0305 (13)0.0014 (10)0.0037 (9)0.0019 (10)
C310.0513 (15)0.0332 (12)0.0404 (14)0.0112 (11)0.0145 (11)0.0039 (10)
C360.0479 (15)0.0343 (12)0.0528 (16)0.0027 (11)0.0145 (12)0.0070 (11)
C350.0349 (13)0.0496 (15)0.0541 (17)0.0102 (12)0.0100 (11)0.0004 (12)
C300.0635 (17)0.0300 (12)0.0403 (14)0.0003 (12)0.0210 (12)0.0024 (10)
C290.0477 (15)0.0440 (14)0.0345 (14)0.0133 (12)0.0128 (11)0.0034 (11)
N20.0333 (10)0.0354 (10)0.0298 (10)0.0026 (8)0.0096 (8)0.0018 (8)
O10.0394 (9)0.0351 (8)0.0314 (9)0.0151 (7)0.0004 (7)0.0035 (7)
N10.0275 (10)0.0425 (11)0.0376 (11)0.0018 (8)0.0035 (8)0.0013 (9)
N60.0269 (9)0.0321 (9)0.0356 (11)0.0072 (8)0.0084 (8)0.0007 (8)
C40.0219 (10)0.0277 (10)0.0264 (11)0.0056 (8)0.0017 (8)0.0035 (8)
O20.0363 (9)0.0512 (10)0.0302 (9)0.0190 (7)0.0042 (7)0.0103 (7)
N50.0295 (10)0.0289 (9)0.0372 (11)0.0073 (8)0.0106 (8)0.0026 (8)
C220.0279 (12)0.0480 (14)0.0364 (13)0.0010 (10)0.0061 (9)0.0040 (11)
O40.0420 (10)0.0488 (10)0.0459 (11)0.0209 (8)0.0062 (8)0.0043 (8)
C20.0262 (11)0.0312 (11)0.0269 (12)0.0028 (9)0.0001 (8)0.0039 (9)
C110.0269 (11)0.0302 (11)0.0337 (12)0.0056 (9)0.0028 (9)0.0070 (9)
C10.0212 (10)0.0265 (10)0.0333 (12)0.0007 (8)0.0011 (8)0.0071 (9)
C30.0270 (10)0.0230 (10)0.0291 (11)0.0013 (8)0.0057 (8)0.0020 (8)
C60.0267 (11)0.0297 (11)0.0382 (13)0.0079 (9)0.0076 (9)0.0009 (9)
C260.0291 (11)0.0374 (12)0.0252 (11)0.0002 (9)0.0023 (9)0.0013 (9)
C250.0397 (13)0.0404 (13)0.0380 (14)0.0036 (11)0.0017 (10)0.0094 (10)
C150.0312 (12)0.0409 (13)0.0307 (12)0.0043 (10)0.0088 (9)0.0058 (10)
C210.0289 (11)0.0353 (11)0.0234 (11)0.0007 (9)0.0052 (8)0.0006 (9)
C120.0258 (11)0.0261 (10)0.0422 (14)0.0015 (9)0.0063 (9)0.0048 (9)
C400.0284 (11)0.0268 (10)0.0326 (12)0.0034 (9)0.0103 (9)0.0013 (9)
C200.0373 (12)0.0331 (11)0.0328 (13)0.0021 (10)0.0143 (10)0.0052 (9)
C390.0258 (11)0.0273 (10)0.0358 (12)0.0012 (9)0.0108 (9)0.0034 (9)
C100.0325 (12)0.0324 (11)0.0398 (14)0.0047 (10)0.0039 (10)0.0067 (10)
C50.0240 (10)0.0298 (10)0.0275 (11)0.0020 (9)0.0019 (8)0.0014 (9)
C190.0608 (17)0.0328 (12)0.0539 (17)0.0020 (12)0.0294 (13)0.0030 (11)
C410.0279 (11)0.0329 (11)0.0354 (13)0.0002 (9)0.0114 (9)0.0035 (9)
C420.0294 (11)0.0292 (11)0.0371 (13)0.0019 (9)0.0141 (9)0.0017 (9)
C90.0358 (13)0.0391 (13)0.0390 (14)0.0019 (11)0.0044 (10)0.0101 (10)
C80.0250 (11)0.0269 (11)0.0581 (16)0.0026 (9)0.0008 (10)0.0160 (11)
O30.0576 (12)0.0576 (11)0.0376 (10)0.0243 (9)0.0019 (8)0.0065 (9)
C160.0359 (13)0.0537 (15)0.0521 (16)0.0106 (12)0.0167 (11)0.0068 (12)
C130.0257 (11)0.0274 (11)0.0620 (17)0.0025 (9)0.0057 (11)0.0107 (11)
C230.0343 (13)0.0496 (14)0.0418 (15)0.0133 (11)0.0068 (10)0.0020 (11)
C450.0275 (12)0.0509 (15)0.0616 (18)0.0035 (11)0.0125 (11)0.0049 (13)
C440.0442 (14)0.0304 (12)0.0474 (15)0.0031 (10)0.0139 (11)0.0063 (10)
C460.0483 (15)0.0332 (12)0.0588 (17)0.0021 (11)0.0205 (13)0.0087 (11)
C240.0501 (15)0.0374 (13)0.0387 (14)0.0064 (11)0.0081 (11)0.0042 (10)
C180.078 (2)0.0358 (13)0.0644 (19)0.0112 (14)0.0434 (16)0.0036 (13)
C70.0286 (12)0.0368 (12)0.0475 (15)0.0084 (10)0.0021 (10)0.0085 (10)
C170.0545 (17)0.0512 (16)0.0617 (19)0.0208 (14)0.0328 (14)0.0156 (14)
C430.0258 (12)0.0437 (13)0.0621 (17)0.0011 (10)0.0093 (11)0.0007 (12)
C140.0350 (14)0.0425 (14)0.083 (2)0.0040 (11)0.0134 (13)0.0211 (14)
Geometric parameters (Å, º) top
N3—C381.336 (3)C6—C51.387 (3)
N3—C271.341 (3)C6—H60.9500
C38—C371.418 (3)C26—C251.418 (3)
C38—C331.428 (3)C26—C211.421 (3)
N4—C321.333 (3)C25—C241.350 (3)
N4—C331.337 (3)C25—H250.9500
C32—C311.417 (3)C15—C161.415 (3)
C32—C271.433 (3)C15—C201.428 (3)
C27—C281.413 (3)C12—C131.380 (3)
C37—C361.349 (3)C40—C391.394 (3)
C37—H370.9500C40—C441.491 (3)
C33—C341.416 (3)C20—C191.418 (3)
C34—C351.349 (4)C39—C431.487 (3)
C34—H340.9500C10—O31.360 (3)
C28—C291.347 (3)C10—C91.386 (3)
C28—H280.9500C19—C181.351 (4)
C31—C301.351 (3)C19—H190.9500
C31—H310.9500C41—C421.390 (3)
C36—C351.414 (4)C41—C451.497 (3)
C36—H360.9500C42—C461.499 (3)
C35—H350.9500C9—C81.384 (4)
C30—C291.411 (4)C9—H90.9500
C30—H300.9500C8—C131.384 (4)
C29—H290.9500C8—C141.508 (3)
N2—C211.338 (3)O3—H30.8400
N2—C201.340 (3)C16—C171.346 (4)
O1—C31.367 (2)C16—H160.9500
O1—H10.8400C13—H130.9500
N1—C151.335 (3)C23—C241.415 (3)
N1—C261.342 (3)C23—H230.9500
N6—C411.328 (3)C45—H45A0.9800
N6—C401.341 (3)C45—H45B0.9800
C4—C31.381 (3)C45—H45C0.9800
C4—C51.383 (3)C44—H44A0.9800
C4—H40.9500C44—H44B0.9800
O2—C51.360 (3)C44—H44C0.9800
O2—H20.8400C46—H46A0.9800
N5—C421.335 (3)C46—H46B0.9800
N5—C391.336 (3)C46—H46C0.9800
C22—C231.343 (3)C24—H240.9500
C22—C211.420 (3)C18—C171.411 (4)
C22—H220.9500C18—H180.9500
O4—C121.357 (3)C7—H7A0.9800
O4—H4A0.8400C7—H7B0.9800
C2—C31.381 (3)C7—H7C0.9800
C2—C11.383 (3)C17—H170.9500
C2—H2A0.9500C43—H43A0.9800
C11—C101.382 (3)C43—H43B0.9800
C11—C121.390 (3)C43—H43C0.9800
C11—H110.9500C14—H14A0.9800
C1—C61.383 (3)C14—H14B0.9800
C1—C71.508 (3)C14—H14C0.9800
C38—N3—C27117.79 (18)C39—C40—C44122.15 (19)
N3—C38—C37119.73 (19)N2—C20—C19119.5 (2)
N3—C38—C33121.22 (19)N2—C20—C15121.7 (2)
C37—C38—C33119.0 (2)C19—C20—C15118.8 (2)
C32—N4—C33116.76 (18)N5—C39—C40119.76 (19)
N4—C32—C31119.5 (2)N5—C39—C43117.51 (19)
N4—C32—C27122.3 (2)C40—C39—C43122.72 (19)
C31—C32—C27118.2 (2)O3—C10—C11121.9 (2)
N3—C27—C28120.1 (2)O3—C10—C9118.5 (2)
N3—C27—C32120.23 (19)C11—C10—C9119.7 (2)
C28—C27—C32119.7 (2)O2—C5—C4121.89 (18)
C36—C37—C38119.7 (2)O2—C5—C6117.62 (19)
C36—C37—H37120.1C4—C5—C6120.49 (19)
C38—C37—H37120.1C18—C19—C20119.7 (3)
N4—C33—C34119.2 (2)C18—C19—H19120.1
N4—C33—C38121.65 (19)C20—C19—H19120.1
C34—C33—C38119.1 (2)N6—C41—C42120.07 (19)
C35—C34—C33119.9 (2)N6—C41—C45117.2 (2)
C35—C34—H34120.0C42—C41—C45122.7 (2)
C33—C34—H34120.0N5—C42—C41120.83 (19)
C29—C28—C27119.9 (2)N5—C42—C46117.1 (2)
C29—C28—H28120.1C41—C42—C46122.1 (2)
C27—C28—H28120.1C8—C9—C10120.5 (2)
C30—C31—C32120.1 (2)C8—C9—H9119.8
C30—C31—H31119.9C10—C9—H9119.8
C32—C31—H31119.9C9—C8—C13119.9 (2)
C37—C36—C35121.2 (2)C9—C8—C14120.7 (2)
C37—C36—H36119.4C13—C8—C14119.3 (2)
C35—C36—H36119.4C10—O3—H3109.5
C34—C35—C36120.9 (2)C17—C16—C15120.0 (3)
C34—C35—H35119.5C17—C16—H16120.0
C36—C35—H35119.5C15—C16—H16120.0
C31—C30—C29121.3 (2)C12—C13—C8119.6 (2)
C31—C30—H30119.4C12—C13—H13120.2
C29—C30—H30119.4C8—C13—H13120.2
C28—C29—C30120.8 (2)C22—C23—C24120.7 (2)
C28—C29—H29119.6C22—C23—H23119.6
C30—C29—H29119.6C24—C23—H23119.6
C21—N2—C20117.01 (19)C41—C45—H45A109.5
C3—O1—H1109.5C41—C45—H45B109.5
C15—N1—C26116.69 (19)H45A—C45—H45B109.5
C41—N6—C40119.37 (18)C41—C45—H45C109.5
C3—C4—C5119.80 (18)H45A—C45—H45C109.5
C3—C4—H4120.1H45B—C45—H45C109.5
C5—C4—H4120.1C40—C44—H44A109.5
C5—O2—H2109.5C40—C44—H44B109.5
C42—N5—C39119.34 (18)H44A—C44—H44B109.5
C23—C22—C21119.8 (2)C40—C44—H44C109.5
C23—C22—H22120.1H44A—C44—H44C109.5
C21—C22—H22120.1H44B—C44—H44C109.5
C12—O4—H4A109.5C42—C46—H46A109.5
C3—C2—C1120.74 (19)C42—C46—H46B109.5
C3—C2—H2A119.6H46A—C46—H46B109.5
C1—C2—H2A119.6C42—C46—H46C109.5
C10—C11—C12119.7 (2)H46A—C46—H46C109.5
C10—C11—H11120.2H46B—C46—H46C109.5
C12—C11—H11120.2C25—C24—C23121.3 (2)
C2—C1—C6119.63 (19)C25—C24—H24119.4
C2—C1—C7120.5 (2)C23—C24—H24119.4
C6—C1—C7119.9 (2)C19—C18—C17121.3 (2)
O1—C3—C4121.63 (18)C19—C18—H18119.3
O1—C3—C2118.65 (18)C17—C18—H18119.3
C4—C3—C2119.72 (19)C1—C7—H7A109.5
C1—C6—C5119.6 (2)C1—C7—H7B109.5
C1—C6—H6120.2H7A—C7—H7B109.5
C5—C6—H6120.2C1—C7—H7C109.5
N1—C26—C25119.2 (2)H7A—C7—H7C109.5
N1—C26—C21122.2 (2)H7B—C7—H7C109.5
C25—C26—C21118.6 (2)C16—C17—C18120.9 (2)
C24—C25—C26119.9 (2)C16—C17—H17119.6
C24—C25—H25120.0C18—C17—H17119.6
C26—C25—H25120.0C39—C43—H43A109.5
N1—C15—C16119.3 (2)C39—C43—H43B109.5
N1—C15—C20121.3 (2)H43A—C43—H43B109.5
C16—C15—C20119.3 (2)C39—C43—H43C109.5
N2—C21—C22119.3 (2)H43A—C43—H43C109.5
N2—C21—C26121.04 (19)H43B—C43—H43C109.5
C22—C21—C26119.7 (2)C8—C14—H14A109.5
O4—C12—C13117.7 (2)C8—C14—H14B109.5
O4—C12—C11121.72 (19)H14A—C14—H14B109.5
C13—C12—C11120.6 (2)C8—C14—H14C109.5
N6—C40—C39120.60 (19)H14A—C14—H14C109.5
N6—C40—C44117.25 (19)H14B—C14—H14C109.5
(TS_ORC_TMP_PHEN) top
Crystal data top
C23H22N3O2V = 956.7 (4) Å3
Mr = 372.43Z = 2
Triclinic, P1F(000) = 394
a = 8.778 (2) ÅDx = 1.293 Mg m3
b = 10.491 (2) ÅMo Kα radiation, λ = 0.71073 Å
c = 12.095 (3) ŵ = 0.08 mm1
α = 66.387 (5)°T = 293 K
β = 81.548 (6)°Plate, light brown
γ = 69.631 (5)°0.12 × 0.12 × 0.10 mm
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
2911 reflections with I > 2σ(I)
Radiation source: Sealed TubeRint = 0.046
profile data from ω–scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
h = 1111
Tmin = 0.769, Tmax = 1.000k = 1313
10145 measured reflectionsl = 1515
4377 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.0668P)2 + 0.2488P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4377 reflectionsΔρmax = 0.27 e Å3
258 parametersΔρmin = 0.28 e Å3
Crystal data top
C23H22N3O2γ = 69.631 (5)°
Mr = 372.43V = 956.7 (4) Å3
Triclinic, P1Z = 2
a = 8.778 (2) ÅMo Kα radiation
b = 10.491 (2) ŵ = 0.08 mm1
c = 12.095 (3) ÅT = 293 K
α = 66.387 (5)°0.12 × 0.12 × 0.10 mm
β = 81.548 (6)°
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
4377 independent reflections
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
2911 reflections with I > 2σ(I)
Tmin = 0.769, Tmax = 1.000Rint = 0.046
10145 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.03Δρmax = 0.27 e Å3
4377 reflectionsΔρmin = 0.28 e Å3
258 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.37176 (19)0.99018 (17)0.07961 (14)0.0273 (4)
C220.3461 (2)1.0490 (2)0.03939 (17)0.0263 (4)
C210.5239 (2)0.9394 (2)0.12057 (17)0.0272 (4)
C230.1748 (2)1.0995 (2)0.0805 (2)0.0363 (5)
H23A0.10471.07740.01160.054*
H23B0.16901.04990.13070.054*
H23C0.14101.20350.12570.054*
C200.5473 (3)0.8710 (2)0.25490 (18)0.0378 (5)
H20A0.44350.88950.29460.057*
H20B0.61380.91270.27700.057*
H20C0.59950.76700.27890.057*
O20.12150 (19)0.05129 (16)0.23849 (14)0.0393 (4)
H20.19560.03090.19240.059*
C40.1265 (2)0.1924 (2)0.27225 (16)0.0256 (4)
H40.20800.20000.21450.031*
O10.11383 (18)0.43073 (17)0.30803 (14)0.0395 (4)
H10.20220.43770.27340.059*
C30.0628 (2)0.3069 (2)0.33287 (17)0.0284 (4)
C20.0594 (2)0.2949 (2)0.41932 (18)0.0324 (5)
H2A0.10320.37080.45870.039*
C10.1156 (2)0.1703 (3)0.44675 (18)0.0338 (5)
C50.0672 (2)0.0667 (2)0.29879 (17)0.0281 (4)
C60.0525 (2)0.0555 (2)0.38667 (18)0.0328 (5)
H60.09020.02830.40510.039*
C70.2452 (3)0.1593 (3)0.5436 (2)0.0493 (6)
H7A0.34750.09450.50620.074*
H7B0.21570.12160.59480.074*
H7C0.25420.25480.59090.074*
N20.4601 (2)0.5004 (2)0.28208 (15)0.0342 (4)
N30.3243 (2)0.65428 (19)0.05862 (16)0.0348 (4)
C190.4857 (2)0.6267 (2)0.06822 (18)0.0293 (4)
C80.5577 (2)0.5456 (2)0.18707 (18)0.0290 (4)
C120.7260 (2)0.5141 (2)0.1995 (2)0.0337 (5)
C150.5869 (3)0.6712 (2)0.03243 (19)0.0336 (5)
C180.2625 (3)0.7244 (2)0.0512 (2)0.0421 (6)
H180.15200.74390.05890.051*
C160.5137 (3)0.7447 (2)0.1462 (2)0.0451 (6)
H160.57550.77570.21490.054*
C130.8221 (3)0.5642 (2)0.0951 (2)0.0396 (5)
H130.93240.54500.10370.047*
C140.7558 (3)0.6385 (2)0.0148 (2)0.0406 (6)
H140.82120.66950.08120.049*
C90.5290 (3)0.4223 (3)0.3892 (2)0.0441 (6)
H90.46340.38960.45490.053*
C170.3518 (3)0.7708 (3)0.1559 (2)0.0491 (7)
H170.30220.81860.23100.059*
C110.7915 (3)0.4321 (3)0.3159 (2)0.0453 (6)
H110.90150.40990.32810.054*
C100.6937 (3)0.3858 (3)0.4099 (2)0.0501 (6)
H100.73560.33050.48720.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0252 (9)0.0272 (9)0.0302 (9)0.0108 (7)0.0007 (7)0.0099 (7)
C220.0236 (10)0.0248 (10)0.0322 (11)0.0083 (8)0.0045 (8)0.0105 (8)
C210.0276 (10)0.0262 (10)0.0296 (10)0.0104 (8)0.0036 (8)0.0096 (8)
C230.0259 (11)0.0393 (13)0.0451 (13)0.0081 (9)0.0071 (9)0.0171 (10)
C200.0435 (13)0.0385 (13)0.0280 (11)0.0127 (10)0.0043 (9)0.0081 (9)
O20.0414 (9)0.0355 (9)0.0451 (10)0.0158 (7)0.0126 (7)0.0206 (7)
C40.0195 (9)0.0340 (11)0.0211 (9)0.0079 (8)0.0015 (7)0.0094 (8)
O10.0328 (9)0.0395 (9)0.0515 (10)0.0183 (7)0.0145 (7)0.0217 (7)
C30.0213 (10)0.0361 (12)0.0265 (10)0.0093 (8)0.0013 (8)0.0102 (8)
C20.0222 (10)0.0414 (13)0.0293 (11)0.0125 (9)0.0012 (8)0.0077 (9)
C10.0236 (10)0.0501 (14)0.0241 (10)0.0090 (9)0.0005 (8)0.0126 (9)
C50.0238 (10)0.0340 (11)0.0248 (10)0.0086 (8)0.0029 (8)0.0089 (8)
C60.0269 (10)0.0408 (12)0.0305 (11)0.0030 (9)0.0026 (8)0.0190 (9)
C70.0334 (13)0.0730 (18)0.0393 (13)0.0144 (12)0.0123 (10)0.0252 (12)
N20.0343 (10)0.0391 (10)0.0329 (10)0.0119 (8)0.0032 (8)0.0182 (8)
N30.0282 (9)0.0351 (10)0.0461 (11)0.0036 (8)0.0046 (8)0.0244 (9)
C190.0282 (11)0.0253 (10)0.0372 (11)0.0047 (8)0.0003 (8)0.0182 (9)
C80.0266 (10)0.0283 (11)0.0366 (11)0.0075 (8)0.0013 (8)0.0182 (9)
C120.0277 (11)0.0302 (11)0.0479 (13)0.0060 (9)0.0023 (9)0.0216 (10)
C150.0402 (12)0.0234 (10)0.0365 (12)0.0068 (9)0.0035 (9)0.0147 (9)
C180.0414 (13)0.0325 (12)0.0533 (15)0.0029 (10)0.0164 (11)0.0240 (11)
C160.0650 (17)0.0275 (12)0.0375 (13)0.0090 (11)0.0048 (11)0.0135 (10)
C130.0229 (11)0.0345 (12)0.0645 (16)0.0085 (9)0.0064 (10)0.0247 (11)
C140.0369 (13)0.0316 (12)0.0527 (15)0.0126 (10)0.0172 (11)0.0198 (11)
C90.0540 (15)0.0497 (15)0.0309 (12)0.0185 (12)0.0017 (10)0.0166 (11)
C170.0697 (18)0.0303 (12)0.0413 (14)0.0012 (12)0.0178 (12)0.0162 (10)
C110.0359 (13)0.0449 (14)0.0565 (16)0.0048 (11)0.0152 (11)0.0224 (12)
C100.0555 (16)0.0542 (16)0.0385 (14)0.0131 (13)0.0161 (12)0.0138 (11)
Geometric parameters (Å, º) top
N1—C221.338 (2)C7—H7B0.9600
N1—C211.342 (2)C7—H7C0.9600
C22—C21i1.397 (3)N2—C91.323 (3)
C22—C231.497 (3)N2—C81.355 (3)
C21—C22i1.397 (3)N3—C181.323 (3)
C21—C201.503 (3)N3—C191.357 (3)
C23—H23A0.9600C19—C151.416 (3)
C23—H23B0.9600C19—C81.450 (3)
C23—H23C0.9600C8—C121.414 (3)
C20—H20A0.9600C12—C111.406 (3)
C20—H20B0.9600C12—C131.430 (3)
C20—H20C0.9600C15—C161.402 (3)
O2—C51.370 (2)C15—C141.429 (3)
O2—H20.8200C18—C171.391 (4)
C4—C51.388 (3)C18—H180.9300
C4—C31.390 (3)C16—C171.364 (4)
C4—H40.9300C16—H160.9300
O1—C31.359 (2)C13—C141.340 (3)
O1—H10.8200C13—H130.9300
C3—C21.393 (3)C14—H140.9300
C2—C11.383 (3)C9—C101.394 (4)
C2—H2A0.9300C9—H90.9300
C1—C61.389 (3)C17—H170.9300
C1—C71.518 (3)C11—C101.352 (4)
C5—C61.390 (3)C11—H110.9300
C6—H60.9300C10—H100.9300
C7—H7A0.9600
C22—N1—C21119.48 (17)C1—C7—H7C109.5
N1—C22—C21i120.35 (16)H7A—C7—H7C109.5
N1—C22—C23117.45 (18)H7B—C7—H7C109.5
C21i—C22—C23122.19 (18)C9—N2—C8117.24 (19)
N1—C21—C22i120.15 (17)C18—N3—C19117.0 (2)
N1—C21—C20117.59 (18)N3—C19—C15123.04 (19)
C22i—C21—C20122.25 (18)N3—C19—C8118.18 (18)
C22—C23—H23A109.5C15—C19—C8118.77 (18)
C22—C23—H23B109.5N2—C8—C12122.54 (19)
H23A—C23—H23B109.5N2—C8—C19118.09 (17)
C22—C23—H23C109.5C12—C8—C19119.36 (18)
H23A—C23—H23C109.5C11—C12—C8117.5 (2)
H23B—C23—H23C109.5C11—C12—C13122.9 (2)
C21—C20—H20A109.5C8—C12—C13119.63 (19)
C21—C20—H20B109.5C16—C15—C19117.0 (2)
H20A—C20—H20B109.5C16—C15—C14123.3 (2)
C21—C20—H20C109.5C19—C15—C14119.69 (19)
H20A—C20—H20C109.5N3—C18—C17124.4 (2)
H20B—C20—H20C109.5N3—C18—H18117.8
C5—O2—H2109.5C17—C18—H18117.8
C5—C4—C3119.38 (18)C17—C16—C15119.9 (2)
C5—C4—H4120.3C17—C16—H16120.0
C3—C4—H4120.3C15—C16—H16120.0
C3—O1—H1109.5C14—C13—C12121.0 (2)
O1—C3—C4121.64 (17)C14—C13—H13119.5
O1—C3—C2118.28 (18)C12—C13—H13119.5
C4—C3—C2120.06 (19)C13—C14—C15121.5 (2)
C1—C2—C3120.15 (19)C13—C14—H14119.2
C1—C2—H2A119.9C15—C14—H14119.2
C3—C2—H2A119.9N2—C9—C10124.1 (2)
C2—C1—C6120.12 (19)N2—C9—H9117.9
C2—C1—C7120.1 (2)C10—C9—H9117.9
C6—C1—C7119.8 (2)C16—C17—C18118.6 (2)
O2—C5—C4121.63 (17)C16—C17—H17120.7
O2—C5—C6117.70 (19)C18—C17—H17120.7
C4—C5—C6120.66 (19)C10—C11—C12119.5 (2)
C1—C6—C5119.6 (2)C10—C11—H11120.2
C1—C6—H6120.2C12—C11—H11120.2
C5—C6—H6120.2C11—C10—C9119.0 (2)
C1—C7—H7A109.5C11—C10—H10120.5
C1—C7—H7B109.5C9—C10—H10120.5
H7A—C7—H7B109.5
Symmetry code: (i) x+1, y+2, z.
(TS_ORC_TMP_PYR) top
Crystal data top
C46H50N4O4V = 944.3 (9) Å3
Mr = 722.90Z = 1
Triclinic, P1F(000) = 386
a = 8.921 (5) ÅDx = 1.271 Mg m3
b = 10.723 (6) ÅMo Kα radiation, λ = 0.71073 Å
c = 10.954 (6) ŵ = 0.08 mm1
α = 67.417 (10)°T = 150 K
β = 81.183 (9)°Plate, yellow
γ = 78.367 (8)°0.35 × 0.20 × 0.12 mm
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
2534 reflections with I > 2σ(I)
Radiation source: Sealed TubeRint = 0.050
profile data from ω–scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
h = 1111
Tmin = 0.753, Tmax = 1.000k = 1313
8881 measured reflectionsl = 1414
4266 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.074H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.209 w = 1/[σ2(Fo2) + (0.0783P)2 + 0.6671P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
4266 reflectionsΔρmax = 0.35 e Å3
257 parametersΔρmin = 0.22 e Å3
Crystal data top
C46H50N4O4γ = 78.367 (8)°
Mr = 722.90V = 944.3 (9) Å3
Triclinic, P1Z = 1
a = 8.921 (5) ÅMo Kα radiation
b = 10.723 (6) ŵ = 0.08 mm1
c = 10.954 (6) ÅT = 150 K
α = 67.417 (10)°0.35 × 0.20 × 0.12 mm
β = 81.183 (9)°
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
4266 independent reflections
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
2534 reflections with I > 2σ(I)
Tmin = 0.753, Tmax = 1.000Rint = 0.050
8881 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0740 restraints
wR(F2) = 0.209H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.35 e Å3
4266 reflectionsΔρmin = 0.22 e Å3
257 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H1O0.801 (6)0.242 (5)0.562 (5)0.090 (16)*
H2O0.697 (5)0.153 (4)0.178 (4)0.073 (13)*
N20.1584 (3)0.0399 (2)0.2682 (2)0.0279 (5)
C150.0289 (3)0.0704 (3)0.0312 (3)0.0260 (6)
N10.0525 (3)0.1295 (3)0.4001 (2)0.0293 (6)
O20.6261 (3)0.2174 (2)0.1362 (2)0.0375 (6)
O10.7358 (3)0.3108 (2)0.5390 (2)0.0399 (6)
C40.6863 (3)0.2609 (3)0.3394 (3)0.0277 (6)
H40.75900.19950.37060.033*
C90.1883 (3)0.1157 (3)0.0261 (3)0.0308 (7)
C160.0982 (3)0.0031 (3)0.3400 (3)0.0287 (6)
C130.0738 (3)0.1629 (3)0.0968 (3)0.0305 (7)
C190.0978 (3)0.1792 (3)0.3970 (3)0.0285 (6)
C140.2354 (4)0.1132 (3)0.1002 (3)0.0375 (7)
H140.30530.17570.14530.045*
C60.5009 (3)0.3719 (3)0.1691 (3)0.0293 (6)
H60.44720.38730.08400.035*
C20.5544 (3)0.4177 (3)0.3713 (3)0.0297 (7)
H20.53660.46410.42480.036*
C100.2419 (4)0.2531 (3)0.0869 (3)0.0354 (7)
H100.34930.28470.08360.043*
C120.0144 (4)0.3000 (3)0.1577 (3)0.0401 (8)
H120.08230.36410.20390.048*
C210.0380 (4)0.2385 (3)0.2053 (3)0.0391 (8)
H21A0.07620.28050.27160.059*
H21B0.11950.25430.14790.059*
H21C0.05050.27920.15150.059*
C180.2044 (3)0.0929 (3)0.3295 (3)0.0274 (6)
C170.0090 (3)0.0892 (3)0.2734 (3)0.0283 (6)
C30.6603 (3)0.3285 (3)0.4165 (3)0.0285 (6)
C10.4739 (3)0.4395 (3)0.2475 (3)0.0305 (7)
C230.1443 (4)0.3277 (3)0.4687 (3)0.0395 (8)
H23A0.05320.36930.51480.059*
H23B0.21630.34140.53360.059*
H23C0.19400.37060.40530.059*
C220.3732 (3)0.1429 (3)0.3215 (3)0.0388 (8)
H22A0.42780.06560.27030.058*
H22B0.39490.20980.27790.058*
H22C0.40770.18600.41120.058*
C80.2892 (4)0.0177 (3)0.0420 (3)0.0367 (7)
H80.39700.04730.04550.044*
C50.6057 (3)0.2827 (3)0.2154 (3)0.0283 (6)
C200.2669 (4)0.0542 (4)0.3488 (3)0.0407 (8)
H20A0.32200.02280.39990.061*
H20B0.30190.09810.25930.061*
H20C0.28730.12070.39290.061*
C110.1425 (4)0.3446 (3)0.1521 (3)0.0391 (8)
H110.18140.43890.19350.047*
C70.3597 (4)0.5362 (3)0.1974 (3)0.0393 (8)
H7A0.25780.48640.18330.059*
H7B0.35700.57750.26260.059*
H7C0.38950.60810.11330.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0320 (13)0.0298 (13)0.0256 (12)0.0072 (11)0.0030 (10)0.0128 (10)
C150.0311 (15)0.0296 (15)0.0220 (13)0.0072 (12)0.0024 (11)0.0132 (12)
N10.0282 (13)0.0335 (14)0.0257 (12)0.0060 (11)0.0012 (10)0.0109 (11)
O20.0476 (14)0.0401 (13)0.0321 (11)0.0207 (11)0.0085 (10)0.0187 (10)
O10.0461 (14)0.0492 (14)0.0316 (11)0.0194 (11)0.0055 (10)0.0200 (11)
C40.0264 (15)0.0263 (14)0.0303 (15)0.0110 (12)0.0013 (12)0.0082 (12)
C90.0333 (16)0.0361 (17)0.0280 (15)0.0029 (13)0.0040 (12)0.0180 (13)
C160.0299 (15)0.0334 (16)0.0245 (14)0.0012 (13)0.0049 (12)0.0131 (13)
C130.0330 (16)0.0331 (16)0.0290 (15)0.0071 (13)0.0019 (12)0.0145 (13)
C190.0311 (16)0.0313 (16)0.0250 (14)0.0021 (13)0.0033 (12)0.0133 (12)
C140.0335 (17)0.0401 (18)0.0420 (18)0.0147 (14)0.0036 (14)0.0163 (15)
C60.0297 (15)0.0257 (15)0.0288 (15)0.0058 (12)0.0015 (12)0.0066 (12)
C20.0315 (16)0.0267 (15)0.0344 (16)0.0058 (12)0.0073 (13)0.0127 (13)
C100.0325 (16)0.0399 (18)0.0382 (17)0.0048 (14)0.0092 (13)0.0219 (15)
C120.053 (2)0.0343 (17)0.0359 (17)0.0190 (16)0.0012 (15)0.0111 (14)
C210.049 (2)0.0277 (16)0.0412 (18)0.0015 (14)0.0109 (15)0.0126 (14)
C180.0267 (15)0.0326 (15)0.0263 (14)0.0035 (12)0.0043 (12)0.0141 (12)
C170.0346 (16)0.0303 (15)0.0241 (14)0.0027 (13)0.0061 (12)0.0143 (12)
C30.0261 (15)0.0315 (15)0.0279 (15)0.0034 (12)0.0020 (12)0.0116 (13)
C10.0268 (15)0.0201 (14)0.0403 (17)0.0029 (12)0.0071 (13)0.0052 (13)
C230.0429 (19)0.0324 (17)0.0367 (17)0.0016 (14)0.0035 (14)0.0074 (14)
C220.0264 (16)0.0450 (19)0.0458 (19)0.0025 (14)0.0032 (14)0.0188 (16)
C80.0248 (15)0.046 (2)0.0425 (18)0.0071 (14)0.0010 (13)0.0200 (16)
C50.0291 (15)0.0262 (14)0.0308 (15)0.0031 (12)0.0021 (12)0.0126 (12)
C200.0306 (17)0.046 (2)0.0410 (18)0.0048 (15)0.0060 (14)0.0153 (16)
C110.051 (2)0.0291 (16)0.0354 (17)0.0007 (15)0.0118 (15)0.0100 (14)
C70.0348 (17)0.0281 (16)0.054 (2)0.0100 (13)0.0064 (15)0.0098 (15)
Geometric parameters (Å, º) top
N2—C181.327 (4)C2—C11.391 (4)
N2—C171.332 (4)C2—H20.9500
C15—C131.399 (4)C10—C111.370 (5)
C15—C91.406 (4)C10—H100.9500
C15—C15i1.420 (6)C12—C111.385 (5)
N1—C161.323 (4)C12—H120.9500
N1—C191.339 (4)C21—C171.484 (4)
O2—C51.357 (3)C21—H21A0.9800
O2—H2O0.96 (5)C21—H21B0.9800
O1—C31.367 (3)C21—H21C0.9800
O1—H1O0.96 (5)C18—C221.495 (4)
C4—C31.375 (4)C1—C71.494 (4)
C4—C51.393 (4)C23—H23A0.9800
C4—H40.9500C23—H23B0.9800
C9—C101.379 (4)C23—H23C0.9800
C9—C81.430 (4)C22—H22A0.9800
C16—C171.387 (4)C22—H22B0.9800
C16—C201.496 (4)C22—H22C0.9800
C13—C121.389 (4)C8—C14i1.319 (4)
C13—C141.433 (4)C8—H80.9500
C19—C181.387 (4)C20—H20A0.9800
C19—C231.482 (4)C20—H20B0.9800
C14—C8i1.319 (4)C20—H20C0.9800
C14—H140.9500C11—H110.9500
C6—C51.375 (4)C7—H7A0.9800
C6—C11.390 (4)C7—H7B0.9800
C6—H60.9500C7—H7C0.9800
C2—C31.382 (4)
C18—N2—C17119.2 (2)N2—C18—C22117.1 (3)
C13—C15—C9120.7 (3)C19—C18—C22122.6 (3)
C13—C15—C15i119.4 (3)N2—C17—C16120.8 (3)
C9—C15—C15i119.9 (3)N2—C17—C21117.7 (3)
C16—N1—C19119.5 (3)C16—C17—C21121.5 (3)
C5—O2—H2O112 (2)O1—C3—C4122.3 (3)
C3—O1—H1O110 (3)O1—C3—C2117.6 (3)
C3—C4—C5119.8 (3)C4—C3—C2120.1 (3)
C3—C4—H4120.1C6—C1—C2119.8 (3)
C5—C4—H4120.1C6—C1—C7119.6 (3)
C10—C9—C15118.9 (3)C2—C1—C7120.6 (3)
C10—C9—C8122.3 (3)C19—C23—H23A109.5
C15—C9—C8118.8 (3)C19—C23—H23B109.5
N1—C16—C17120.0 (3)H23A—C23—H23B109.5
N1—C16—C20117.5 (3)C19—C23—H23C109.5
C17—C16—C20122.5 (3)H23A—C23—H23C109.5
C12—C13—C15118.3 (3)H23B—C23—H23C109.5
C12—C13—C14122.4 (3)C18—C22—H22A109.5
C15—C13—C14119.2 (3)C18—C22—H22B109.5
N1—C19—C18120.3 (3)H22A—C22—H22B109.5
N1—C19—C23117.7 (3)C18—C22—H22C109.5
C18—C19—C23122.0 (3)H22A—C22—H22C109.5
C8i—C14—C13121.4 (3)H22B—C22—H22C109.5
C8i—C14—H14119.3C14i—C8—C9121.3 (3)
C13—C14—H14119.3C14i—C8—H8119.4
C5—C6—C1119.6 (3)C9—C8—H8119.4
C5—C6—H6120.2O2—C5—C6117.4 (3)
C1—C6—H6120.2O2—C5—C4122.1 (3)
C3—C2—C1120.1 (3)C6—C5—C4120.5 (3)
C3—C2—H2119.9C16—C20—H20A109.5
C1—C2—H2119.9C16—C20—H20B109.5
C11—C10—C9121.0 (3)H20A—C20—H20B109.5
C11—C10—H10119.5C16—C20—H20C109.5
C9—C10—H10119.5H20A—C20—H20C109.5
C11—C12—C13120.9 (3)H20B—C20—H20C109.5
C11—C12—H12119.6C10—C11—C12120.2 (3)
C13—C12—H12119.6C10—C11—H11119.9
C17—C21—H21A109.5C12—C11—H11119.9
C17—C21—H21B109.5C1—C7—H7A109.5
H21A—C21—H21B109.5C1—C7—H7B109.5
C17—C21—H21C109.5H7A—C7—H7B109.5
H21A—C21—H21C109.5C1—C7—H7C109.5
H21B—C21—H21C109.5H7A—C7—H7C109.5
N2—C18—C19120.2 (3)H7B—C7—H7C109.5
Symmetry code: (i) x, y, z.
(TS_PGL_TMP_DPE) top
Crystal data top
C40H48N6O6V = 915 (2) Å3
Mr = 708.84Z = 1
Triclinic, P1F(000) = 378
a = 8.284 (11) ÅDx = 1.286 Mg m3
b = 8.564 (12) ÅMo Kα radiation, λ = 0.71073 Å
c = 14.60 (2) ŵ = 0.09 mm1
α = 78.65 (5)°T = 150 K
β = 87.26 (6)°Block, orange
γ = 64.40 (4)°0.45 × 0.32 × 0.17 mm
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
2728 reflections with I > 2σ(I)
Radiation source: Sealed TubeRint = 0.087
profile data from ω–scansθmax = 27.0°, θmin = 1.4°
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
h = 1010
Tmin = 0.678, Tmax = 1.000k = 1010
8969 measured reflectionsl = 1818
3974 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.074H-atom parameters constrained
wR(F2) = 0.245 w = 1/[σ2(Fo2) + (0.0962P)2 + 0.7189P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
3974 reflectionsΔρmax = 0.30 e Å3
235 parametersΔρmin = 0.31 e Å3
Crystal data top
C40H48N6O6γ = 64.40 (4)°
Mr = 708.84V = 915 (2) Å3
Triclinic, P1Z = 1
a = 8.284 (11) ÅMo Kα radiation
b = 8.564 (12) ŵ = 0.09 mm1
c = 14.60 (2) ÅT = 150 K
α = 78.65 (5)°0.45 × 0.32 × 0.17 mm
β = 87.26 (6)°
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
3974 independent reflections
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
2728 reflections with I > 2σ(I)
Tmin = 0.678, Tmax = 1.000Rint = 0.087
8969 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0740 restraints
wR(F2) = 0.245H-atom parameters constrained
S = 1.14Δρmax = 0.30 e Å3
3974 reflectionsΔρmin = 0.31 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0752 (3)0.3931 (3)0.12050 (15)0.0312 (5)
H10.01400.35020.09960.047*
O20.4559 (3)0.6418 (3)0.28256 (17)0.0370 (6)
H20.49840.70710.32200.056*
N30.4001 (4)1.1596 (3)0.57434 (18)0.0284 (6)
O30.0412 (3)0.7667 (3)0.32344 (16)0.0358 (6)
H30.02970.82840.35910.054*
N20.2009 (4)0.9739 (3)0.44379 (19)0.0290 (6)
C60.0590 (4)0.5764 (4)0.2239 (2)0.0279 (7)
H60.17910.55730.21170.034*
C20.1958 (4)0.5200 (4)0.1998 (2)0.0280 (7)
H2A0.25060.46500.16990.034*
C10.0217 (4)0.4963 (4)0.1809 (2)0.0272 (7)
C150.4479 (4)1.2185 (4)0.4836 (2)0.0272 (7)
C40.2114 (4)0.7095 (4)0.3052 (2)0.0282 (7)
H40.27700.78340.34760.034*
C130.1561 (4)0.9118 (4)0.5344 (2)0.0266 (7)
C50.0384 (4)0.6850 (4)0.2851 (2)0.0273 (7)
C30.2878 (4)0.6251 (4)0.2630 (2)0.0280 (7)
C140.2552 (4)1.0060 (4)0.6009 (2)0.0286 (7)
N10.1167 (4)0.2316 (4)0.0638 (2)0.0349 (7)
C160.3460 (4)1.1253 (4)0.4167 (2)0.0274 (7)
C90.3226 (4)0.0876 (4)0.0010 (2)0.0299 (7)
C180.2079 (5)0.9445 (5)0.7027 (2)0.0406 (9)
H18A0.29471.03010.73700.061*
H18B0.08760.93320.71470.061*
H18C0.21040.82950.72360.061*
C200.3906 (5)1.1907 (5)0.3145 (2)0.0387 (8)
H20A0.30301.10630.27980.058*
H20B0.38721.30550.29550.058*
H20C0.51081.20330.30090.058*
C170.0034 (5)0.7385 (4)0.5608 (3)0.0374 (8)
H17A0.05430.69340.50430.056*
H17B0.03270.65420.60120.056*
H17C0.09350.75390.59440.056*
C190.6126 (5)1.3865 (4)0.4567 (3)0.0375 (8)
H19A0.66501.43180.51300.056*
H19B0.69951.36480.42430.056*
H19C0.58171.47360.41520.056*
C80.1982 (5)0.0034 (4)0.0720 (2)0.0328 (7)
H80.18110.11890.10180.039*
C70.0995 (5)0.0703 (5)0.1020 (2)0.0339 (7)
H70.01440.00380.15250.041*
C100.3412 (5)0.2559 (5)0.0411 (2)0.0372 (8)
H100.42460.32490.09200.045*
C120.4317 (5)0.0079 (5)0.0356 (2)0.0358 (8)
H12A0.35110.11060.04760.043*
H12B0.49530.08240.09530.043*
C110.2374 (5)0.3209 (5)0.0063 (3)0.0381 (8)
H110.25270.43680.03390.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0343 (13)0.0325 (12)0.0320 (12)0.0156 (10)0.0084 (9)0.0165 (9)
O20.0311 (13)0.0393 (14)0.0460 (14)0.0157 (11)0.0100 (10)0.0207 (11)
N30.0277 (14)0.0248 (13)0.0320 (14)0.0102 (11)0.0041 (11)0.0079 (11)
O30.0376 (13)0.0380 (13)0.0412 (14)0.0201 (11)0.0061 (10)0.0203 (10)
N20.0320 (15)0.0235 (13)0.0347 (15)0.0132 (11)0.0024 (11)0.0101 (11)
C60.0307 (17)0.0261 (16)0.0280 (15)0.0133 (13)0.0018 (12)0.0051 (12)
C20.0332 (17)0.0252 (15)0.0269 (15)0.0131 (13)0.0011 (12)0.0070 (12)
C10.0330 (17)0.0222 (15)0.0229 (14)0.0088 (13)0.0024 (12)0.0046 (11)
C150.0238 (15)0.0227 (15)0.0352 (17)0.0102 (12)0.0012 (12)0.0045 (12)
C40.0333 (17)0.0229 (15)0.0270 (15)0.0103 (13)0.0050 (12)0.0069 (12)
C130.0238 (15)0.0227 (15)0.0338 (16)0.0098 (12)0.0003 (12)0.0067 (12)
C50.0341 (17)0.0231 (15)0.0253 (15)0.0130 (13)0.0026 (12)0.0033 (12)
C30.0289 (17)0.0236 (15)0.0292 (16)0.0101 (13)0.0033 (12)0.0037 (12)
C140.0289 (16)0.0225 (15)0.0359 (17)0.0121 (13)0.0002 (13)0.0064 (12)
N10.0381 (16)0.0413 (17)0.0346 (15)0.0224 (14)0.0080 (12)0.0167 (12)
C160.0304 (16)0.0223 (15)0.0311 (16)0.0125 (13)0.0013 (12)0.0057 (12)
C90.0308 (17)0.0329 (17)0.0284 (16)0.0147 (14)0.0032 (13)0.0093 (13)
C180.047 (2)0.0363 (19)0.0328 (18)0.0130 (17)0.0037 (15)0.0051 (14)
C200.046 (2)0.0371 (19)0.0327 (18)0.0172 (16)0.0029 (15)0.0053 (14)
C170.0316 (18)0.0275 (17)0.046 (2)0.0065 (14)0.0010 (15)0.0066 (14)
C190.0309 (18)0.0281 (17)0.046 (2)0.0067 (14)0.0025 (15)0.0035 (14)
C80.0376 (19)0.0308 (17)0.0308 (17)0.0156 (15)0.0032 (14)0.0063 (13)
C70.0359 (18)0.0400 (19)0.0274 (16)0.0162 (15)0.0014 (13)0.0110 (14)
C100.039 (2)0.0345 (18)0.0342 (18)0.0144 (15)0.0029 (15)0.0011 (14)
C120.039 (2)0.043 (2)0.0315 (18)0.0223 (16)0.0003 (14)0.0093 (14)
C110.042 (2)0.0322 (18)0.044 (2)0.0188 (16)0.0060 (16)0.0086 (15)
Geometric parameters (Å, º) top
O1—C11.352 (4)C16—C201.491 (5)
O1—H10.8400C9—C81.375 (5)
O2—C31.359 (4)C9—C101.389 (5)
O2—H20.8400C9—C121.500 (5)
N3—C151.335 (5)C18—H18A0.9800
N3—C141.342 (4)C18—H18B0.9800
O3—C51.351 (4)C18—H18C0.9800
O3—H30.8400C20—H20A0.9800
N2—C131.330 (5)C20—H20B0.9800
N2—C161.334 (4)C20—H20C0.9800
C6—C11.385 (5)C17—H17A0.9800
C6—C51.387 (5)C17—H17B0.9800
C6—H60.9500C17—H17C0.9800
C2—C31.382 (5)C19—H19A0.9800
C2—C11.389 (5)C19—H19B0.9800
C2—H2A0.9500C19—H19C0.9800
C15—C161.396 (5)C8—C71.360 (5)
C15—C191.489 (5)C8—H80.9500
C4—C51.382 (5)C7—H70.9500
C4—C31.383 (5)C10—C111.369 (5)
C4—H40.9500C10—H100.9500
C13—C141.389 (5)C12—C12i1.531 (7)
C13—C171.492 (5)C12—H12A0.9900
C14—C181.487 (5)C12—H12B0.9900
N1—C111.327 (5)C11—H110.9500
N1—C71.332 (5)
C1—O1—H1109.5H18A—C18—H18B109.5
C3—O2—H2109.5C14—C18—H18C109.5
C15—N3—C14119.0 (3)H18A—C18—H18C109.5
C5—O3—H3109.5H18B—C18—H18C109.5
C13—N2—C16119.7 (3)C16—C20—H20A109.5
C1—C6—C5118.9 (3)C16—C20—H20B109.5
C1—C6—H6120.5H20A—C20—H20B109.5
C5—C6—H6120.5C16—C20—H20C109.5
C3—C2—C1118.7 (3)H20A—C20—H20C109.5
C3—C2—H2A120.6H20B—C20—H20C109.5
C1—C2—H2A120.6C13—C17—H17A109.5
O1—C1—C6117.8 (3)C13—C17—H17B109.5
O1—C1—C2121.2 (3)H17A—C17—H17B109.5
C6—C1—C2121.0 (3)C13—C17—H17C109.5
N3—C15—C16120.8 (3)H17A—C17—H17C109.5
N3—C15—C19117.6 (3)H17B—C17—H17C109.5
C16—C15—C19121.6 (3)C15—C19—H19A109.5
C5—C4—C3119.1 (3)C15—C19—H19B109.5
C5—C4—H4120.4H19A—C19—H19B109.5
C3—C4—H4120.4C15—C19—H19C109.5
N2—C13—C14120.7 (3)H19A—C19—H19C109.5
N2—C13—C17117.4 (3)H19B—C19—H19C109.5
C14—C13—C17121.9 (3)C7—C8—C9120.6 (3)
O3—C5—C4121.3 (3)C7—C8—H8119.7
O3—C5—C6117.7 (3)C9—C8—H8119.7
C4—C5—C6120.9 (3)N1—C7—C8122.9 (3)
O2—C3—C2117.6 (3)N1—C7—H7118.5
O2—C3—C4121.2 (3)C8—C7—H7118.5
C2—C3—C4121.3 (3)C11—C10—C9119.0 (3)
N3—C14—C13120.1 (3)C11—C10—H10120.5
N3—C14—C18117.2 (3)C9—C10—H10120.5
C13—C14—C18122.7 (3)C9—C12—C12i111.3 (3)
C11—N1—C7116.9 (3)C9—C12—H12A109.4
N2—C16—C15119.7 (3)C12i—C12—H12A109.4
N2—C16—C20117.9 (3)C9—C12—H12B109.4
C15—C16—C20122.4 (3)C12i—C12—H12B109.4
C8—C9—C10116.7 (3)H12A—C12—H12B108.0
C8—C9—C12121.4 (3)N1—C11—C10123.9 (3)
C10—C9—C12121.9 (3)N1—C11—H11118.1
C14—C18—H18A109.5C10—C11—H11118.1
C14—C18—H18B109.5
C5—C6—C1—O1179.1 (3)C17—C13—C14—N3178.5 (3)
C5—C6—C1—C21.5 (5)N2—C13—C14—C18178.4 (3)
C3—C2—C1—O1179.2 (3)C17—C13—C14—C181.5 (5)
C3—C2—C1—C60.2 (5)C13—N2—C16—C151.0 (5)
C14—N3—C15—C162.0 (5)C13—N2—C16—C20179.6 (3)
C14—N3—C15—C19178.2 (3)N3—C15—C16—N21.2 (5)
C16—N2—C13—C142.4 (5)C19—C15—C16—N2179.0 (3)
C16—N2—C13—C17177.7 (3)N3—C15—C16—C20177.3 (3)
C3—C4—C5—O3179.0 (3)C19—C15—C16—C202.5 (5)
C3—C4—C5—C60.5 (5)C10—C9—C8—C70.2 (5)
C1—C6—C5—O3177.6 (3)C12—C9—C8—C7179.5 (3)
C1—C6—C5—C41.9 (5)C11—N1—C7—C80.3 (5)
C1—C2—C3—O2178.0 (3)C9—C8—C7—N10.2 (5)
C1—C2—C3—C41.7 (5)C8—C9—C10—C110.3 (5)
C5—C4—C3—O2178.3 (3)C12—C9—C10—C11179.9 (3)
C5—C4—C3—C21.3 (5)C8—C9—C12—C12i70.0 (5)
C15—N3—C14—C130.7 (5)C10—C9—C12—C12i110.3 (4)
C15—N3—C14—C18179.4 (3)C7—N1—C11—C100.8 (5)
N2—C13—C14—N31.5 (5)C9—C10—C11—N10.8 (6)
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.841.922.758 (4)174
O2—H2···N3ii0.842.012.844 (5)174
O3—H3···N20.842.002.841 (5)179
C2—H2A···N10.952.603.299 (6)131
C4—H4···N20.952.633.350 (5)133
C18—H18A···O2ii0.982.643.474 (6)143
C18—H18C···O1iii0.982.603.289 (6)127
C20—H20B···O2iv0.982.653.598 (7)162
C17—H17A···O30.982.593.436 (7)145
C19—H19C···O2iv0.982.633.589 (6)166
C11—H11···O1v0.952.613.407 (5)141
Symmetry codes: (ii) x1, y+2, z+1; (iii) x, y+1, z+1; (iv) x, y+1, z; (v) x, y+1, z.
(TS_PGL_TMP_PHE_Form_I) top
Crystal data top
C44H40N6O6V = 1850 (2) Å3
Mr = 748.82Z = 2
Triclinic, P1F(000) = 788
a = 9.012 (7) ÅDx = 1.345 Mg m3
b = 11.241 (8) ÅMo Kα radiation, λ = 0.71073 Å
c = 18.355 (13) ŵ = 0.09 mm1
α = 94.296 (13)°T = 150 K
β = 93.207 (11)°Block, orange
γ = 92.248 (6)°0.51 × 0.34 × 0.19 mm
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
6912 reflections with I > 2σ(I)
Radiation source: Sealed